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Abstract
Objective—Sensorimotor rhythms (SMRs) are 8–30 Hz oscillations in the EEG recorded from
the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many
brain-computer interface (BCI) studies have shown that people can learn to control SMR
amplitudes and can use that control to move cursors and other objects in one, two, or three
dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular
disabilities, their accuracy and reliability must be improved substantially. These BCIs often use
spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or
common spatial pattern (CSP) filter to enhance the signal-to-ratio of EEG. Here we test the
hypothesis that a new filter design, called an “adaptive Laplacian (ALAP) filter,” can provide
better performance for SMR-based BCIs.

Approach—An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of
channel weights, and then simultaneously seeks the optimal kernel radius of this spatial filter and
the regularization parameter of linear ridge regression. This optimization is based on minimizing
leave-one-out cross-validation error through a gradient descent method, and is computationally
feasible.

Main results—Using a variety of kinds of BCI data from a total of 22 individuals, we compare
the performances of ALAP filter to CAR, small LAP, large LAP and CSP filter. With a large
number of channels and limited data, ALAP performs significantly better than CSP, CAR, small
LAP and large LAP both in classification accuracy as well as in mean squared error. Using fewer
channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but
equally matched to CSP.

Significance—Thus, ALAP may help to improve the accuracy and robustness of SMR-based
BCIs.

Index Terms
Brain computer interface (BCI); brain-machine interface (BMI); spatial filter;
electroencephalogram (EEG); leave-one-out (LOO) cross-validation; assistive communication

1 INTRODUCTION
A principal aim of brain-computer interface (BCI) research is to establish new
communication channels that translate brain signals into control commands for output
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devices such as computer applications or neuroprosthesis to be used by people with severe
neuromuscular disabilities (Wolpaw and Wolpaw 2012). In past decades, various
noninvasive (Blankertz et al 2007, Ortner et al 2011, Tianyou et al 2012) and invasive BCIs
(Taylor et al 2002, Hochberg et al 2006, Leuthardt et al 2011) have been developed. For
noninvasive BCIs, brain signals can be acquired by scalp-recorded electroencephalogram
(EEG) from a human who tries to convey his/her intentions according to some defined
paradigms. These paradigms can be exogenous such as steady-state visual evoked potentials
(SSVEP)-based BCIs and P300-based BCIs (Wu and Yao 2008, Aloise et al 2011), or
endogenous such as slow cortical potentials (SCP)-based BCIs and sensorimotor rhythms
(SMRs)-based BCIs (Hinterberger et al 2004, McFarland et al 2010). Relatively, exogenous
BCIs require minimal training and can be set-up easily, but they need permanent attention to
external stimuli which may be fatiguing for some users. On the other hand, endogenous
BCIs take much longer time for training, but they are independent of any stimulation and
can be operated at will (Pfurtscheller and Scherer 2010, Nicolas-Alonso and Gomez-Gil
2012).

