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Brain–computer interfaces (BCIs) allow for communicating intentions
by mere brain activity, not involving muscles. Thus, BCIs may offer
patients who have lost all voluntary muscle control the only possible
way to communicate. Many recent studies have demonstrated that
BCIs based on electroencephalography (EEG) can allow healthy and
severely paralyzed individuals to communicate. While this approach is
safe and inexpensive, communication is slow. Magnetoencephalogra-
phy (MEG) provides signals with higher spatiotemporal resolution
than EEG and could thus be used to explore whether these improved
signal properties translate into increased BCI communication speed. In
this study, we investigated the utility of an MEG-based BCI that uses
voluntary amplitude modulation of sensorimotor μ and β rhythms. To
increase the signal-to-noise ratio, we present a simple spatial filtering
method that takes the geometric properties of signal propagation in
MEG into account, and we present methods that can process artifacts
specifically encountered in an MEG-based BCI. Exemplarily, six
participants were successfully trained to communicate binary decisions
by imagery of limb movements using a feedback paradigm. Partici-
pants achieved significant μ rhythm self control within 32 min of
feedback training. For a subgroup of three participants, we localized
the origin of the amplitude modulated signal to the motor cortex. Our
results suggest that an MEG-based BCI is feasible and efficient in
terms of user training.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Brain computer interfaces (BCIs) are communication devices
that allow for communicating intentions by mere brain activity, not
involving muscles (Wolpaw et al., 2002). BCIs are of great
importance for patients with diseases or traumatic injuries that lead
to loss of voluntary muscle control and to severe or total motor
paralysis. Without muscle control, patients are cut off from
communicating their needs and feelings to their environment
(locked-in syndrome). The locked-in state may result from
degenerative diseases such as amyotrophic lateral sclerosis,
cerebral palsy, muscular dystrophy, multiple sclerosis or from
traumata such as brainstem stroke, brain or spinal cord injury.
Some of these conditions impair the neural pathways that control
muscles while others impair the muscles themselves.

BCIs may be classified according to the kind of brain signal
they use for communication. BCIs are mainly based on electro-
physiological signal acquisition methods, such as electroencepha-
lography (EEG), electrocorticography (ECoG) and recordings from
individual neurons inside the brain. In recent years there has also
been growing interest in BCIs based on imaging methods such as
functional magnetic resonance imaging (fMRI) (Weiskopf et al.,
2003) or near infrared spectroscopy (NIRS) (Coyle et al., 2004).

One type of brain–computer interface utilizes amplitude
modulation of the μ rhythm. This EEG component is typically
found over sensorimotor cortex with a base frequency of 10–
12 Hz. Its arc-shaped wave form implies a strong first harmonic in
the β band at 20–24 Hz. μ rhythm amplitude is decreased during
planning, execution or mere imagination of limb movements
(desynchronization of the μ rhythm) (Gastaut, 1952; Pfurtscheller,
1999; McFarland et al., 2000).

With a typical μ rhythm based BCI, participants learn to control
these rhythms in a real-time neurofeedback setting. Rhythm
amplitude is extracted from brain signals over select locations
and then translated into movement of a cursor on a screen. Initially,
participants are prompted to control the cursor by imagination of
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limb movements. Aided by visual feedback, participants typically
achieve voluntary rhythm modulation over time, and in those
regions of the motor cortex that are associated with the respective
limbs. Such a system allows for the communication of the userTs
intent using simple cursor control, word processing, etc.

EEG-based μ rhythm BCIs have proven their feasibility with
healthy participants and with severely paralyzed patients
(Pfurtscheller et al., 2000, 2003; Wolpaw et al., 2000; Kübler et
al., 2005). While these systems can accurately communicate the
userTs intent, they require extensive user training over many weeks
or months. Furthermore, EEG data in the order of a few seconds are
needed to reliably extract a single binary decision (Wolpaw et al.,
2002). Other signal acquisition techniques, such as electrocortico-
graphy (ECoG) (Leuthardt et al., 2004) or magnetoencephalography
(MEG), may reduce training time or increase reliability of a BCI.
When compared to EEG, MEG supports a larger number of sensors,
providing more spatial information (Bradshaw et al., 2001), and can
detect information in the frequency range above 40 Hz (Kaiser et al.,
2005) which is not present in EEG recordings. These considerations
encourage exploration of MEG-based BCIs.

In this paper, we present a μ rhythm based BCI using MEG
for brain signal data acquisition. For MEG, the presence of the μ
rhythm is well-known (Salmelin et al., 1997), but the feasibility
of an MEG-based μ rhythm BCI is not immediately obvious.
Despite the close relationship between EEG and MEG,
characteristic differences in spatial signal propagation from
source to sensors require approaches to data analysis and to
spatial filtering different from EEG-based BCIs. At the same
time, suitable methods are not readily available because common
MEG data analysis methods are focused on source localization of
stimulus-induced evoked responses, steady state responses or
identification of stationary sources (Salmelin and Hari, 1994;
Liljeström et al., 2005) rather than on extraction of BCI signals.
Additionally, different kinds of artifacts occur for EEG and MEG,
which implies the need for artifact processing methods that are
specific for each.

Data from six healthy participants illustrate the viability of our
approach and that training time and accuracy are comparable to
what is common for EEG-based BCIs.

