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Adaptive Spatio-Temporal Filtering for Movement
Related Potentials in EEG-Based
Brain–Computer Interfaces

Jun Lu, Kan Xie, and Dennis J. McFarland

Abstract—Movement related potentials (MRPs) are used as
features in many brain-computer interfaces (BCIs) based on
electroencephalogram (EEG). MRP feature extraction is chal-
lenging since EEG is noisy and varies between subjects. Previous
studies used spatial and spatio-temporal filtering methods to
deal with these problems. However, they did not optimize tem-
poral information or may have been susceptible to overfitting
when training data are limited and the feature space is of high
dimension. Furthermore, most of these studies manually select
data windows and low-pass frequencies. We propose an adaptive
spatio-temporal (AST) filtering method to model MRPs more ac-
curately in lower dimensional space. AST automatically optimizes
all parameters by employing a Gaussian kernel to construct a
low-pass time-frequency filter and a linear ridge regression (LRR)
algorithm to compute a spatial filter. Optimal parameters are
simultaneously sought by minimizing leave-one-out cross-vali-
dation error through gradient descent. Using four BCI datasets
from 12 individuals, we compare the performances of AST filter
to two popular methods: the discriminant spatial pattern filter
and regularized spatio-temporal filter. The results demonstrate
that our AST filter can make more accurate predictions and is
computationally feasible.

Index Terms—Brain–computer interfaces (BCIs), electroen-
cephalogram (EEG), movement related potentials (MRPs).

I. INTRODUCTION

T HE AIM of brain–computer interface (BCI) research is to
build new communication channels that directly translate

brain signals into control commands for output devices such as
computers or neuroprosthesis [1]. Among different techniques
for the noninvasive measurement of the human brain, the elec-
troencephalogram (EEG) is commercially affordable and has
excellent temporal resolution that enables BCIs capable of real
time interactions [2]. Over the past decade, various EEG-based
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BCIs have been developed to help people who have damage in
their peripheral pathways to recover their communication abili-
ties [3]–[5]. So far, a lot of these BCIs are based on event-related
desyncronization (ERD) [6]–[8]
Generally, these BCI systems use either phase-locked or os-

cillatory features [9]. Phase locked features, such as the move-
ment related potential (MRP) [10], the error potential [11] and
the evoked response P300 [12], use the signal amplitude di-
rectly for prediction. Oscillatory features, such as event-related
desyncronization (ERD) [6]–[8], use the power or coherence
of a signal in particular frequency bands for prediction. Here,
we focus on MRP feature extraction and prediction in EEG-
based BCIs, which is a challenging problem for signal pro-
cessing and machine learning, because the MRPs of EEG are
subject specific and buried in a large amount of noise such as
task-unrelated neural activities (e.g., the visual rhythm) and
extra-neural artifacts (e.g., muscle activity and eye blinks). So
far, some well-known feature extraction methods have been ap-
plied to the predictor to enhance the signal-to-noise ratio (SNR)
of phase locked components. These methods can be unsuper-
vised, such as principal component analysis [13], independent
component analysis [14]–[17] and synchronous responses pro-
jection [18], or supervised, such as discriminative spatial pat-
tern (DSP) filtering [19] and its variant local DSP filtering [20].
After feature extraction, a proper prediction algorithm is re-
quired. Researchers have considered a number of approaches
to this prediction problem, including linear methods [21], non-
linear methods [22], neural networks [23] and a combination
of classifiers [24]. Most current BCI designs pair highly com-
plex feature extraction with a relatively simple linear classifier
[9] since there is no clear evidence that one method is best for
the prediction of phase locked components. This arrangement
is probably due to a preference for simplicity and the belief that
linear classification would be sufficient after adequate feature
extraction [25], [26]. Furthermore, it has been demonstrated that
if both the feature extraction and the classifier are linear, in-
stead of seeking them separately, we can equivalently learn a
general projection directly (i.e., a spatio-temporal filter). This
unified discriminative approach might provide a better overall
performance [2], [9]. But this technique needs to estimate the
covariance matrix accurately in high dimensional space. This is
a difficult problem when the size of the training set is limited,
as in many BCI applications. To resolve this problem, regular-
ized frameworks with empirical risk minimization have been
proposed to control the complexity of spatio-temporal filter and
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avoid overfitting [2], [9], [27]. In those studies, the EEG sig-
nals from manually selected time intervals are averaged [27] or
low pass filtered [2] as a simple preprocessing to reduce the fea-
ture dimension. This preprocessing is equivalent to a low-pass
time-frequency filter. Ideally, the time-frequency filter and sub-
sequent regularized linear predictionmodel should be optimized
by the same criteria (e.g., maximizing the discriminant ability or
minimizing the empirical error) and directly driven by the raw
EEG data [28].
In this paper, we propose an adaptive spatio-temporal (AST)