Here we focus on SMR-based BCIs using EEG recording. SMRs (8–14 Hz μ rhythm and
14–30 Hz β rhythm) are recorded over sensorimotor cortex. The amplitudes of SMRs
decrease (event-related desynchronization) and/or increase (event-related synchronization)
in association with movement and movement imagery (Pfurtscheller and da Silva 1999).
People with or without motor disabilities can learn to change SMR amplitudes and can use
that control to operate a BCI (Wolpaw and McFarland 2004, Liao et al 2007, Bai et al 2008,
McFarland et al 2010, Blankertz et al 2010, Zhang and Guan 2010). However, the
accuracies and reliability of these BCIs are reduced by unrelated brain signals (e.g., visual α
rhythms) and non-brain artifacts (e.g., electromyogram (EMG) and electrooculogram
(EOG)). Thus, the design of effective algorithms for extracting SMRs and translating them
into BCI outputs is challenging (e.g., Blankertz et al 2006). Many SMR-based BCIs seek to
increase performance by using spatial filtering methods such as the common average
reference (CAR), Laplacian (LAP) filtering, or common spatial pattern (CSP) algorithms
(e.g., Wolpaw et al 2002, McFarland et al 1997, Blankertz et al 2008). And each method has
its own set of advantages and disadvantages. The idea behind the CAR is to remove the
averaged brain activity, which can be seen as EEG noise (Dien 1998). But since CAR is a
constant global spatial filter, the noise from a local area may diffuse to all the other channels
(i.e., electrodes). LAP subtracts the average of its neighbors from the channel of interest.
LAP enhances local activity from local sources, and reduces widely distributed activity,
including that from distant sources (e.g., EMG, eye movements and visual α rhythm)
(Mouriño et al 2001). But LAP filters need to determine the optimal spacing of the neighbor
channels, which requires time-consuming ad hoc manual tuning, such as small Laplacian
(SLAP) and large Laplacian (LLAP) filter (McFarland et al 1997). Since both CAR and
LAPs are unsupervised algorithms which do not involve any class information, they are
simple but robust and generally can be used in SMR-based BCIs at the beginning of an
experiment. CSP is a supervised data driven algorithm. It optimizes spatial filters to project
multichannel EEG into a linear subspace so that the difference between the average
variances of two-class mental tasks is maximized (Ramoser et al 2000). CSP requires a
considerable amount of training data in order to insure a stable and good performance
(Sannelli et al 2010). It usually performs better that CAR and LAP in the later phase of the
experiment. But when the training data is limited and the signal-to-noise ratio (SNR) of EEG
is poor, CSP is prone to overfitting that make it performs worse than LAP (Sannelli et al
2010). Based on this fact, some robust variations of CSP have been proposed such as CSP
patches (Sannelli et al 2011) and regularized CSP (Lotte and Guan 2011). These variations
reduce the complexity (or flexibility ) of CSP model by restricting CSPs to the subsets of
channels or by use of a penalty function based on the prior information. Despite their
successes, CSPs are not directly designed for solving a regression problem. With the
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developments of SMR-based BCIs, regression is preferable to classification because it is
better suited to controlling continuous cursor movements in real time and it generalizes more
readily to novel target locations (McFarland and Wolpaw 2005, Fruitet et al 2010). Unlike
CSP, CAR and LAPs can not only be used for classification but also for regression.

Therefore, based on the models of CAR and LAP, we proposed a supervised data driven
algorithm, called adaptive Laplacian (ALAP) filtering algorithm with the expectation to
keep a proper tradeoff between learning ability and model complexity. The ALAP algorithm
is robust with small training sets, and can address prediction problems for classification and
regression. Specifically, ALAP employs the Gaussian kernel to construct a continuous slope
and then models the instantaneous voltage of each channel by subtracting the weighted
average of all channels. ALAP behaves like a high pass filter in the spatial domain. Both
CAR and SLAP filters can be derived from the ALAP framework by adopting a particular
kernel parameter. In contrast to CSP, ALAP unifies the optimizations of spatial filtering and
the prediction algorithm towards the same goal (i.e., minimizing the error of leave-one-out
(LOO) cross validation (CV)). Here we used linear ridge regression (LRR) (Hoerl and
Kennard 1970) as the prediction algorithm. The whole model has only two parameters (i.e.,
the kernel radius of ALAP and the regularization coefficient of LRR). To accelerate the
optimization procedure, we design a gradient descent method that employs the closed form
of LRR LOO error (Cook and Weisberg 1982) and explicitly compute the derivatives about
the kernel radius and the regularization coefficient. This optimization technique is inspired
by the study of Bo et al (2006). However, we extend it from the feature scaling for kernel
Fisher discriminate analysis (KFDA) to the radius selection for ALAP spatial filtering. The
circular Laplacian filter (Song and Epps, 2006) is perhaps most closely related to ALAP.
The circular Laplacian filter is based on Perrin’s spherical model (Perrin et. al., 1989). It re-
references EEG using interpolated values on a circle around an electrode and behaves like a
band-pass filter in the spatial domain. Perrin et. al. (1989) suggested that a circular
Laplacian filter could produce better classification results than LAPs with subject-specific
radius, although they did not show how to select the optimal radius.

This paper is organized as follows. Section 2 describes CAR, LAP, and CSP filters. Section
3 describes the ALAP and indicates its relationships to the other filters. Section 4 describes
the data used for comparing the filters, the comparison procedure and the results. Finally,
section 5 summarizes the properties of the ALAP filter and considers directions for further
research.