While there have been in-depth investigations into the spatial
origin of stationary brain rhythms (Liljeström et al., 2005), the
modulated μ rhythm which is exploited by BCIs has not been
subject to localization studies. Combined EEG and fMRI studies
have been proposed, but remain difficult due to scanner artifacts
difficult to deal within the on-line case. MEG, on the other hand,
suggests itself for source localization applications because
source-to-sensor signal propagation of magnetic fields is less
influenced by the unknown physical properties of the skull than
is the case with EEG (Hämäläinen et al., 1993). We show that
data obtained during BCI operation can be used to localize, with
high spatial precision, the origin of the μ rhythm used for cursor
control and demonstrate exemplary localization for three of the
six participants.

Materials and methods

Participants

Six healthy adult volunteers participated in the study (five male,
one female, mean±SD age 30.0±6.4), all being naive to BCI
operation. The study was approved by the ethics committee of the
University of Tübingen Medical Faculty, and all participants gave
informed consent.

Experimental setting

Participants were seated upright, watching a 20×15 cm area on
a screen located at an eye distance of 1.2 m, resulting in a
maximum visual angle of 6° from the central direction.

Recordings were performed in sessions lasting about 1 h each. In
an initial session (screening), no feedback was provided; instead,
participants were asked to perform actual repetitive hand and feet
movements, followed by corresponding imagery (left hand vs. right
hand, both hands vs. both feet). The task was indicated by cues that
appeared on the screen for 4 s, with 2 s intervals between the cues.

Data from this session comprised 20 trials with actual movement
for each condition and 30 trials of imagery for each condition. These
data were used to determine parameters for the subsequent feedback
sessions, in which participants learned self-control of their μ rhythm
amplitude. For training sessions, participants were instructed to try
hand vs. feet movement imagination, or imagined hand movement
vs. rest, whichever strategy produced the largest changes in their
brain signals.

After each of those sessions, data were analyzed and on-line
parameters were adapted as described in section “Spatial and temporal
filtering”.

Training sessions comprised 16 runs lasting 2 min each. Each
run was followed by a short break of 10 to 20 s. Every 6 runs, there
was a resting period of about 5 min.

MEG recordings

MEG was recorded in a magnetically shielded room using a
whole-head system (CTF Inc., Vancouver, Canada) comprising 151
first-order gradiometers distributed with an average distance
between sensors of 2.5 cm. Data were sampled at a rate of 625 Hz
with an anti-aliasing filter at 208 Hz. Head position was recorded
continuously using localization coils that were fixed at the nasion
and at the preauricular points, forming a head-relative coordinate
system. The coils were driven with sinusoidal currents of 156 1/
4 Hz, 125 Hz and 104 1/6 Hz (1/4, 1/5 and 1/6 of the sampling
frequency), generating a strong signal (1 pT, ca. 50 times the
amplitude of brain signals), far above the brain signalTs frequency
range of interest (10–40 Hz), thus avoiding distortions inside that
range of interest. From the coil signals present in the recordings, it
was possible to compute the headTs relative position and orientation
off-line using narrowband filtering and least-squares fitting of each
coilTs amplitude distribution to a magnetic dipole forward model.
This was done as part of the source localization procedure described
in “Source localization” and to control for head movement artifacts
off-line as described in “Head movements”.

Real-time feedback

In intervals of 70.4 ms, blocks of 44 samples were transmitted
from the MEG to a real-time feedback system attached via a
network interface. The real-time feedback system was implemen-
ted using the BCI2000 general-purpose BCI system (Schalk et al.,
2004). MEG data acquisition hardware was connected to a
standard PC running a Linux operating system via an SCSI
interface. Data acquisition and hardware control was done through
a proprietary software (Acquire, CTF Inc.) running on the Linux



Fig. 1. Elements of a feedback trial. A trial consisted of (1) a 1 s period in
which the target indicated the required response but no cursor was visible,
(2) a 4.2 s feedback period with cursor movement, (3) a 1.5 s period during
which the target was highlighted to indicate successful performance, or
remained neutral in case of a miss, (4) an inter-trial interval of 0.5 s, followed
by another trial (5).
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machine. To allow real-time data access, CTFTs Acquire program
writes raw digitized MEG data into a shared memory area in
constant-sized blocks, immediately after digitization. On this
machine, a second program was running that acted as a relay to
BCI2000 via a TCP/IP-based socket interface. This second
program, which was specifically written for this purpose,
implements a widely used protocol defined for the Neuroscan
SCAN server (Compumedics, El Paso, TX, USA). Thus, it was
possible to use an existing BCI2000 component (i.e., the
Neuroscan client) for data acquisition.

On arrival of each block of data, the feedback system computed
and updated a cursor position representing the time course of μ or β
bandpower amplitude observed at a subset of MEG sensors. Sensors
and bandpower frequencies were chosen individually for each
participant as described in “Spatial and temporal filtering”.

During feedback, the cursor moved from left to right at a
constant rate, beginning its movement at the center of the feedback
areaTs left margin; μ or β bandpower determined its vertical speed
such that the cursorTs final position at the right margin represented
the trial mean of μ rhythm activity quantified as described in
“Real-time signal processing”. The participantTs task was to move
the cursor into a pre-defined half of the right margin indicated by a
red bar (“target”). Feedback was provided in discrete trials lasting
6.7 s each (Fig. 1). A trial consisted of

• a 1 s period in which the target indicated the required response
but no cursor was visible;

• a 4.2 s feedback period during which the cursor moved from left
to right at a constant rate, and up or down depending on the
participantTs μ rhythm amplitude;

• a 1.5 s period during which the target turned yellow to provide
feedback about successful performance, or kept its red color if
the participantTs response did not meet the task requirement.