filtering approach for MRP prediction. Since MRPs behave
as slowly changing potentials in specific time intervals, we
use a Gaussian kernel to construct a low-pass time-frequency
filter that has only two parameters, the kernel center and
radius. We compute the spatial filter with the linear ridge
regression (LRR) algorithm [29] which can address not only
the classification problem but also regression problems.1 As
an adaptive approach, for different EEG datasets, the optimal
parameters of the spatiotemporal filter, including the center and
radius of Gaussian kernel and the regularization coefficient of
LRR, are automatically estimated by minimizing the error of
leave-one-out (LOO) cross validation (CV). CV is a popular
approach to model selection [32]. The -fold CV splits the
data into parts, and uses each alternatively to train and to
validate the model. The final performance is the mean of the
performances on the different validation sets. CV maximizes
the total number of validation trials and potentially helps
to protect against overfitting. When equals the number of
trials, -fold CV is the LOO CV. To accelerate this package
optimization procedure, we design a gradient descent method
that employs the closed form of LRR LOO error [33] and
explicitly compute the derivatives about all the parameters.
This technique is inspired by the study of Bo et al. [34] which
was originally proposed to adjust the feature scaling for kernel
Fisher discriminate analysis (FC-KFDA).
Our novel contributions in this paper are summarized as fol-

lows. First, the AST filtering automatically optimizes spatio-
and temporal-filters in conjunction for MRP to adapt to vari-
ations between subjects. This avoids significant human inter-
vention in parameter settings which occurs in the popular algo-
rithms DSP filtering [19] and regularized spatio-temporal (RST)
filtering [27]. Second, AST employs a Gaussian kernel to model
the slow shift of the MRP and thus simplifies the temporal fil-
tering model. It is a kind of parameter regularization with prior
information of neurophysiology (i.e., that the MRP is a low fre-
quency signal). The complexity of this temporal filter is much
lower compared to a filter based on weighting all of the sam-
ples in time. Third, the AST filtering uses cross-validation and
is computationally efficient due to the technique of analytically
computing the derivative of parameters based on the close form
of LOO error. Although the AST is somewhat similar in spirit
to FC-KFDA (i.e., the idea of unifying the feature extraction
and prediction as a two layer learning system and the technique

1With the development of BCI, regression is preferable to classification be-
cause it is better suited to controlling continuous movements of cursor or neuro-
prosthesis in real time and it generalizes more readily to novel target locations
[30], [31]. For the moment, this paper focus on the binary classification problem
of MRPs.

Fig. 1. Averaged potentials in channels C1, C2, C3, and C4 for left (red solid
line) and right (blue dash line) finger movements. (a) Before low-pass filtering.
(b) After low-pass filtering.

of optimization), their mechanisms are much different. AST fo-
cuses on filtering the EEG matrix of each trial and the Gaussian
kernel is used to perform a linear smoothing while FC-KFDA
adjusts the distance between the feature vectors of each pair of
samples and the Gaussian kernel is used as a nonlinear distance
metric.
The rest of the paper is organized as follows. Section II intro-

duces the neurophysiological background of MRP. Section III
briefly describes the discriminant spatial pattern (DSP) [19]
filter as well as the regularized spatio-temporal (RST) filter
[27], and then proposes the AST filter. Section IV describes the
data used for comparing these methods, the evaluation proce-
dure, the results and discussion. Finally, Section V presents the
conclusion.

II. NEUROPHYSIOLOGICAL BACKGROUND

The MRP is a slow negative shift that precedes voluntary
movement. This negative shift starts to be more pronounced
about 500 ms before the onset of the movement [35]. For finger
and hand movements, the MRP is characterized by a contralat-
eral dominance, which corresponds to left or right sensorimotor
cortex [36]. Fig. 1(a) shows the EEG potential averaged over all
trials from channels C1, C2, C3, and C4, between 500 ms to
120 ms before the keystroke of the finger movement experi-

ment of Dataset I, BCI competition I [37], [38]. The increasingly
negative waveforms of the channels over motor cortex illus-
trate the decreasing nature of MRPs. At channel C4 (over right
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motor cortex) the potentials associated with left finger move-
ment decrease more rapidly than that at channel C3 (over left
motor cortex) and vice versa. This contra-lateral dominance is
more apparent in some channels such as C4 and C2; is more vis-
ible if the potentials are low-pass filtered (0–7 Hz), as shown in
Fig. 1(b) and is more obvious between 310 ms and 120 ms,
which is closer to the actual keystroke than at 500 ms. Thus,
selection of the parameters characterizing the spatial, frequency
and time characteristics of the signal are important to MRP fea-
ture extraction. These parameters should be adaptively selected
since the MRPs are subject specific.