2 CAR, LAP, AND CSP SPATIAL FILTERS
2.1 Common Average Reference (CAR)

The CAR subtracts the average value of the entire channel montage from each channel of
interest, so that noise common to a large proportion of the channels is reduced (Bertrand et
al 1985). If the entire head is covered by equally spaced channels and the potential on the
head is generated by point sources, the CAR results in a spatial voltage distribution with a
mean of zero (Bertrand et al 1985). While the assumptions of uniform and complete channel
coverage as well as point sources are usually not met completely in practice, the CAR
provides EEG recordings that are nearly reference-free. Because the common average
emphasizes EEG components that are present in a large proportion of the EEG channels, the
subtraction of the common average reduces these components and thereby functions as a
high-pass spatial filter (i.e., accentuates EEG components with highly focused spatial
distributions). On the other hand, a component that is present in some channels but absent or
minimal in a channel of interest may appear in that channel in inverted form (i.e., as a “ghost
potential”) (Desmedt et al 1990). In brief, CAR is a constant global filter method that does
not optimize the local spatial structure of multichannel EEG signals.
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The CAR is computed according to the formula,

(1)

where  is the potential between channel i and the reference, T is the number of
sampled time points in a trial and C is the number of channels in the montage.

2.2 Laplacian (LAP)
The LAP calculates for each channel the second derivative of the instantaneous spatial
voltage distribution, and thereby emphasizes activity originating in radial sources
immediately below the electrode. Thus, it is a high-pass spatial filter that accentuates
localized activity and reduces more diffuse activity. In practice, the value of the LAP for
each channel is calculated as the difference between that channel and a weighted average of
the surrounding channels (Nunez et al 1994). Thus, the selection of surrounding channels
affects the result. As their distances from the channel of interest decrease, the LAP becomes
more sensitive to the components with higher spatial frequencies.

Using data obtained in the study of SMR-based cursor control, McFarland et al (1997)
compared LAP filters calculated with two different sets of surrounding channels: nearest
neighbor channels (i.e., SLAP) and next-nearest neighbor channels (i.e., LLAP). They found
that the LLAP generally performed better than the SLAP. This result suggested that SMRs
were not highly focused and/or that their scalp locations varied over time. In any case, SMR
spatial distributions and the distributions of unrelated brain and non-brain activity are likely
to be complex and highly variable across and even within individuals. In addition, channel
spacing differs with different EEG montages. In sum, the fixed selection of surrounding
channels may weaken the overall performance of a LAP filter.

The LAP is computed according to the formula,

(2)

where , Si is the set of channels surrounding channel i, and dij is the distance
between channel i and channel j, j ∈ Si.

2.3 Common Spatial Pattern (CSP)
The CSP method optimizes the spatial filter to map multichannel EEG signals to the linear
subspace so that the variance of one class is maximized while the variance of the other class
is minimized (Ramoser et al 2000). CSP has been proven to be one of the most popular and
efficient algorithms for SMR-based BCIs, notably during BCI competitions (Blankertz et al
2006). However, since the number of estimated parameters of a CSP filter grows with the
square of the number of channels, CSP is very sensitive to the noise and prone to overfitting
when available training trials are limited (Grosse-Wentrup et al 2009, Lotte and Guan 2011).
In addition, CSP is not directly designed for solving a regression problem. With the
developments of SMR-based BCIs, regression is preferable to classification because it is
better suited to controlling continuous cursor movements in real time and it generalizes more
readily to novel target locations (McFarland and Wolpaw 2005, Fruitet et al 2010). The CSP
algorithm is formulated as follows.

Lu et al. Page 4

J Neural Eng. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Let C by C matrices Ra and Rb denote the averaged normalized spatial covariance matrices
of class a and b, respectively. The composite covariance matrix is R = Ra + Rb. As R is a
symmetrical matrix, it can be factored into its eigenvectors by SVD.

The whitening transformation of the composite covariance matrix P is:

By P, the individual covariance matrices Ra and Rb are transformed to:

Sa and Sb share the same eigenvectors, Sa = BΨaBT, Sb = BΨbBT and Ψa + Ψb = I where I
is the identity matrix. As a consequence, the projection matrix W = BTP gives the mapping
of each EEG trial X ∈ RC×T: Z = WX. The signals Zp (p = 1,…, 2m) with the maximum
differences of variances are associated with the largest eigenvalues Ψa and Ψb. These
signals are the m first and m last rows of Z due to the calculation of W. The feature vector f
of each trial is extracted as:

where fp is the pth component of f, the log-transformation serves to make the data more
closely approximate the normal distribution.