Between trials, there was an interval of 0.5 s.
Real-time signal processing

Each block of 44 samples, i.e., the most recent 70.4 ms of
data, was analyzed by an autoregressive (AR) spectral estimation
method (Burg Maximum Entropy Method, Marple, 1987), and
the amplitude (square root of power) in a 3-Hz-wide frequency
band was determined from the AR coefficients. The band was
selected as described below in “Spatial and temporal filtering”.
Vertical cursor speed vy was then a linear function of this
amplitude S:

vy ¼ bðS � aÞ;
where the intercept a and the gain b was adapted dynamically to
optimize the participantTs control over cursor movement
(McFarland et al., 1997a). Considering cursor movement and
subsequently hitting one out of two targets as a linear binary
classification, it follows from the optimal linear classification
rule (Rencher, 1998) that optimum control is achieved if a
equals the mean of the two class means:

a ¼ 1
2

S̄top þ S̄bottom
� �

:

An adaptive on-line estimate of the class means S̄top and S̄bottom
was calculated as the average of S over the 3 most recent trials for
the respective target. To achieve an appropriate magnitude of
cursor movement, b was chosen such that, for a signal value
equaling a class mean, the cursor hits the center of the associated
target:

1
b
~ S̄top � S̄bottom

� �
:

Spatial and temporal filtering

For the initial training session, spatial and temporal filter
parameters were chosen according to the analysis results of the
initial screening session. Between training sessions, these para-
meters were again adapted if suggested by the previous sessionTs
analysis.

Off-line analysis of screening and training sessions comprised
computation of topographical and spectral maps of determination
coefficients (squared correlation values). These maps indicate, for
each sensor and each frequency band, the amount of amplitude
variance accounted for by the task condition, i.e., imagination of
movement vs. rest (Figs. 2 and 3). For off-line processing, we used
the Welch method to compute spectrograms rather than the AR
method used in the on-line case (625 samples, or 1 s, window size,
no overlap, rectangular window).

For on-line feedback, we chose a single frequency band within
the μ (9–15 Hz) or β (18–30 Hz) range that displayed the largest
correlation with the target position. As a spatial filter, sensors with
the highest correlation values were linearly combined with weights
of +1 or −1 depending on the relative orientation of the magnetic
field lines at the respective sensor locations (into or out of the
skull).

This spatial filtering method was designed as an analogy to
Laplacian filtering used for EEG signals. Due to the propagation
properties of EEG signals, Laplacian filtering provides a global
linear filter that results in signals which are more “localized” than
the original signals — localized in the sense that transformed
channels contain less signals from remote locations than the
unfiltered signals. Thus, Laplacian filtering is a simple linear
filter that improves signal-to-noise ratio for BCI purposes
(McFarland et al., 1997b). In the case of MEG, individual
sensors still record linear mixtures of source signals. However,
due to the more intricate geometry of magnetic fields vs. electric
fields, it is not possible to find a general spatial filter that
improves signal-to-noise ratio in analogy to Laplacian filtering;
rather, position and orientation of the sources of interest must be
taken into account. Magnetic field lines form circles around a
source current located inside the skull, thus each field line that



Fig. 2. Spectral map of determination coefficients computed from three runs (54 trials) selected from participant A's second training session. Arrows on the top
indicate sensors used to compute the feedback signal, and an arrow on the left indicates the frequency entering into Fig. 3.

Fig. 3. Topographical maps of determination coefficients (r2 values) (A) and
amplitude differences (B) for the data from Fig. 2 between 21 and 22 Hz.
(All topographies are viewed from the top.)
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leaves the skull at one location will enter it at a different location
distant from the first one. This results in a bipolar pattern for
dipole sources (Figs. 3 and 4). Knowing the pattern associated
with a source of interest, it is possible to improve signal-to-noise
ratio by a simple linear combination of sensors located inside the
patternTs two areas associated with maximum field amplitude,
using +1 and −1 as weights according to the relative orientation
of the magnetic field.

To determine the spatial distribution of the modulated magnetic
field, a principal component analysis (PCA) related technique was
used which we call “Phase Decorrelation Analysis” (PDA). This
technique was designed to linearly decompose the signal difference
between the two conditions – imagined movements vs. rest, or
upper vs. lower target – into orthogonal components by using
amplitude and phase relations between sensors as described in
Appendix A. This method allowed to extract a dominant
modulated source from a background of less pronounced
modulation and noise.

As an example, Fig. 4A shows the main component extracted
from the difference topography depicted in Fig. 3B and illustrates
how much information is gained over the amplitude difference
when phase information is taken into account by the PDA method.

Finally, as a criterion for the number of sensors chosen, we used
the decay of determination coefficients, avoiding the use of sensors
with neighbors for which the determination coefficient dropped
below 80% of its maximum value. This criterion was chosen to
minimize the spatial filterTs sensitivity to the participantTs absolute
head position while still benefiting from a larger number of sensors
in cases where determination coefficients were high over a
relatively large area (for an illustration, compare Fig. 3A with the
actual sensor locations chosen in Fig. 4A).

Source localization

Unlike electrical potentials measured by EEG, magnetic fields
that originate from the brain are not distorted by the dominating
spherically symmetric part of the distribution of conductivity inside
the skull (Hämäläinen et al., 1993). Thus, for a given magnetic
field distribution measured by a sensor array, source localization is
possible using an inverse fitting procedure without knowledge of
the conductivity distribution.

