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Abstract—This paper describes the outcome of discussions held during
the Third International BCI Meeting at a workshop charged with reviewing
and evaluating the current state of and issues relevant to brain–computer
interface (BCI) feature extraction and translation. The issues discussed
include a taxonomy of methods and applications, time–frequency spatial
analysis, optimization schemes, the role of insight in analysis, adaptation,
and methods for quantifying BCI feedback.

Index Terms—Brain–computer interface (BCI), prediction, signal pro-
cessing.

I. INTRODUCTION

Signal processing (i.e., feature extraction and translation) is a funda-
mental requirement for operation of brain–computer interfaces (BCIs),
which take signals produced by the brain, and translates them into
useful output commands with no intervention of muscles. One work-
shop held at the Third International BCI Meeting was charged with
reviewing and evaluating the current state of BCI-related technology
with regard to signal processing. The discussion covered six main is-
sues: a taxonomy of methods and applications; time-frequency-spatial
analysis; optimization schemes; the role of insight in analysis; adapta-
tion; and methods for quantifying BCI feedback. The conclusions of
these discussions are described below.

II. TAXONOMY OF FEATURE EXTRACTION AND

TRANSLATION METHODS

The participants in the workshop provided summaries of the feature
extraction and translation methods that they have used in their BCI re-
search and development programs. The methods described in the re-
sponses were then used to develop categories that were arranged in a
taxonomy of methods. The goals of this effort were: to discover how
each laboratory’s work relates to the collective effort of the BCI com-
munity; to prompt a discussion of which methods appear to be most
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fruitful for various applications; and to highlight new methods yet to
be tried. The resulting taxonomy is outlined below. (It can also be
found online1 along with summaries of the responses received from
the workshop participants. The responses and the taxonomy make up
a dynamic document that is updated as new responses and suggestions
for taxonomy changes are received. Instructions online1 describe how
to contribute.) The included references are by no means exhaustive, and
major contributions have been left out of the listing. For example, not
mentioned in the taxonomy are methods of feature selection and ways
of combining multiple feature extraction and translation methods.

Taxonomy of Methods
Feature extraction

1) Time
a) Fourier transform [1]–[7]
b) Wavelets [8]
c) Autoregressive models [2], [9]–[12]
d) Bandpass filtering [13]
e) Template matching [14]
f) Kalman filter [11], [12], [14]
g) Spike detection [15]

2) Space
a) Laplacian filter [3], [9], [10], [16]–[18]
b) Principal components analysis [8], [14]
c) Independent components analysis [2], [16], [17]
d) Common spatial patterns [7], [13], [19]
e) Amplitudes [20]
f) Ratios and differences

3) Time–Space
a) Components analysis in time and space [21]
b) Multivariate autoregressive models [22]
c) Coherence [7]

4) Inverse models
a) Electroencephalogram (EEG) to electrocochleography

(ECoG)
b) EEG to source dipoles [16], [17]

Feature translation
1) Linear

a) Linear discriminant analysis [7], [11], [12], [19], [21]
b) Perceptron [13]
c) Regression [3], [9], [10], [14], [15], regularized [2], [20],

adaptive [18]

2) Nonlinear
a) Fixed structure

i) Quadratic discriminant analysis [11], [12]

b) Modifiable structure
i) Memory-based

A) k-nearest-neighbors [8], [21]
B) Support vector machines [2], [4], [6]
C) Partial least squares [6]

ii) Combinations of simple nonlinearities

A) Neural networks [23]
B) Decision trees [21]
C) Learning vector quantization [5]

iii) Generative models

A) Mixture of Gaussians [1]
B) Hidden Markov models

1http://www.cs.colostate.edu/eeg/taxonomy.html
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In addition, Mason, Bashashati, Fatourechi, and Birch are currently
engaged in a related analysis of methods through an extensive survey of
the literature. (It is available online.2 While the workshop’s taxonomy
outlined above focuses specifically on feature extraction and transla-
tion, the work of the latter investigators encompasses all aspects of BCI
research and its applications.)