III. METHODS

A. Discriminative Spatial Pattern (DSP) Filter

Liao et al. [19] proposed theDSP filtering algorithm to extract
the MRP features. The goal of DSP filtering is to transform the
raw EEG matrix of each trial into temporal sequences such that
within-class variance is minimized and between-class separa-
tion is maximized. As a spatial filtering method, DSP cannot op-
timize temporal information. An approximation is to low-pass
filter the EEG data first and use sliding time window. For this
approach, the cut-off frequency of the signal and the width of
the sliding window are set manually. The start point of sliding
time window and the number of spatial filters are alternatively
chosen with a CV on the corresponding training data. This al-
ternative parameter selection does not guarantee a local optimal
solution. The DSP algorithm is formulated as follows.
Let denote the low-passed EEG signals of trial
from class , is the number of channels and is the number
of samples in time. Thus, the within-class variance matrix
and the between-class variance matrix can be represented as

where is the center of class ,
is the center of all the training trials, is the

number of different classes (here ), is the number of
trials belongs to class and is total number of all the trials.
If we assume is the spatial filter, the MRP component
extracted by DSP can be represented as

(1)

Therefore, the projected variances in feature space can be cal-
culated as

The objective is to maximize the ratio of and , i.e.,
, where the optimal spatial filter can

be found by solving the generalized eigenvalue problem
. To improve generalization of the model

based on estimates with noisy EEG signals, one may use the
regularization as to get a relative robust
solution. Then, the average amplitude is extracted as the feature

(2)

where is a column vector of ones. Finally, these features are
used by a classifier such as Fisher discriminant analysis (FDA)
or a support vector machine (SVM) to predict the trial labels.

B. Regularized Spatio-Temporal (RST) Filter

In order to improve the overall performance of feature extrac-
tion and classification, various spatio-temporal filters for clas-
sifying EEG with MRP and P300 features have been presented.
These filters are build on the frameworks of regularized FDA
[27], [37], SVM [37], or regularized linear logistic regression
[2], [9]. Most of them perform low-pass filtering or average the
potentials of each time window to reduce the feature dimension,
then estimate the projection of the feature vector. Thesemethods
ignore the spatial-temporal structure [24], [27], [37]. The RST
filter based on FDA is formulated as follows [27], [37].
Let denotes the EEG signals of trial from class
after the low-pass filtering or the averaging across time inter-
vals. Then is concatenated into features vector .
The goal of the RST algorithm is to seek the spatio-temporal
filter that compress these feature vectors into one
dimension where the within-class variance is minimized and
the between-class separation is maximized. Similar to the DSP
filter, the optimal spatial filter can be found by solving the
generalized eigenvalue problem . The within-
class scatter matrix and the between-class scatter matrix
are computed as

where is the center of class ,
is the center of all the training trials.

Then the class label of EEG signal can be predicted by
, where is the bias. To improve

generalization of the model based on estimates with noisy EEG
signals, one may used the regularization as .
The regularization coefficient is determined by the CV in an
ad hoc manner. Note that FDA is equivalent to least square
regression for a binary classification problem [39]. The opti-
mization of this RST filter can be also expressed as

where and label vector
have been centered, the -norm of spatio-temporal

filter are constrained. Other sophisticated regularization tech-
niques with the -norm and trace-norm have also been dis-
cussed and compared in the literatures [2], [9], [37]. However,
the classification accuracies of these regularization techniques
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are similar for presented data sets. For simplicity, we use the
-norm regularization in the following with emphasis on the
optimization and processing of the spatio-temporal filter.

C. Adaptive Spatio-Temporal (AST) Filter

In order to further improve the overall performance of MRP
prediction, AST filter integrates the optimizations of prepro-
cessing (i.e., the low-pass filtering and time interval selection),
feature extraction, as well as classification. Specially, AST
filter captures the temporal structure of MRPs with a Gaussian
kernel that smoothly models the instantaneous voltage of the
EEG signal with its temporal neighbors. This Gaussian kernel
constructs a low-pass filter centering at an optimal time point.
Next, a spatial filter is built on the framework of the LRR
algorithm. Unlike DSP filter, AST filter simultaneously adjusts
the parameters of the temporal filter and the spatial filter under
the unified framework of minimizing the LOO error of the
training set. Unlike RST filter, AST filter is directly driven by
the raw EEG data without the imprecise and time-consuming
selection of time interval, cut-off frequency and regularization
coefficient.
First, the temporal filtering model based on a Gaussian kernel

is formulated as

(3)