As discussed in Appendix A, the spatial weights of a PDA
component may be interpreted in a way similar to the interpretation



Fig. 4. PDA extracted principal components of amplitude differences (as exemplified by Fig. 3) for all participants. A–D and F clearly resemble single current
dipole fields, E is less distinct. Computation was based on the participants' 3 to 4 most successful training runs (54 to 72 trials). Dots indicate sensors, lines are
isocontours of normalized field strength (actual field strength is indicated in Fig. 7). Markers indicate which sensors enter into cursor feedback, and the signs of
their respective weights in spatial filtering. (All topographies are viewed from the top.)
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of source-to-sensor-space transformations derived by blind source-
separation algorithms (Cardoso and Soloumiac, 1993). In this
interpretation, a certain sourceTs spatial source-to-sensor weights
may be identified with the field of that source at a certain point in
time, up to a multiplicative constant. Thus, these weights may be
used as a field distribution input to a dipole fitting procedure.

For the localization of source dipoles (Fig. 5), the PDA
component with the largest absolute eigenvalue was used as input
to a least-squares current dipole fitting procedure (Equivalent
Current Dipole (ECD) fitting using a homogenous spherical head
model, software by CTF Inc., Vancouver, Canada). To transform
the resulting MEG-based dipole location into the coordinate
system of a participantTs MRI scan, the positions of the head
localization coils were determined relative to MEG sensor
positions. Then, these were identified with the corresponding
positions (fiducial points at the nasion, and the preauricular
points) as visible in the participantTs MRI scan. As a measure for
errors, pairwise distances were computed between coil positions
in the MEG coordinate system and compared to pairwise
distances between the fiducial points in the MRI coordinate
system, and differences were found to be below 4 mm. This error
is on the same order as that typically achieved for applying
localization coils to a participantTs head. For the ECD fit itself,
spatial accuracy has been found to be in the order of below 4 mm
in realistic simulations for a single dipole and noise up to 20 dB
(Jerbi et al., 2004). These two errors combine to give a total
localization error of less than 5.6 mm.
Artifact control

Muscular artifacts
Electromyographic (EMG) activity originating from facial and

neck muscles is reflected in large amplitude signals over wide
frequency ranges. Because EMG signals can extend into μ and β
bands, it could be possible for a participant to control the feedback
cursor by muscle tension and relaxation. These artifacts are readily
identified by their broad-banded spectrum, imposing a vertically
dominant structure that extends to high frequencies on a feature
map (Fig. 8), while modulation of brain rhythms with their line
spectra displays a dominantly horizontal line structure in a feature
map (Fig. 2).

Head movements
Head movements alter the distance from sources to sensors as

well as their relative orientation. In the case of a physiological
current dipole, the magnetic field component measured by MEG
sensors strongly depends on source–sensor distance (~r−3), thus
amplitude modulation at the sensors used for cursor movement
may be achieved by head movements.

To control for head movements, localization coils were used as
described in “MEG recordings”. These coils define a head-relative
coordinate system which was used for off-line detection of task-
related head motion. Thereby, task-related translations were
obtained by linearly correlating the three spatial coordinates of
the head-centered coordinate systemTs origin with the task



Fig. 5. Locations of μ rhythm sources obtained by Equivalent Current Dipole (ECD) fitting of PDA components displayed in Fig. 4, plotted into MRI scans of
participants A, B and F. ECD fitting errors were 2.3%, 1.9% and 5.2% (normalized least-squares).
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condition variable (± cases corresponding to the two task
conditions):

r
Y
F ¼ F

1
2
D r

Yþ r
Y
0 : ð1Þ

Task-related rotations and scaling transformations were
obtained by forming a 3×3-matrix from the coordinate systemTs
three basis vectors, taking its matrix logarithm and linearly
correlating it with the task condition variable:
�
eY1 ; e

Y
2 ; e

Y
3

�
F ¼ eF

1
2DMeM0 : ð2Þ

For each participant session, linear regression resulted in an
intercept frY0 ; M0g representing an average head position and a
slope fD rY0 ; DMg that represented task-related movements. More
precisely, task-related rotation around an average axis was available
in form of the anti-symmetric part of ΔM, with the largest imaginary
part of its eigenvalues representing the rotation angle (“task”
columns in Table 1).

In addition, for each head position sample, the linear
transformation relative to the sessionTs average head coordinate
system was computed. From these data, the standard deviation of
the translation vector and the rotation angle were determined
(“total” columns in Table 1).

Analogously, the linear transformation connecting average
head positions of subsequent sessions was used to infer the
amount of re-positioning error between a participantTs sessions
(Table 2). Here, a rescaling of the head-centered coordinate
system may occur in addition to translations and rotations, due to
errors when placing localization coils to the fiducial points. This
rescaling is represented by the symmetric part of ΔM and
quantified by that symmetric partTs largest eigenvalue. In Table 2,
we give the scaling error in terms of length change for a fiducial
pointTs position vector in the participantTs head-centered coordi-
nate system.

During feedback training, participants may have followed the
feedback cursor with their eyes and, in synchrony, with their
heads. To evaluate the influence of these movements on our
results, we considered relative modulation of brain signals,
which is defined as the ratio of amplitude difference between
task conditions and mean amplitude. From a linear regression of
brain signal amplitude on the task condition variable, one



Table 1

Participant
session

Localized coil positions Brain signal modulation

Translation (mm) Rotation (degrees)

Total Task p Total Task p Simulated Actual

A 0 1.30 0.05 <0.05 1.74 0.06
1 1.49 0.08 <0.001 1.87 0.04 <0.04 0.003 0.140
2 1.20 0.10 <0.001 2.66 0.05 <0.002 0.003 0.129

B 0 3.88 0.07 8.46 0.14
1 4.47 0.21 <0.001 8.32 0.42 <0.001 0.002 0.035
2 8.87 0.24 <0.001 8.90 0.21 <0.001 0.016 0.068
3 5.44 0.18 <0.001 6.66 0.13 <0.001 0.007 0.083