III. TIME–FREQUENCY SPATIAL ANALYSIS

BCI signal processing can be accomplished in stages. For example,
the method currently implemented in BCI2000 for mu rhythm training
consists of spatial filtering followed by spectral analysis [24]. How-
ever, it is also possible to consider these signal dimensions concur-
rently. For example, time-frequency spatial patterns can be used as fea-
tures to predict electroencephalogram (EEG) recorded during right or
left hand movement imagery [3]. Likewise, Anderson et al. [22] com-
pared features extracted from EEG with univariate and multivariate
autoregressive (AR) models for classifying mental tasks. In addition
to the information contained in single channels, multivariate models
also consider the time-dependent covariance between channels. Multi-
variate AR coefficients perform slightly better than those produced by
univariate models.

Although the vast majority of BCI studies have treated these dimen-
sions independently, and this is the simpler approach, such examples
illustrate that it is possible to model the interdependencies between
the time, frequency, and spatial dimensions of the signal. It depends,
however, on the application, whether or not considering the interde-
pendencies between these signal dimensions will provide a substantial
improvement in performance.

IV. OPTIMIZATION SCHEMES

Several aspects of a BCI can benefit from effective optimization
including modeling, feature extraction, classifier training, and online
adaptation. Approaches to optimization can be generally categorized
into local techniques and global techniques [25]. Local techniques
such as variants on gradient ascent/descent are well established, prov-
ably convergent, and can be effective for linear and simple nonlinear
systems. However, these methods can grow increasingly complex for
nonlinear systems such as neural and independent component analysis
(ICA) networks and may become trapped in a local minimum. On
the other hand, global techniques, such as evolutionary algorithms,
are capable of avoiding local minima by intelligently searching the
parameter space. Global methods should be considered in offline
contexts unless simple local methods are sufficient or there are signifi-
cant computational constraints. However, a main drawback of global
techniques is that they require additional computational resources.

It is essential that an appropriate optimization technique is identified
for a particular problem, and that the optimization technique not be a
limiting factor in system design.

V. INSIGHT FROM ALGORITHMS

Algorithms used for feature extraction or classification should opti-
mize BCI performance. In addition, it is desirable that these algorithms
allow insight into and interpretation of the processes that are used by
subjects to solve the BCI task they are confronted with. Insight and in-
terpretation are desirable for two reasons. First, it is possible that users
could employ various artifacts to solve the BCI task. In addition, many
of the EEG features used in BCI research have an extensive literature
that can be exploited and added to.

EEG features can be extracted with autoregressive modeling of the
time series. The coefficients of the autoregressive model may serve as
features or they may be used to estimate the power spectrum [26]. Use

2http://www.braininterface.org

of the power spectrum allows identification of known phenomena such
as the mu rhythm or electromyography (EMG) contamination. In con-
trast, use of the coefficients as features does not allow for a straightfor-
ward interpretation. EEG features may be classified by means of linear
algorithms, in which case it is possible to evaluate the relative weight of
each individual feature. Nonlinear kernel-based methods could in prin-
ciple assess such individual contributions in some high-dimensional
feature space, but when projected back to the original input space,
single-feature space dimensions typically correspond to an uninter-
pretable nonlinear mix of the input variables [27].

Linear methods that employ feature selection provide a possible so-
lution. Common sequential methods that use dimensionality reduc-
tion, such as principal components analysis (PCA), do not guarantee
good classification since the best discriminating component may not
be among the largest principal components. An ideal strategy is to si-
multaneously construct a good classifier and select features for further
explanation. Mathematical programming machines, such as the sparse
Fisher’s discriminant (SFD), can be used for this purpose. For example,
Blankertz et al. [28] applied SFD to EEG measurements from a self-
paced finger tapping experiment. The SFD algorithm selected 68 out
of 405 input dimensions that allowed left-right classification with good
generalization. The selected input dimensions coincided well with what
is expected from neurophysiology (i.e., high loadings for electrodes
over sensorimotor areas). Thus state-of-the-art learning machines not
only enable high classification accuracy, but also selection of a few fea-
tures that match neurophysiological expectations.