3 ADAPTIVE LAPLACIAN (ALAP) FILTER
An ALAP filter might improve SMR-based BCI performance because it is not subject to
certain limitations of CAR and LAP filters. The CAR is a constant global spatial filter, and
thus it cannot capture the local spatial distributions of EEG components such as SMRs.
Although the LAP is a local spatial filter, it cannot adapt to the differences across channels
and across subjects in the spatial distributions of unrelated brain signals or non-brain
artifacts. Because they are not adaptive, CAR and LAP have no capacity to optimize the
performances.

3.1 Framework of ALAP Filter
The ALAP filter can focus on the local spatial distributions of EEG components. A Gaussian
kernel is used to construct a continuous slope and to model the instantaneous voltage of each
EEG channel with its neighbors. An ALAP filter can be seen as a generalization of CAR and
LAP filters, since both of them can be derived from the ALAP framework by specifying a
particular kernel parameter. Unlike CSP where the spatial filter and the translation algorithm
are optimized separately with different objectives, ALAP is a the wrapper method which
means the spatial filter and the translation algorithm are both simultaneously optimized with
the same goal, (i.e., minimizing the LOO error of prediction).

First, the local spatial filtering model based on a Gaussian kernel is formulated as:
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(3)

with:

(4)

where vi and vj are the positions of channel i and channel j respectively;  is the

normalization item. Although the Gaussian kernel is usually defined as ,
we employ the alternative form in Eq.(4) to facilitate the derivative calculations later in
section 3.2. The purpose of the kernel weighting is to smoothly control the influence of each
pair of channels depended on their distance. The kernel parameter θ can be seen as the scale
factor of these distances. If θ is small, the value ωij of is less sensitive to the distance

. Thus, the ALAP becomes similar to a global spatial filter. Conversely, if θ is large,
the ALAP becomes similar to a local spatial filter.

Second, since the power change of μ and β rhythms reflects the ERD/ERS, ALAP extracts
the power features of band-pass filtered EEG defined as:

(5)

where fik is the feature from channel i and trial k. The log-transformation serves to
approximate a normal distribution of the data, since the least square solution of LRR is
optimal when the features belong to the normal distribution. Then fik is centered with zero
mean,

(6)

where N is the number of trials. Here we used LRR (Hoerl and Kennard 1970) as the
prediction algorithm. LRR minimizes the penalized sum-of-squares error function by
incorporating the l2-norm regularization to control the model complexity and improve the
generalization performance. The prediction model is constructed as:

(7)

where F ∈ RC×N is the feature matrix  is the linear projection, y ∈ RN is the
centered label vector, and λ ≥ 0 is the regularization coefficient controlling the bias-variance
trade-off. Given θ and λ, the solution is:

(8)

where I denotes the C × C identity matrix.

3.2 Optimization with the LOO Error
Eq. (7) and (8), indicate that θ and λ have important roles in the ALAP filtering model and
should be derived from EEG data of SMR-based BCI trials. One popular approach for model
selection is CV (Stone 1974). The n-fold CV splits the data into n parts, and uses each
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alternatively to train and to validate the model. The final performance is the mean of the
performances on the n different validation sets. CV maximizes the total number of
validation trials and potentially helps to protect against overfitting. When n equals the
number of trials, n-fold CV is the LOO CV.

The LOO error is considered to be an almost unbiased estimator of the generalization error
(Luntz and Brailovsky 1969) and has been used frequently in model selection (Ojeda et al
2008, Arlot and Celisse 2011, Yuan et al 2012). Moreover, the development of closed-form
solutions for performing LOO CV in certain learning algorithms such as LRR (Cook and
Weisberg 1982) and KFDA (Cawley and Talbot 2003) significantly reduces the
computational complexities. Thus, the present study uses the LOO error as the optimization
criterion in tuning the parameters of ALAP filtering. Specifically, we explicitly compute the
derivatives of LOO error with respect to θ and λ, and then seek them by a gradient descent
method. This procedure is based largely on the studies of feature scaling in kernel learning
algorithms (Bo et al 2006, Cawley and Talbot 2007). The difference is that these authors
focus on adjusting the kernel matrices, whereas we extend the method to control the spatial
filtering model.

In accord with Cook and Weisberg (1982), the closed form of LOO error for ALAP is:

(9)

where ⊙ denotes an element-wise division, r ∈ RN is the residual error vector, the hat
matrix H = FT (FFT + λI)−1 F, E = 1 − diag(H) and 1 is a column vector of N ones. The
aim of ALAP is to minimize the LOO error.