C 0 6.59 0.09 4.83 0.17 <0.02
1 1.58 0.03 <0.006 2.82 0.06 <0.001 0.001 0.103
2 2.46 0.07 <0.005 2.46 0.06 <0.05 0.006 0.077

D 0 1.68 0.03 4.13 0.04
1 2.38 0.02 2.94 0.02 0.001 0.040
2 2.03 0.03 <0.001 2.83 0.04 0.002 0.125

E 0 6.41 0.30 <0.04 7.60 0.25 <0.02
1 7.40 0.03 4.74 0.07 0.000 0.017
2 2.00 0.03 <0.04 2.65 0.01 0.000 0.035

F 0 2.15 0.08 <0.004 1.64 0.06 <0.008
1 2.63 0.01 2.39 0.00 0.003 0.015

Intra-session head motion. For the head-centered coordinate system derived from dipole-fit inferred coil locations, the following values are reported: in the
“Total” columns, standard deviations from its mean position and orientation, in terms of translatory and rotational movement; in the “Task” columns, amount of
task-related movement, with associated descriptive p-values in the “p” columns if significant (<0.05); in the two rightmost columns, brain signal modulation
during training sessions is given in terms of relative amplitude modulationΔA/A0; in the “actual” column, relative amplitude modulation after spatial and spectral
filtering as done on-line; in the “simulated” column, estimated amount of modulation caused by task-related movements. Index 0 denotes the initial session
(without feedback). For participant F's second training session, no localization data were available. Please refer to the text for further details (“Headmovements”).
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obtains (again, ± cases corresponding to the two task
conditions):

AF ¼ F
1
2
DAþ A0;

with a relative modulation of ΔA/A0.
Table 2

Participant
session

Translation (mm) Rotation (degrees) Scaling (mm)

A 0–1 1.30 8.0 0.23
1–2 2.99 12.6 0.78

B 0–1 5.63 5.84 0.33
1–2 10.9 3.27 1.57
2–3 6.90 4.66 1.46

C 0–1 5.70 4.54 0.93
1–2 4.62 2.37 0.49

D 0–1 6.10 8.62 0.16
1–2 4.68 5.89 0.51

E 0–1 5.76 8.11 0.94
1–2 10.4 2.31 0.05

F 0–1 5.01 2.25 0.32

Inter-session head motion (re-positioning error). For each pair of subsequent
sessions, the amount of translatory and rotational movement and scaling is
reported that corresponds to the transformation of one session's head-
centered coordinate system into the next session's one. Unlike translatory
and rotational movement, scaling only depends on the error in reproducing
fiducial points, i.e., when placing localization coils to the head. Index 0
denotes the initial session (without feedback). For participant F's second
training session, no localization data were available. Please refer to the text
for further details (“Head Movements”).
For each training session, we computed the brain signalTs
relative modulation after spatial and spectral filtering as it was
done on-line (“actual” column in Table 1). To assess whether this
modulation could be due to systematic head movements, we
simulated the influence of the observed task-related movements
on the signal of a realistic dipole source. In detail, we determined
realistic source dipole parameters for each participant by fitting a
single Equivalent Current Dipole model to the data displayed in
Fig. 4. Then, for each session, the resulting dipoleTs position and
orientation were subjected to the transformations corresponding to
the + and − cases of Eqs. (1) and (2). The corresponding field
distribution was computed for each case, and a relative
modulation was determined for the signal resulting from spatial
filtering (“simulated” column in Table 1). Comparing the
simulated effect of head movements to the actually observed
modulation of brain signals, we find that actual modulation is
consistently greater than what might be induced by head motion.
This result is inconsistent with the hypothesis that cursor control
was primarily governed by head motion (“Myographic and head
movement artifacts”).
Hand/Feet movements
Generally, actual hand or feet movements defy the sense of a

BCI which, by definition, does not rely on external muscles for
transmitting information. Investigations of covert hand movements
during the use of an EEG-based μ rhythm BCI used forearm EMG
recordings to correlate muscular with μ rhythm activity. These
investigations show that covert movements were not involved
(Vaughan et al., 1998; Wolpaw and McFarland, 2004).

Actual hand or feet movements do not directly cause artifacts
but may be necessary to produce the signal that controls the cursor.
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To account for this possibility, we monitored participants using a
video camera. Additionally, participants were instructed that they
were welcome to use hand movements if that improved their
control, but they should report usage of hand movements to the
instructor. None of the participants displayed or reported actual
hand movements.

Results and discussion

In this study, we developed methods suited for an MEG-based
μ rhythm BCI and validated these methods by successfully training
six healthy participants in the use of this BCI.

Behavioral results

Learning curves for all participants are presented in Fig. 6. To
reduce statistical noise, accuracies were smoothed over three runs,
so each accuracy value is computed from 3*18=54 trials. At 54
binary trials, an accuracy of 63% or better is statistically significant
at the p<0.05 level. We thus considered accuracies at or above
63% as a significant cursor control. In Fig. 6, this significance level
is indicated by a dashed line.

Four participants (A–D) achieved reliable cursor control
(accuracy ≥90%), three of them within the first training session,
i.e., within 32 min of feedback training. All participants achieved
significant cursor control during the second training session, i.e.,
within less than 64 min of feedback training. Participant C ascribed
the considerable drop in performance in the second training session
to a lack of concentration. Three participants (B–E) reported to
Fig. 6. Time courses of accuracies (correct responses per total number of trials) for
trials. The dashed line indicates the p<0.05 significance level. For all participants,
training sessions.
control the cursor using movement imagery of both hands vs. rest;
participant A reported imagery of his left hand vs. rest.