Even linear methods may provide problems in interpretation when
the predictors are correlated. For example, in a subject using a P300-
based matrix speller [24], a linear prediction of the target versus foil
based on the 15-sweep average of samples from Cz at 0 and 240 ms pro-
duced r

2 values of 0.004 and 0.073, respectively, for the two features
with univariate models, and 0.559 for the two in a bivariate model. With
the bivariate linear regression model, feature weights were�0:155 for
time 0 and 0.171 for 240 ms. It is unlikely that the stimulus-related in-
formation contained in the EEG is nearly equivalent at 0 and 240 ms.
Rather it is probable that the feature at time 0 serves as a means of noise
cancellation (i.e., it provides a baseline correction) and thus represents
a suppressor variable [29]. Thus, weights from a multivariate model do
not always represent the extent to which a feature provides independent
predictive information.

VI. ADAPTATION

Each step in the processes of feature extraction and translation may
involve estimating parameters that are derived from the observed data.
When the data are not stationary, some form of adaptation may opti-
mize BCI performance. Successful adaptation should be both fast and
stable. These properties are related, in part, to the selection of the ap-
propriate time constant for adaptation. It is also important to consider
the appropriate elements for adaptation. For example, it is possible to
adapt the parameters of several signal processing stages separately. Al-
ternatively, adaptation may involve the parameters of a single global
feature space. At present, these issues remain largely unexplored.

It is important to appreciate that BCI systems involve feedback to
the user in real time [26]. As a result, the user and the BCI represent
two coupled adaptive systems. This may result in complex dynamics.

VII. CRITERIA FOR BCI EVALUATION

There are a number of different measures available for evaluation
of BCI systems. Perhaps the simplest of these is the error rate or
classification accuracy. However, in order to calculate an error rate, a
threshold must be applied. Alternatives that do not require specifica-
tion of a threshold include signal-to-noise ratio, Cohen’s Kappa [30],
and r

2 [31]. The receiver-operator characteristics (ROC) curve, based
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on signal detection theory [32] provides a powerful tool for evaluating
two-class problems.

Comparisons of accuracy or measures of association may be difficult
when tasks vary in terms of parameters such as the number of alterna-
tives that users can select or the rate at which selection occurs. Wolpaw
et al. [26] suggested the use of bit-rate, based on Shannon’s commu-
nication theory. Other measures based on Shannon’s theory such as
mutual information [33] are also available.

BCI performance can also be evaluated in terms of time to complete
a particular task. For example, the number of letters selected per minute
can be used to evaluate spelling devices based on different methodolo-
gies [34]–[36].

There is probably no single measure that is ideal for all applications.
For example, simulations show that a 6� 6 P300-based spelling ma-
trix transmits information when the probability of a correct selection
is below 0.5. However, in copy spelling, if correction of errors is re-
quired, then reasonable performance in a time-to-complete measure is
attained only with probabilities in excess of 0.7.

VIII. SUMMARY

BCI research is a relatively new field and many alternative methods
and concepts relevant to signal processing and feature extraction and
translation need to be explored. Although many possible solutions have
been proposed and demonstrated to work, it is necessary to compare
these in well-designed systematic studies and on established data sets
like the BCI Competition III [37].
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Abstract—This paper describes the highlights of presentations and dis-
cussions during the Third International BCI Meeting in a workshop that
evaluated potential brain–computer interface (BCI) signals and currently
available recording methods. It defined the main potential user populations
and their needs, addressed the relative advantages and disadvantages of
noninvasive and implanted (i.e., invasive) methodologies, considered eth-
ical issues, and focused on the challenges involved in translating BCI sys-
tems from the laboratory to widespread clinical use. The workshop stressed
the critical importance of developing useful applications that establish the
practical value of BCI technology.

Index Terms—Brain–computer interface (BCI), electrophysiological sig-
nals, rehabilitation.

I. INTRODUCTION

This workshop, which was part of the 2005 BCI meeting, addressed
the characteristics, advantages, and disadvantages for brain–computer
interface (BCI) use of different brain signals and recording methods
with particular reference to development of clinical applications. The
major issues considered included the characteristics, capacities, and
needs of people likely to benefit from a BCI; the advantages and dis-
advantages of electroencephalographic (EEG), electrocorticographic
(ECoG), and intracortical signals; other possible signal modalities; the
ethical issues associated with BCI research and use; and the transi-
tion from the laboratory to widespread clinical use. The participants