(10)

Then, according to the chain rule, the derivative of J with respect to θ can be expressed as

(11)

And based on Eq. (9), the derivative of r with respect to θ is given by Bo et al (2006):

(12)

where ⊗ denotes an element-wise product. Let C = FFT + λI, then the derivative of H with
respect to θ is computed as:

(13)

Based on Selby (1974), the derivative of C−1 with respect to θ is:

(14)
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Based on Eq. (6), the derivative of F with respect to θ is:

(15)

According to the log-power computation Eq. (5), the derivative of fik with respect to θ is:

(16)

According to spatial filtering model Eq. (3), the derivative of  with respect to θ is:

(17)

where . Furthermore, according to the kernel
function Eq. (4):

(18)

Combining Eq. (11)–(18) yields the derivative of the LOO error with respect to θ. The
derivative of H with respect to λ is:

(19)

Upon that, the derivative of J with respect to λ can be computed in a similar way. Since both
θ and λ are positive, the parameterizations (θ, λ),= (eξ, eψ) are used to avoid these
constraints, and then ∂θ/∂ξ= θ, ∂λ/∂ψ = λ. The gradient decent method is implemented
with the Quasi-Newton BFGS algorithm from the optimization toolbox of MATLAB. The
step length is determined by the cubic polynomial line search procedure. Table 1 lists the
pseudo-code of the ALAP filtering algorithm. The computational complexity of ALAP is
estimated as:

where L is the iteration number, C2 × N comes from the computation of the spatial filtering
and feature extraction for all the channels and trials, the cubic item C3 is the computational
complexity of inverting matrix C = FFT + λI, C3 × N comes from the computation of the
derivative of F with respect to θ, and O(C3) is the computational complexity of calculating
α (i.e., the last step in table 1).

3.3 ALAP Compared to Other Spatial Filter Approaches
3.3.1 Comparison to CSP—ALAP and CSP are both supervised algorithms. In the
SMR-based BCI applications, they generally use as signal features the power in specific

Lu et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



frequency bands. However, the criteria and optimizations of them are quite different. First,
ALAP minimizes the LOO error of prediction whereas CSP maximizes the ratio of average
variances extracted from the EEG signal of different mental tasks. Second, ALAP employs a
local spatial filtering model on all the channels, and cooperates with LRR to search for the
optimal parameters, while CSP optimizes the spatial filters without the local constraint and
performs as an independent feature extraction step. Third, the ALAP has only one filter
parameter, while the CSP filter vector is equal in length to the number of channels. Thus,
when the channel number is great and the sample size is small, ALAP may be more robust
than CSP parameter. In addition, ALAP can solve regression problem, which plays an
important role in more flexible BCI paradigms, such as multi-dimensional cursor control
with multiple targets in each dimension (McFarland et al 2010).

3.3.2 Comparison to CAR and LAP—Although ALAP is a supervised method and
CAR is an unsupervised method, CAR can be regarded as a special case of ALAP. With
respect to the formula of ALAP (i.e., Eq. (3)), if θ = 0, then ωij = 1, and

. ALAP and LAP are both local spatial filter algorithms. But
their distance measures and scale are different. This is illustrating by rewriting Eq. (3) as:

(20)

where the scale coefficient: , and the weight of channel j:

. In contrast to the LAP filter formula (i.e., Eq. (2)), ALAP uses

 as the distance between channels i and j where parameter θ smoothly
controls the neighbor of channel i. If θ → +∞, only the nearest channels are used as the
reference and the ALAP is similar to the SLAP except that the scale is smaller. Note that
LLAP cannot be obtained within the framework of ALAP, because the nearest neighbor
channels are not used in the LLAP.

Figure 1 illustrates the spatial frequency responses of the CAR, SLAP, LLAP and ALAP
filter. Suppose 25 channels are equally spaced as a 5 × 5 matrix, the nearest neighbor
distance is 1, and the channel of interest is at the center. By Eq. (1)-(4), the channel weights
of these spatial filters can be computed. Then the two-dimensional Fourier transform is
performed. The resulting response functions of the filters are displayed in figure 1. Figure 1
shows that the SLAP focuses more on the high frequency components than does the CAR,
and that, as θ increases, ALAP changes from CAR to a SLAP and its response magnitude
becomes smaller. Unlike ALAP, the LLAP is a band-pass filter that also suppresses the high
frequency components.