Sensorimotor rhythm properties

For all participants, typical difference and r2 spectra are given
in Fig. 7, with a base frequency in the μ range and a first harmonic
in the β band.

Using the PDA method, we were able to identify the signal of
the main amplitude modulated source – the source of the
sensorimotor rhythm – from data recorded on a grid of sensors
and isolate its projection weights. These weights, along with the
sensor positions and frequency bands used for cursor feedback,
are indicated in Fig. 4. As explained in detail in “Spatial and
temporal filtering”, the bipolar patterns observed are consistent
with field distributions of localized currents, which is also what is
expected for single sources with small spatial extent.

Participant ETs low performance was accompanied by a diffuse
spatial pattern of amplitude modulation (Fig. 4E). Here, the
insensitivity of MEG to radially oriented dipole sources may have
resulted in a low signal-to-noise ratio. For participant F,
performance was low despite a clear pattern of amplitude
modulation which emerged from the analysis (Fig. 4F), suggesting
a difficulty in learning rather than a technical problem.

Feeding spatial weight distributions from Fig. 4 into an ECD
fitting procedure, we performed spatial localization for participants
A, B and F. Results have a spatial accuracy better than 5.6 mm
(“Source localization”) and show the origin of the modulated brain
signal (sensorimotor rhythm) in the precentral gyrus (participants B
all participants, smoothed over three runs of 2 min each, corresponding to 54
two training sessions were performed, except for B who participated in three



Fig. 7. Averaged amplitude spectra for top target and bottom target conditions and determination coefficients (r2 values) computed from the 5 most successful
runs (90 trials) selected from each participant's best training session. Prior to computing the spectra, spatial filtering was applied as indicated by the sensors and
weights in Fig. 4. The curves show the amount of amplitude modulation that is present in the μ rhythm at its base frequency around 10 Hz and/or its first
harmonic around 20 Hz.

589J. Mellinger et al. / NeuroImage 36 (2007) 581–593
and F), suggesting a motor character; for participant A, it cannot be
decided within the accuracy available whether the source is located
in the precentral or postcentral gyrus, i.e., whether the modulating
activation is sensory or motor.

Spatial filtering

In the present investigation, we developed an MEG equivalent
to the Laplacian filtering approach commonly used with EEG. Our
results suggest that this approach is viable despite its simplicity. An
important aspect is the spatial filterTs sensitivity to the participantTs
absolute head position. This is illustrated by Fig. 4, which shows
the extracted spatial pattern of source-to-sensor projection weights
together with the sensor positions used in spatial filtering. As
described in “Spatial and temporal filtering”, the spatial filter was
always based on the analysis of the participantTs previous session.
For participants A, C and F, it is clearly visible that absolute head
positions differed so much between sessions that the derived
sensors were no more optimal. Still, our robust spatial filtering
method allowed for reasonable and even high accuracies in the first
two cases (the pattern in Fig. 4C was computed from this
participantTs first training session with a final accuracy of >85%),
but could not deal with the change in head position that occurred
for participant F.

In our setup, it was not possible to perform head localization
on-line in real time. This made reproduction of the participantTs
absolute head position across sessions a problematic task. Our
results show that, without the possibility of interactively adjusting
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the participantTs head to a pre-defined position, the reproduction
error was of the same magnitude as the spacing between MEG
sensors (Table 2). These results further suggest that more
sophisticated approaches to spatial filtering such as Beamforming
(Gross and Ioannides, 1999), Independent Component Analysis
(ICA) (Cardoso and Soloumiac, 1993) or Common Spatial Patterns
(CSP) (Koles, 1991) do not provide an immediate advantage when
applied to an MEG BCI unless it becomes possible to adjust the
participantTs head position on-line because they will tend to overfit
in the presence of head positioning errors. A recent cross-
validation study of ICA and CSP based spatial filtering of MEG
data in a BCI context (Hill et al., in press) supports this view by
displaying poor generalization of these methods for MEG data, as
opposed to their good performance in EEG-based BCIs.

Myographic and head movement artifacts

Myographic artifacts, as well as head movements, are a possible
source of signal modulation that should be carefully controlled for
and monitored in BCI experiments. Despite their importance, these
artifacts have not been considered by previous studies dealing with
MEG-based BCIs (Lal et al., 2005; Kauhanen et al., 2006;
Georgopoulos et al., 2005).

While early task-correlated myographic activity is often
present in the recordings (Fig. 2.7), only one of our participants
(C) displayed muscular artifacts with a task correlation
comparable to that of the brain signal. At the same time, this
participantTs data reveal μ rhythm control that does not overlap
spatially with task-correlated myographic signals as illustrated by
Fig. 8. There, horizontal lines indicate task correlation for
cortical signals at distinct frequency bands, and vertical lines
indicate broad-banded task correlation typical for myographic
signals. At the same time, the spatial source pattern (Fig. 4)
reflects a dipolar source rather than a spatially extent source as
would be the case for a muscle located on the skull. Thus, even
where contamination with myographic activity was present,
cursor control was based on cortical signals. Still, these signals
Fig. 8. Determination coefficients (r2 values) over channels and frequencies from 7
activity. Dark horizontal lines indicate spatially distributed task correlation for co
banded task correlation for myographic signals. In this example, task-correlated m
actual cursor control (as in Fig. 2, these are indicated by arrows).
might be dependent on the concurrent presence of myographic
activity, i.e., their modulation might reflect brain activity used to
control the muscles generating the myographic signals that are
visible in the analysis. With long-term BCI training, careful
topographical and spectral analyses and proper instruction of
participants such contamination has been shown to disappear
over time (McFarland et al., 2005).