(4)

where is the MRP feature extracted from channel at trial
; is the normalization item; is the
voltage of brain signal at time point . The kernel parameters
and control the center and the radius of the filter. Given , if
is small, the value of is less sensitive to the distance

, thus the AST filtering tends to average the amplitudes
of all the sample points in time. Conversely, if is large, the AST
filter tends to focus more on samples close to the filter center .
This temporal filtering model based on a Gaussian kernel ac-

tually performs a low-pass filtering at moment . Given a EEG
signal and a Gaussian function , then
the filtered signal is obtained by the convolution operation
as . Because the Fourier transform of is

[40], where is the frequency,
thus is a low-pass filtering and controls the band
width. Since , when

(5)

Equation (5) indicates that, at moment , the low-pass filtered
EEG signal can be expressed as the inner product of the original
EEG signal and the Gaussian kernel. By adding the normaliza-
tion item, (5) becomes (3). As a result, the temporal filtering
model depicts how slow the MRP shifts and when the MRP oc-
curs. We can adapt and for the datasets recorded from dif-
ferent subjects or experiments.

Secondly, the spatial filtering (prediction) model is built on
the framework of LRR. LRR minimizes the penalized sum-of-
squares error function by incorporating the -norm regulariza-
tion to control the model complexity and improve the general-
ization performance. Here, the spatial filtering model is formu-
lated as

(6)

where is the centered feature matrix, i.e.,

(7)

is the number of trials; is the linear projection of LRR
and the weight of spatial filter for all the MRP features,
is the centered label vector and is the regularization
coefficient controlling the bias-variance trade-off. Given ,
and , the solution is

(8)

where denotes the identity matrix.
Note that (3) and (6) indicate that , and have essential

roles in the AST filtering model and should be derived from the
EEG training data. The LOO error is considered to be an almost
unbiased estimator of the generalization error [41] and has been
used frequently in model selection [42]–[44]. The development
of closed-form solutions for performing LOO CV in certain
learning algorithms such as LRR and KFDA [45] significantly
reduces the computational complexities. Thus, the present study
uses the LOO error as the optimization criterion in tuning the
parameters of AST filtering. Specifically, we explicitly compute
the derivatives of LOO error with respect to , and , and then
estimate them by a gradient descent method. This procedure is
inspired by the studies of feature scaling in kernel learning algo-
rithms [34], [46]. The difference is that these authors focus on
adjusting the kernel matrices, whereas we extend the method to
control the spatio-temporal filtering model. In accord with [33],
the closed form of LOO error for AST filtering is

(9)

where is the residual error vector, the hat matrix
, denotes an element-wise divi-

sion, , denotes the diagonal elements
of , is a column vector of ones. The aim of AST filtering
is to minimize the LOO error

(10)

Then, according to the chain rule, the derivative of with re-
spect to can be expressed as

(11)

And based on (9), the derivative of with respect to is given
by [34]

(12)
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where denotes an element-wise product. Let ,
then the derivative of with respect to is computed as

(13)

Based on [47], the derivative of with respect to is

(14)

Based on (7), the derivative of with respect to is

(15)

According to temporal filtering model (3) and (4), the derivative
of with respect to is

(16)

where

(17)

Furthermore, according to the kernel function (4)

(18)

Combining (11)–(18) yields the derivative of the LOO error
with respect to . At same time, according to (4), the deriva-
tive of with respect to is

(19)

The derivative of with respect to is

(20)

Likewise, the derivative of with respect to and can be
computed in a similar way.
Since both and are positive, the parameterizations

are used to avoid these con-
straints, and then , . In addition

, a sigmoid function is employed to parame-
terize as: , and then

. The gradient decent method
is implemented with the Quasi-Newton BFGS algorithm. The
step size is determined by the cubic polynomial line search
procedure. Table I lists the pseudo-code of the AST filtering
algorithm. The computational complexity of AST is estimated
as

(21)

TABLE I
AST FILTERING ALGORITHM

where is the iteration number, comes
from the computation of the temporal filtering, feature extrac-
tion and the derivative of with respect to the parameters using
all the time points, channels and trials, in the first item is
the computational complexity of inverting matrix , the second

is the computational complexity of calculating using
optimized parameters.