4 THE BCI PERFORMANCES OF THE FOUR DIFFERENT SPATIAL FILTERS
4.1 EEG Data

In order to assess the utility of the ALAP algorithm, we compared it to CSP, CAR, SLAP,
and LLAP using the EEG data of 22 subjects. These subjects were from three publicly
available data sets of BCI competitions and from this laboratory. Their affiliations are listed
in table 2. The prediction tasks of all the data sets are based on single-trial structure. And the
data sets are described as follows.
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4.1.1 Data Set IV, BCI Competition II—The goal of Data set IV, from BCI competition
II (Blankertz et al 2002), was to predict the laterality of upcoming finger movements (left vs.
right hand) 130 ms before a key press. There were 416 trials (316 trials for training and 100
trials for test) acquired from one subject (A1), and the EEG was recorded with 28 channels
mainly covering the primary or sensorimotor cortices bilaterally. This data set did not
provide the two-dimensional channel position file but declared that the channels followed
the international 10/20-system. Thus, we used the standard 10/20-system position file from
EEGLAB for the channels (Delorme and Makeig 2004).

4.1.2 Data Set IVa, BCI Competition III—Data set IVa, from BCI competition III
(Dornhege et al 2004), consists of EEG signals from five subjects who performed right hand
and foot motor imagery (MI). The EEG was recorded with 118 channels. A training set and
a test set are available for each subject. The relative sizes of these two sets were different for
each subject. More precisely, a total of 280 trials were available for each subject, and the
training set sizes were 168, 224, 84, 56 and 28 for subjects B1–B5 respectively. The test set
consisted of the remaining trials.

4.1.3 Data Set I, BCI Competition IV—Data set I, from BCI competition IV (Blankertz
et al 2007), contains 59-channel EEG signals recorded from 4 healthy subjects (C1–C4)
while they performed two-class MIs (i.e., left hand/right hand or hand/foot). The original
goal of this data set was to apply a classifier to continuous EEG. For the purpose of the
present study, only the calibration data with cue information were used. More specifically,
the calibration data (consisting of two runs totaling 200 trials, balanced between the two
classes) for each subject were split into two parts, the first 100 trials for training, and the
next 100 trials for test. In addition, we changed the class labels from {−1, 1} to {1, 2} to
compare prediction performance with the other data sets in this study.

4.1.4 Data Set of Cursor Movement Control—Our own data set contains EEG signals
from 12 subjects (D1–D12) who modulated mu or beta rhythm to control vertical cursor
movement toward one of two targets located at different heights along the right edge of the
video screen. The details of the online control protocol are given in McFarland and Wolpaw
(2008). The EEG was recorded with 64 channels covering the whole scalp followed the
international 10/20-system. A training set and a test set were available for each subject. Each
set contained 50–60 trials for each target. For the purpose of this study, an offline analysis
was performed.

4.2 The Results
4.2.1 Preprocessing and Measures of Filter Performance—In this paper, we
considered the discrete classification of single-trial EEG. For finger movement prediction
and cursor movement control datasets, we used all the sampled time points of each trial; for
the MI classification datasets, we used the sampled time points located from 0.5s to 2.5s
after the cue instructing the subject to perform the MI task (Lotte and Guan 2011). The EEG
data of all the subjects were individually band-pass filtered with 5th-order Butterworth
filters. In the Appendix, we give a heuristic approach for frequency band selection. As
spatial filtering, with CSP, we used m pairs of the most discriminative filters, where m is
determined by 5-fold cross validation (Blankertz et al 2008). That is, we used the filters
corresponding to the m largest and m smallest eigenvalues for CSP; with the SLAP (LLAP),
we calculated the reference using the nearest (next-nearest) neighboring channels for all the
datasets. After frequency filtering and spatial filtering, the log-variances of the filtered EEG
time series were extracted as the features. Then LRR was used as the translation algorithm.
The regularization coefficient of LRR was tuned by LOO CV. Considering that the output of
LRR is a continuous value, for classification we categorized each trial based on the distance
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between the prediction and class labels. Suppose that the class labels are c1 and c2, and ẑi is

the prediction for trial i. If  trial i is classified as class c1, otherwise it is
classified as class c2. The performance of each filter is given by its classification accuracy
(CA) and its mean squared errors (MSE). These two indices are defined as:

where M is the number of incorrect trial classifications, z and ẑ are the true labels and
predictions respectively, and E is the expectation function.