To control the influence of head movements on the modulation
of brain signals, we introduced the use of head localization coils for
continuous monitoring of the head position. Usually, head
localization is done prior to and after an MEG recording to assess
the amount of head movements that may have occurred during the
measurements (e.g., Kaiser et al., 2005). Driving those coils
continuously as described in “MEG recordings” will record a
continuous trace of head position with the brain signals, such as to
allow for off-line analysis of head movements. Due to movements
of the head when a participant follows the cursor with the eyes,
there exists a significant correlation between head position and task
condition for all participants (Table 1). However, using the
approach described in “Head movements” and comparing move-
ment-induced relative amplitude modulation to the actually
observed brain signals (rightmost columns in Table 1), we find
that movement-induced brain signal modulation as a main
mechanism of cursor control can be ruled out for all participants.

Another class of artifacts present in MEG recordings is caused
by static magnetic fields originating from ferromagnetic particles
contaminating skin, oral cavity, lungs or stomach of a participant,
in combination with movement of these parts of the body. In the
present study, this type of artifacts was present with participant E,
whose signal spectrum (Fig. 7E) displays a marked increase at
frequencies below 5 Hz when compared to the other participantsT
spectra. These artifacts do not modulate or produce magnetic field
oscillations in the frequency range relevant to the present study
but need to be controlled if low-frequency signals are used for
signal classification as it is the case in a recent off-line MEG BCI
study involving decoding of hand movements (Georgopoulos et
al., 2005).
2 trials of participant C showing contamination with task-related myographic
rtical signals at distinct frequency bands, dark vertical lines indicate broad-
yographic activity does not extend to the sensors and frequencies used for



Fig. 9. Histogram of typical EEG on-line classification accuracies over 40
trials after 20–30 min training time (data from Guger et al. (2003), Table 2,
sum of session counts computed from third and fifth column). Accuracies
from the last 40 trials of our participants' first training sessions (i.e., our
participants' accuracies after 30 min of training) are indicated by asterisks.
Significant control at the p<0.05 level corresponds to an accuracy of 65%.
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Immediate feedback

A first MEG-based BCI system was recently described by Lal
et al. (2005) and shares hardware and data acquisition with the
system presented here. As in the present investigation, the system
of Lal et al. uses AR-computed spectral features of brain signals
recorded over a period of a few seconds for binary classification.
Unlike the present system, their system does not provide
continuous feedback of brain signal features but displays the
classification result (“feedback of results”) with a delay of 3 s.
For self-regulation of brain states, it has been shown for EEG that
timely feedback is important to facilitate learning (Mulholland et
al., 1979; Rockstroh et al., 1990), so we implemented a feedback
system with minimal delay. In the paper of Lal et al., no
classification rates or other data are given that allow a judgment
of on-line performance or learning rates. Their error rates for off-
line classification are comparable to error rates in the second
session of the present investigation as given in Table 3; although
there is a trend in favor of the present investigation, error rates do
not differ significantly (Mann–Whitney U test, descriptive
p<0.15). Thus, it appears that their Machine Learning (ML)
approach does not provide a marked advantage in terms of
classification performance.

Furthermore, Lal et al. applied ML methods to MEG signals
rather than introducing methods individually suited to MEG. In
their study, they did not employ spatial filtering but processed data
from all MEG channels in parallel, followed by an automatic
selection of channels, and did not consider artifacts such as head
movements or EMG as possible sources of signal modulation.

Comparison to EEG

Without specifically designed studies, it is difficult to isolate
the role of a single factor such as data acquisition, signal
processing or participant instruction when comparing the results
of different types of BCIs. Generally, the number of participants
in BCI studies is low, and it cannot be assumed that they
constitute a representative sample. To assess the performance of
the present MEG-based BCI in relation to what may be
considered “common” for EEG, we refer to Guger et al. (2003)
who conducted a field study where participants learned to operate
two variants of a state-of-the-art sensorimotor rhythm BCI. They
provide histogram data of on-line classification accuracies for 94
participants. After 20–30 min of training, their investigation
found that on-line classification accuracy over 40 trials was
distributed as displayed in Fig. 9. For a comparison with our own
results, we used the accuracies achieved during the last 40 trials
of our participantsT first training sessions, i.e., after 30 min of
training. While 4 of our 6 participants performed better than what
was median performance in the reference study, there was no
Table 3

Session A B C D E F

1 6.9% 34.7% 35.1% 45.8% 44.4% 49.0%
2 5.9% 16.3% 35.9% 11.5% 30.9% 40.3%
3 10.7%

Binary on-line classification errors during training sessions. For all
participants except B, two training sessions were performed. Each session
comprised 288 trials; correspondingly, an error below 44.8% implies
significant control at the p<0.05 level.
significant difference between the two distributions (Mann–
Whitney U test, descriptive p<0.62).

Conclusion

In the present study, we demonstrate an MEG-based BCI that
provides continuous visual feedback of μ rhythm amplitude in real
time. All of the 6 participants achieved significant μ rhythm self-
control in the course of feedback training.