IV. EVALUATION

A. EEG Datasets

MRP is a negative shift in the electric potential that appears
over specific areas of sensorimotor cortex prior to the onset of
voluntary movement, reaching a negative peak approximately
100 ms after movement onset. MRP can also be produced by
imagined movement. Here, we use four datasets of EEG asso-
ciated with finger movements and motor imageries from BCI
competitions and our own lab to evaluate the proposed method
and compare it with DSP filtering and RST filtering. In all cases
the predictions are based on single-trial data.
1) Dataset I, BCI Competition I: The objective of Dataset I,

fromBCI competition I,was to predict the laterality of upcoming
finger movements (left versus right hand) before a keystroke
[37]. The EEG signals were measured from subject S1 with 27
channels at 1000Hz using a band-passfilter from 0.05 to 200Hz.
Epochs 1500ms longwere cut out of the continuous raw signals,
each ending at 120ms before the respective keystroke. 513 trials
(100 trials for test and 413 trials for training) were provided for
the competition evaluation in all. We down sampled the data to
100 Hz to reduce computational burden.
2) Dataset IV, BCI Competition II: The objective of Data

set IV, from BCI competition II, was to predict the laterality of
upcoming finger movements (left versus right hand) before a
key press [37]. The EEG signals were measured from subject S2
with 28 channels at 1000Hz using a band-pass filter from 0.05 to
200 Hz. Epochs 500 ms long were cut out of the continuous raw
signals, each ending at 130 ms before the respective key press.
416 trials (100 trials for test and 316 trials for training) were pro-
vided for the competition evaluation in all.We down sampled the
data to 100 Hz to reduce computational burden. In addition, we
changed the class labels from {0, 1} to { 1, 1} to better compare
prediction performance with the other data sets in this study.
3) Dataset IVa, BCI Competition III: The goal of Data set

IVa, from BCI competition III, was to classify right hand and
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foot motor imageries [48]. The EEG signals were recorded in
five subjects (S3–S7) with 118 channels at 1000 Hz using a
band-pass filter from 0.05 to 200 Hz. For each trial, a visual cue
lasting 3.5 s indicated that the subjects should perform motor
imageries. A total of 280 trials were available for each sub-
ject, and the training set sizes were 168, 224, 84, 56, and 28
for subjects S3–S7, respectively. The test sets consisted of the
remaining trials. We down sampled the data to 100 Hz to re-
duce computational burden. In addition, we changed the class
labels from {1, 2} to { 1, 1} to better compare prediction per-
formance with the other data sets in this study.
4) Dataset of Cursor Movement Control: Our own data set

contains EEG signals from five subjects (S8–S12) who per-
formed motor imageries of left hand and right hand (or a hand
and a foot) to control vertical cursor movement toward one of
two targets located at different heights along the right edge of the
video screen. The EEG was recorded at 160 Hz from 64 chan-
nels covering the whole scalp followed the international 10/20
system. A training set and a test set were available for each sub-
ject. Each set contained 50–60 trials for each target.

B. Preprocessing

1) Channel Selection: Tominimize artifacts and reduce com-
putation burden, we restrict our analysis to channels over sen-
sorimotor cortex where MRPs are generated. For dataset I BCI
competition I, dataset IV BCI competition II and the dataset of
cursor movement control, we used channel FC1–FC4, C1–C6,
CP1–CP4, FCZ, CZ, and CPZ; For dataset IVa BCI compe-
tition III, we used channel FC1–FC4, CFC1–CFC6, C1–C6,
CCP1–CCP6, CP1–CP4, FCZ, CZ, and CPZ.
2) Selection of Frequency Band and Time Segment: For

the proposed AST filtering: we used the normalized EEG data
without selection of frequency band or time segment. The
normalization removed the mean of the EEG data on a channel
and trial-wise basis.
For DSP filtering and RST filtering: the data for each trial

was low-pass filtered with a fifth-order Butterworth filter. The
candidate frequency bands were {0–3 Hz, 0–5 Hz, 0–7 Hz,
0–10 Hz, 0–20 Hz}. The candidate time segments were 200 ms
wide windows, with 190 ms overlap moving from the ending
point to the start point of each trial for dataset I BCI competi-
tion I and dataset IV BCI competition II [19], with no overlap
moving from the start point to the ending point of each trial
for dataset IVa BCI competition III and the dataset of cursor
movement control. The candidate regularization coefficients
were .
DSP filtering performs feature extraction, the spatial filters

with the largest eigenvalues are chosen, and then FDA is em-
ployed as the classifier. The optimal combination of frequency
band, time segment, regularization coefficient and number of
spatial filters were determined by five-fold CV.
RST filtering often needs to reduce the feature dimension.

After frequency filtering and selection of a time segment, the
means of consecutive five-tuple of data points for each channel
were calculated as the features [37]. The optimal combination
of frequency band, time segment and regularization coefficient
were determined by five-fold CV.