4.2.2 Convergence of the ALAP Algorithm—Using all the available channels for each
subjects, we tested the ALAP algorithm with the SMR-based BCI data described in section
4.1 and observed the number of iterations it took before the stop criterion was met (i.e.,
before the decrease of the LOO error J expressed in Eq.(10) was less than 10−3). For the
optimization, we tried different initial values of kernel parameter and regularization
coefficient, and then choose those that lead to the lowest LOO errors. Figure 2 plots the
LOO errors calculated over iterations for all the subjects. Note that J = MSE × N/2 (N is the
number of training trials), the scales of LOO errors for different subjects could be much
different due to the various sizes of training sets and different SNRs of EEG data.

Figure 2 shows that, for most subjects, the LOO errors decreased markedly in the early
iterations, and rapidly converged to a final stable value. Across all of the 22 subjects, the
ALAP algorithm took 3–17 iterations to meet the stop criterion, with a mean of 6.09 and a
standard deviation of 3.01 iterations. The computation of the ALAP algorithm was
performed using Matlab R2011b running on Windows 7 Professional SP1 64bit with Intel
Core i7-2640M CPU 2.8GHz. The time for ALAP optimization for each subject ranged
between 0.91 to 27.6s. Among them, the fastest was with 28 channels and 316 training trials,
and the slowest was with 118 channels and 224 training trials. The time for ALAP
prediction per trial for each subject was less than 5 ms. That indicates that we can use the
optimized ALAP model for BCI prediction in real time, and update the ALAP model
between runs or sessions (about 300 trials) within 1 s, if the number of channels is less than
28.

4.2.3 Optimized Parameters of the ALAP—Figure 3 demonstrates the optimized
kernel parameter θ of ALAP for each subject with all the available channels. It indicates
that, even in the same datasets (i.e., with the same channel montages and distance units) θ s
differ across subjects. As previously noted, for small values of θ, the ALAP approximates
the CAR and for large values of θ it approximates the SLAP (see the analysis in Section
3.3.2)). For example, based on the channel positions of cursor movement control dataset
according to subjects D1-D12, figure 4 demonstrates the scalp maps of −hij in Eq.(20) for
channel C3 with different θ s. From figure 4 we can see that, when ln(θ) = 0, ALAP tended
to subtract the weighted average components from all the other channels from channel C3
( i.e., performed near to CAR). When ln(θ) = 6, ALAP was close to SLAP but not exactly,
since the channels were not absolutely evenly placed and the distances between a channel
and its nearest four neighbors may not be uniform. Clearly, a single fixed value θ cannot
perform optimally across all subjects. That is the motivation for developing the ALAP
algorithm.

4.2.4 Comparison of the Scalp Topographies of the Spatial filters—Figure 5
shows for representative subjects with each filter the r2 topographies for the correlation

Lu et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between the training labels and the SMR features. For the ALAP as compared to the other
filters, the r2 values are higher and more sharply focused over sensorimotor areas.
Furthermore, for the ALAP as compared to the other filters, r2 values over other scalp areas
are uniformly low.

Figure 6 presents the most discriminative spatial patterns of the CSP algorithm (Blankertz et
al 2008) with all the available channels for the same group of subjects as shown in figure 5.
Although the spatial patterns are not directly comparable to r2 values, figure 6 demonstrates
that the CSP algorithm learns brain patterns both within and outside the sensory motor areas.
These brain pattern were probably influenced by artifacts and noises, since the classification
accuracies obtained by CSP for these subjects were poor, especially for B3, C2 and D5 even
no more than 70% (see table 3). This might due to the limited number of training trials
which made CSP overfitted the artifacts and noises.