In our experimental data, spectral properties of the amplitude
modulated signal agree well with what is reported for EEG (Kübler
et al., 2005) and ECoG (Leuthardt et al., 2004), and its origin is
shown to be spatially located in the motor cortex for 3 out of 6
participants. Unlike prior investigations into the spatial origin of
brain rhythms, we were able to exploit BCI on-line performance as
an indicator to choose a subset of data best suited for localization
analysis, and we could use a priori information about the sourcesT
amplitude modulation in the localization procedure. This allowed
us to approximately extract single-dipole spatial patterns using a
simple, parameter-free method (PDA) and to arrive at results
comparable to investigations that use considerably more complex
analysis methods (Liljeström et al., 2005).

Albeit the number of participants is limited and the performance
of some participants is low, learning curves increase most
expressedly during the first and the beginning of the second
session of feedback, corresponding to a training duration of 30 to
40 min. In the present study, the performance of our MEG-based
BCI is similar to what has been reported for a state-of-the-art EEG-
based μ rhythm BCI with a large number of participants (Guger et
al., 2003). At the same time, we think that our MEG-based BCI
bears the potential for improvement well beyond what has been
demonstrated here. In our system, reproduction of a participantTs
head position was only possible up to a relatively large error, on the
order of one MEG sensor distance. We believe that a solution to
this problem will substantially improve the accuracy of feedback
and classification, and even allow for the use of more advanced
spatial filtering methods. Finally, MEG-based cursor feedback may
be less affected by noise than its EEG-based counterpart, resulting
in a more consistent feedback experience for the participant, and
thus fast learning of μ rhythm control comparable to what has been
reported for ECoG (Leuthardt et al., 2004).
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Appendix A. Phase Decorrelation Analysis

The present “phase decorrelation” approach aims at separating
amplitude modulated signals emitted by a small number of
incoherent sources at a single frequency. Computational steps are

(1) computing complex-valued covariance matrices for each of
two conditions (labels),

(2) taking the difference of these two covariance matrices,
(3) diagonalizing the resulting Hermitian complex-valued cov-

ariance difference, resulting in positive and negative
eigenvalues and associated complex-valued eigenvectors.

This method applies to cases where a signal is represented as a
time series of complex amplitudes, e.g., single Fourier coefficients
computed over a moving window, or, similarly, the analytic signal of
a band-pass filtered signal as constructed using a Hilbert transform.
As for principal component analysis (PCA), resulting components
will be orthogonal in sensor space. This limits applicability to cases
with only a single modulated source, or a number of modulated
sources with little or no overlap in sensor space.

For a justification of the method as outlined above, we consider
N sources emitting signals sk with a common frequency ω, such
that

sk ¼ cke
ixt ; kaf1 N Ng;

where

ck ¼ Ake
iuk ; Aka½0; lÞ; uka½0; 2pÞ;

denotes a complex amplitude representing a single sample of
source kTs activity during some time interval with real amplitude Ak

and phase φk. Modeling incoherent sources, we require that the
phases φk,φj for two distinct sources k, j be statistically
independent. Additionally, we require that the φk be statistically
independent of the Ak and follow a uniform random distribution
over the interval [0, 2π).

Then the complex signal covariance matrix in source space, as
defined by

Sjk ¼ hcjcTki

will be diagonal, reducing to

Sjk ¼ hAjAke
iðuj�uk Þi ¼ hAjAkiheiðuj�uk Þi ¼ hA2

j idjk :

Now, considering two conditions with associated amplitudes
A1k and A2k and grouping samples according to those conditions,
we introduce a covariance matrix difference

SDjk ¼ hc1jcT1ki � hc2jcT2ki
which, under the above conditions, evaluates to

SDjk ¼ hA2
1ki � hA2

2ki
� �

djk ¼ D12kdjk :

For a linear law of signal propagation, and a set of sensors
measuring signals emitted by the N sources, the measured signal sα′
will be

s Va ¼
XN
k¼1

skaka þ na; aaf1 N Mg

with complex amplitudes

c Va ¼
XN
k¼1

ckaka þ cfa ;

where nα denotes additive noise with zero mean complex
amplitudes c̃α which need not be spatiotemporally uncorrelated.
a is a signal propagation matrix representing a linear transforma-
tion from source space into sensor space. In case of infinite
propagation speed, no phase shift will be introduced by the
propagation matrix, i.e., a will be real-valued.

For any covariance matrix S in source space, the associated
covariance ST in sensor space is

S V
ab ¼ hc Vac VTb i ¼

XN
j;k¼1

hcjcTkiajaaTkb þ h cfa cfbTi

¼
XN
j;k¼1

Sjkajaa
T
kb þ Snoise; ab:

In case of the covariance difference as introduced above, noise
terms will cancel out, and the difference matrix will appear in
sensor space as

S V
Dab

¼
XN
k¼1

D12kakaa
T
kb:

For real-valued a, SΔ′ will be real-valued as well.
Writing SΔ′ in terms of its eigenvalues λk and associated

eigenvectors vkα, we obtain

XN
k¼1

kkvkav
T
kb ¼ S V

Dab
¼

XN
k¼1

D12kakaa
T
kb:

In case of a single dominating source, or for two sources with
opposite modulation (i.e., opposite sign of associated eigenvalues),
the expansion of SΔ′ will be unambiguous outside its null (noise)
space, and we can read off that the source-to-signal projection
vectors ak will be proportional to the eigenvectors vk. Similarly, for
a number of sources, if it is known a priori that the projection
vectors may be considered orthogonal, and if the λk are pairwise
distinct with respect to noise level, then the expansion will be
unambiguous, and the non-null space eigenvectors vk may be
identified with the normalized projection vectors.

In such cases, the Hermitian conjugate v† of v provides a de-
mixing matrix, separating the sensor signal into N modulated
source signals, and into an (M−N)-dimensional noise subspace.
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