TABLE II
PARAMETERS OF DSP AND RST FILTERING DETERMINED BY FIVE-FOLD
CROSS VALIDATION ON THE TRAINING SETS FOR EACH SUBJECT
RESPECTIVELY (FB: FREQUENCY BAND, TS: TIME SEGMENT, RC:
REGULARIZATION COEFFICIENT, NU: NUMBER OF SPATIAL FILTERS

ACCORDING TO THE LARGEST EIGENVALUES)

Table II lists the results of parameter selection. As can be
seen in Table II, for dataset I BCI competition I (subject S1) and
dataset IV BCI competition II (subject S2), the time segments
close to the onset of finger movements contained more discrim-
inating information which is in accord with related works [19],
[37]. For dataset IVa BCI competition III (S3–S7) and dataset of
cursor movement control (S8–S12), the experiment required the
subjects to perform the motor imageries within a period about
3.5 s when the target cues were presented, so the exact onset
of subjects’ motor imageries for each trial was not clear. Thus
the selected time segments differ from subject to subject. More-
over, the frequency bands should be adapted since they varied
between individuals.

C. Results and Discussion

1) Comparison of Classification Performance: Table III re-
ports the classification accuracies obtained on the test sets. The
results show that the AST filtering method produced the best re-
sults with these data, as it reached the greatest mean accuracy.
A one-way ANOVA with repeated measures indicated that the
five filtering methods differed significantly in classification ac-
curacy ( , , ). Additional
two-group ANOVAs showed that the AST filtering was sig-
nificantly better than each of the other methods in classifica-
tion accuracy . Without the selection of
time segments and frequency band, DSP filtering cannot extract
temporal information, RST filtering suffers from the overfitting
of high dimension feature. Both of them classified the MRP
data poorly ( 66% on average). AST filtering integrates the
signal processing with prediction and automatically estimates
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TABLE III
CLASSIFICATION ACCURACIES (%) OBTAINED FOR EACH SUBJECT WITH
DSP FILTERING, RST FILTERING AND AST FILTERING. DSP* AND RST*
RESPECTIVELY DENOTE DSP FILTERING AND RST FILTERING WITHOUT THE
SELECTION OF FREQUENCY BAND AND TIME SEGMENT. HIGHEST ACCURACIES

FOR EACH SUBJECT ARE IN BOLD ITALICS

the optimal parameters in a continuous space by the gradient de-
cent method, which is more effective and convenient. Note that,
when performing motor imagery, not all the subjects showed
MRP with strong discriminant ability, such as subjects S5, S7,
and S12. All the presented filtering methods had poor classifi-
cation accuracies for subjects S5, S7, and S12 ( 70%).
Furthermore, we compared the results of AST filtering with

the results of the winners of the three public BCI competition
datasets. The BCIwinners reported that they combined theMRP
and ERD feature for EEG classifications. Since MRP and ERD
relate to different aspects of limb movements, combining them
may improve the classification accuracy. Thus, in order to have
a fair comparison, we also combined them. Specifically, the
MRP feature was extracted by our proposed AST filtering and
the ERD feature was extracted by common spatial pattern (CSP)
filtering. The time segment for CSP filtering was from 0.5 to
2.5 s after the cue instructing the subject to perform motor im-
agery and the channels, frequency bands and the spatial filters
for CSP filtering were selected by cross validation. FDA was
used to combine the MRP feature and ERD feature. Note that,
the training sets of subjects S6 and S7 are small. The winners
of dataset IVa, BCI competition III used the ERD feature and
semi-supervised approach to enlarge the training sets of sub-
jects S6 and S7 with the unlabeled data. Thus, for S6 and S7,
we also used the ERD feature and semi-supervised approach.
Specifically, the semi-supervised graph-based method [49] was
applied to classify the unlabeled trials based on ERD features,
then the prediction confidence (PC) of each unlabeled trial was
computed as:
where denotes the classification of trial for class
[49]. After that, the unlabeled trials with were move
into the training set. Based on the extended training set, theMRP
feature was extracted by AST filtering. At last, the MRP fea-
ture and ERD feature were combined by FDA to classify the
rest unlabeled trials with . The classification accu-
racies obtained by our methods and the BCI winners are list in
Table IV. It is shown that on average our results (94.19%) and
the reported best results (93.40%) are very close ( ,
two-group ANOVAs)

TABLE IV
CLASSIFICATION ACCURACIES (%) OBTAINED FOR EACH SUBJECT BY
AST-CSP COMBINING METHOD AND BCI COMPETITION WINNERS

Fig. 2. Convergence of the gradient-based optimization procedure of the AST
filtering algorithm. Graph shows LOO errors computed over the iterations. Each
curve corresponds to one subject.