Manuscript received February 27, 2006; revised March 27, 2006. The Na-
tional Institutes of Health (i.e., The National Institute of Biomedical Imagining
and Biomedical Engineering, the National Center for Medical Rehabilitation
Research of the National Institute of Child Health and Human Development,
the National Institute on Deafness and Other Communication Disorders,
and the Office of Rare Diseases) provided major funding for this meeting
(R13EB00511401). Additional funding for the participation of students and
postdoctoral fellows was provided by: The National Science Foundation;
the Department of Defense Advanced Research Project Agency (DARPA);
the Wadsworth Center (New York State Department of Health); Honeywell
International; Cyberkenetics Neurotechnology Systems, Inc.; the Alfred E.
Mann Foundation; g.tec Guger Technologies OEG; Cortech Solutions, LLC;
and Cleveland Medical Devices, Inc.

The authors are with Wadsworth Center, Albany, NY 12201-0509 USA
(e-mail: wolpaw@wadsworth.org; gloeb@usc.edu; ballison@scripps.edu;
donchin@shell.cas.usf.edu; omar@smi.auc.dk; heetderw@mail.nih.gov;
femke.nijboer@uni-tuebingen.de; shain@wadsworth.org; turner@wadsworth.
org).

Digital Object Identifier 10.1109/TNSRE.2006.875583

included clinical and basic neuroscientists, cell biologists, engineers,
biophysicists, psychologists, and clinicians. The format included indi-
vidual presentations and panel-led discussions.

II. USER POPULATIONS

BCI users are often categorized according to the disorders respon-
sible for their disabilities, such as amyotrophic lateral sclerosis (ALS),
brainstem stroke, spinal cord injury, or cerebral palsy. However, de-
cisions regarding whether or how BCI technology might be useful to
these users usually depend more on the extent of their disability than
on its origin. In this regard, potential users fall into three relatively dis-
tinct classes.

The first class consists of people who are truly totally locked-in (e.g.,
due to end-stage ALS or severe cerebral palsy), who have no remaining
useful neuromuscular control of any sort, including no eye movement.
Although this class is very small, it is often considered to be the first
target group for BCI applications. However, in reality, efforts to demon-
strate effective BCI operation by these individuals encounter a number
of difficult challenges. It is often unclear, for example, whether cog-
nitive functions remain intact, whether vision is adequate to support
BCI operation, and if not, whether an auditory or other alternative will
suffice, and whether the user can or will maintain a state of alertness
adequate for reliable BCI operation. In practice to date, these or related
issues have been major impediments to BCI usage by these users. Each
person requires a comprehensive and individualized approach that goes
far beyond the much simpler procedures effective in those who are not
totally locked-in. On the other hand, if people progressing toward this
level of disability (e.g., those in the early or middle stages of ALS)
begin to use BCI technology before they become totally locked-in, they
may be able to continue to use it effectively after they lose all motor
function.

The second class of potential BCI users comprises those who retain
a very limited capacity for neuromuscular control. This group includes
people who retain some useful eye movement or enough limb muscle
function to operate a single-switch system. Such control is often slow,
unreliable, or easily fatigued [5]. This group is much larger than the
first, and includes many people with late-stage ALS, brainstem stroke,
and severe cerebral palsy. The advent of widely available life-support
technology, particularly ventilators, enables these individuals to sur-
vive indefinitely, and numerous studies now show that with adequate
physical and social support they can lead lives that they and their fam-
ilies and friends consider worthwhile and enjoyable [12], [20], [23],
[27], [32], [45]. Thus, there is substantial impetus for developing BCI
communication and control technology for this group. Furthermore,
current or readily achievable BCI systems may provide communication
and control capacities (e.g., for simple word processing, environmental
control, entertainment access) comparable to, or even better than, that
achievable with their residual neuromuscular control.

The third class of potential BCI users, which is the largest of all,
includes those who still retain (and can be expected to continue to
retain) substantial neuromuscular control, particularly speech and/or
hand control, and can, therefore, operate a wide range of assistive com-
munication and control devices. For this group, as well as for users
without disabilities, BCI technology, whether currently available or
likely to be available in the near future, has little to offer (though it
might be useful in very specific situations, such as when hands-free
control is required). It will only be if and when BCI speed, accuracy,
and precision of control substantially exceed current levels that this
technology will become a significant option for this class of potential
users.
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