2) Convergence of AST Filtering: Fig. 2 displays the con-
vergence of the gradient-based optimization procedure of AST
filtering for each subject. Since the LOO error is nonconvex
with respect to the parameters, multiple optima exist. In prac-
tice, we randomly initialized the parameters in following ranges:
regularization coefficient , kernel radius factor

, and , i.e., kernel center
, then select the initial parameters which lead to the

lowest LOO error. The iterations were stopped when the de-
crease of the LOO error was less than . Fig. 2 shows that
the LOO errors decreased markedly in the first 20 iterations,
then rapidly converged to a final stable value. The computation
of the AST algorithm was performed using MATLAB running
onWindows 7 Professional SP1 64 bit with Intel Core i7-2640M
CPU 2.8 GHz. Given a group of initial parameters, the time
of AST optimization for each subject ranged between 0.48 and
1.81 s. Of these, the slowest was subject S1 with 17 channels
and 413 training trials. Thus, the AST filtering model can be
updated between runs or sessions (about 400 trials) within 2 s
for the BCI systems based on MRP feature, if the number of
channels is no more than 17.
3) The MRPs Extracted by AST Filtering: Fig. 3 shows

the average over all trials of MRPs extracted by AST fil-
tering algorithm for subjects S1 and S4. S1 and S4 are from
datasets of finger movement and motor imagery, respectively.
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Fig. 3. Averaged potentials extracted by AST filtering algorithm according to
left finger movement/foot motor imagery (red solid line) and right finger move-
ments/right hand motor imagery (blue dash line). (a) and (b): Subject 1. (c) and
(d): Subject 4.

Fig. 3(a) and (c) demonstrate the average potentials extracted
by the spatial filters of AST filtering. These average potentials,
corresponding to different mental tasks, shift gradually with
different trends. The potentials extracted by the spatial filter
are smoothed by Gaussian kernels. This is the AST temporal
filtering. The average results are shown in Fig. 3(b) and (d)
in which the trends of average potentials are more clear. The
Gaussian kernel smoothing actually performs a low-pass fil-
tering that can match the slow shift of MRPs by adjusting the
radius parameter. The black dotted lines indicate the centers
of Gaussian kernels that are located at the most discriminating
time points. The most discriminating time point corresponds
to the lowest LOO error and is not necessarily the point that at
which the difference between the average trials is greatest. As
shown in Fig. 3(c) and (d), at time 0, there is a clear amplitude
difference between the MRPs of the imagined right-hand and
foot movements. This is due to the normalization. Since the
subsequent negative voltage shift in the foot imagery condition
created a net negative value for the trial mean, removal of
the trial mean created the positive values at time 0 in the foot
imagery condition.

Fig. 4. Scalp maps from representative subjects of normalized spatial filters
produced by AST, DSP, and RST filtering. For DSP and RST filtering, the scalp
maps correspond to the largest eigenvalues. (a) Subject S2. (b) Subject S4. (c)
Subject S6. (d) Subject S11.

4) Comparison of Spatial Filters: Fig. 4 shows some exam-
ples of spatial filters obtained by different filtering methods for
different subjects. Note that since RST algorithm does not sepa-
rately estimate the spatial filter and temporal filter, but optimizes
a projection vector called temporal-spatial filter, we sum the el-
ements for each channel to represent the spatial filter weight for
that channel. The spatial filters of RST, DSP, and AST were nor-
malized to keep the sum of the squares of the elements equal to 1.
When a weight is close to 0, then it means that the channel does
not contributemuch to spatialfiltering. In contrast, a weight with
high absolute value denotes an important role of the channel. For
the AST filtering as compared to the DSP filtering and RST fil-
tering, the absolute values of filter weights are more sharply fo-
cused over motor areas around C3, Cz, and C4 corresponding
to different limb movements/motor imageries.
5) Comparison of Temporal Filters: Fig. 5 shows the tem-

poral filters produced by RST and AST filtering algorithms.
Fig. 5 also shows the temporal filters used by DSP as described
in (2). Note that for RST filtering, consecutive five-tuple of data
points were averaged beforehand. Since RST filtering does not
separately optimize the spatial filter and temporal filter, but opti-
mizes a projection vector called temporal-spatial filter, we used
the average of all channels at a given time point as the temporal
filter weight for that time point. The temporal filters of DSP,
RST, and AST filtering were normalized so that the sum of the
squared filter elements was 1. Fig. 5(a) shows that for subject S2,
the temporal filters of RST, DSP, and AST filtering have greater
absolute values close to the onsets of finger movements, which
is in accord with the previous studies [19], [37]. Fig. 5(b)–(d)
shows this for subjects S4, S6, and S11, respectively. For these
subjects, the classification accuracies of DSP and RST filtering
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Fig. 5. Optimal temporal filters of RST, DSP, and AST filtering for the repre-
sentative subjects. (a) Subject S2, for AST filtering, , .
(b) Subject S4, for AST filtering, , . (c) Subject
S6, for AST filtering, , . (d) Subject S11, for
AST filtering, , .

were poor. It is probably because that the timings of the imag-
ined movements varied in large ranges, the 200 ms window was
sensitive to this variation, while the AST filtering adaptively ad-
justed the Gaussian filter with wider radiuses which are more ro-
bust. Generally, the temporal filters of DSP are not optimized to
capture the maximum information in the signal. The temporal
filters of RST have a larger number of parameters which may
lead to overfitting of the limited training set. The temporal filters
of AST are adaptive smoothers to extract the MRP components.
6) Why AST Filtering Works Better: Since the MRP has a

slowly evolving activity, AST, DSP, and RST each use low fre-
quency amplitude as signal features, but they do this in different
ways. First, DSP only performs feature extraction in conjunc-
tion with a specific classifier, such as FDA or SVM [19]. Since
the objectives of DSP and the classifier are different, it cannot
theoretically ensure that DSP and the classifier will work well
together. AST and RST integrate feature extraction and classi-
fication in predictive models with unified objectives. In this as-
pect, AST and RST are superior to DSP. Second, both DSP and
RST need additional low-pass filtering and selecting of the time
segment [19], [27], [37]. Since the parameters of this prepro-
cessing are obtained by grid search they need significant human
intervention and may be inaccurate due to the limited resolution
of the grids. (If the resolution of the grids is high, the computa-
tion burden could increase dramatically). AST learns these pa-
rameters smoothly in an automatic manner which is more suit-
able for building a practical and feasible BCI. Third, since the
EEG matrix structure is collapsed to make vector inputs for
RST, the temporal and spatial correlations of the EEG signals
are lost [27], [37]. For example, if an EEG matrix recorded by
channels and time points (e.g., , ) is rep-

resented as a -dimensional vector, it suggests that the EEG
is specified by (e.g., 340) independent variables. However,
only a few latent variables would be necessary to model the
variance in the EEG that predicts the criterion. The degrees of
freedom of the MRP filtering model should be far less than .
When the training size is small, such as with subjects S5, S6,

and S7 in dataset IV, BCI competition II, RSTmay be overfitting
the data with a large number of redundant and irrelevant vari-
ables. In contrast, AST retains the EEG matrix structure while
the temporal and spatial filter parameters are specified with just

degrees of freedom. We note that although AST avoids
the overfitting issue by constraining the parameter space, as a
double-edged sword, over-restricting the parameter space may
cause underfitting to the data as well. Therefore, when the data
set is large enough, a sophisticated learning model with more
parameters may perform better.
7) The Online Evaluation of AST Filtering: At present, the

AST filtering algorithm is tested offline without intervention
and feedback. However, in a close loop BCI system, man and
machine adapt to each other and the mental state of the subject
will be more complex in the online situation. Since the online
evaluating is more close to BCI applications, we plan to eval-
uate the performance of AST filtering online and revised it in a
future study.
8) The Inter-Session Variability Problem: In this study, the

experiment data consisted of several sessions. These sessions
were conducted on the same day with some minutes break in
between [37], [48]. The AST filtering model can generalize well
from training set to test set which means that AST may help to
overcome the intersession variability by filtering out the vari-
able noise and extract the underlying MRP features. However,
if the interval between sessions were long, such as several days
or weeks, the inter-session variability of the MRP may be great
(due to the differences in subjects’ mental status or recoding
environments). Then the marginal distribution of extracted fea-
tures will change which is called as “covariate shift” [50], [51].
Present AST filtering based on ordinary LRR and cross vali-
dation does not track the “covariate shift.” In the future, AST
filtering can be improved by transfer learning techniques [52],
[53] to address the inter-session variability problem.

V. CONCLUSION

In this paper, we proposed the AST filtering algorithm for
MRPs extraction and classification. In order to better model
MRPs and reduce the danger of overfitting, the AST algorithm
constructs a low-pass temporal filter by using a Gaussian kernel
with only two parameters (i.e., the center and the radius) and
builds the spatial filter based on LRR model with a regulariza-
tion item. Moreover, the AST algorithm uses the closed form of
LOO error with LRR to simultaneously optimize the Gaussian
kernel parameters, the spatial filter and the regularization co-
efficient with the efficient gradient descend method. Thus, the
AST algorithm integrates MRP signal processing and predic-
tion. This approach does not need the time consuming and im-
precise preselecting of cutoff frequencies and time segments,
but directly classifies the raw EEG signal. We compared the
AST filter with DSP filtering and RST filtering on four BCI
datasets from 12 subjects. Results showed that the proposed
AST filtering can extract physiological meaningful information
of MRP and outperform DSP filtering as well as RST filtering
in average classification accuracy.
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