4.2.5 Comparison of BCI Performances—Table 3 and table 4 show the classification
accuracies (CAs) and mean squared errors (MSEs) obtained for each subject with different
spatial filters. On average, ALAP achieved the best performances both in CA (84.65%) and
in MSE (0.1346). A one-way ANOVA with repeated measures indicated that the five filters
differed significantly in both CA and MSE (d.f. =4, F =4.6, p =2.1×10−3 and d.f. =4, F
=2.85, p =2.86×10−2, respectively). Additional two-group ANOVAs showed that the ALAP
was significantly better than each of the other filters in both CA (p ≤ 9.10×10−3) and MSE
(p ≤ 3.05×10−2). Moreover, using the same data with randomized labels, we calculated the
CAs for these spatial filters with 20 different randomizations and found that the average
level was between 49.59% and 50.22% for each filter. This test indicates that these methods
were not biased. The performance of CSP was not markedly better than those of CAR in
either CA or MSE, despite the presumed advantage of its supervised feature extraction. This
is probably because we used a large number of channels for the MI classification
experiments (118 and 59) and cursor movement control experiment (64), whereas most of
the training sets contained no more than 120 trials. This lack of difference in performance
may reflect overfitting of the CSP filter (Grosse-Wentrup et al 2009, Lotte and Guan 2011).
In contrast, with the same number of channels and trials, the ALAP filter performed better,
which may be attributed to its having fewer model parameters. The relative poor
performances of the SLAP and LLAP filters probably resulted from inter-subject differences
in the spatial frequencies and distributions of the SMR components and the noises. SLAP
and LLAP always use the nearest or next-nearest neighbor channels and thus cannot adapt to
inter-subject differences.

As a further investigation, we used 17 channels from motor areas (i.e., FC3, FC1, FCz, FC2,
FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4) to compare the performances
of the ALAP, CAR, CSP and SLAP filters. In this experiment, the LLAP filter was not
included because the channels are few and none of them represent a full montage of next-
nearest neighbors as described in McFarland et al (1997). Table 5 and table 6 show the CAs
and MSEs obtained for each subject with different spatial filters using 17 channels. On
average, CSP achieved the best performances in CA (85.02%), ALAP filter achieved the
best performances in MSE (0.1304). A one-way ANOVA with repeated measures indicated
that the four filters differed significantly in both CA and MSE (d.f. =3, F =5.49, p =2.1×10−3

and d.f. =3, F =3.63, p =1.74×10−2, respectively). Additional two-group ANOVAs showed
that the ALAP filter was significantly better than CAR and SLAP in both CA (p
≤8.70×10−3) and MSE (p≤3.82×10−2). There was little difference between ALAP and CSP
either in CA(p =0.52) or MSE (p =0.83). Comparing table 5, 6 and table 3, 4, we can find
that the performance of CSP was markedly improved when the channels were fewer and
focused on motor areas. This was probably due to the fact that the complexity of CSP was
reduced and potential noise from other brain area were reduced. Although the performance
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of ALAP was still significantly better than CAR and SLAP, this advantage was decreased.
The reason could be that the limited number of channels restricts the spatial resolution of the
ALAP and makes the ALAP, CAR and SLAP more similar. For an extreme example of only
2 channels, it can be deduced that ALAP, CAR and SLAP are same based on Eq. (1)-(4).
Comparing tables 5, 6 with tables 3, 4, we can find the average performances of the ALAP
filter was more stable than the other filters. This may be due to the proper tradeoff between
learning ability and model complexity.

5 DISCUSSION
In this paper, we analyzed the spatial filtering algorithms including CAR, LAPs as well as
CSP, and then proposed the adaptive Laplacian (ALAP) filtering algorithm to address the
small training set problem of SMR-BCIs. ALAP can vary between CAR-like and SLAP-like
by adjusting the radius of the Gaussian kernel in order to translate each individual’s EEG
signals into BCI outputs as accurately as possible. For real BCI applications, many factors
could influence the selection of a proper kernel radius. These include the channel montages
of datasets, the spatial characteristics of noise (i.e., unrelated brain activity and non-brain
activity) as well as the spatial characteristics of the SMR. Use of a fixed kernel radius could
not adapt to these variations. We evaluated the spatial filters with EEG data from 22 subjects
through offline analysis. The results showed that with the large number of channels and
limited data, ALAP can outperform CSP, CAR, SLAP and LLAP both in classification
accuracy as well as in mean squared error. With fewer channels, ALAP is still superior to
CAR, SLAP and LLAP, but equally matched CSP.

An ALAP filter has three promising properties. First, ALAP integrates the optimizations of
spatial filtering and the prediction algorithm to minimize the error of LOO CV. It improves
BCI accuracy while reduces the risk of overfitting. Second, the LOO error of ALAP is
expressed in a closed form, and the parameter derivatives can be explicitly calculated. This
makes ALAP computationally feasible. Third, ALAP can address not only classification
problems but also regression problems. This allows ALAP to provide greater flexibility,
which is needed for BCI applications such as multi-dimensional cursor control with more
than two targets in each dimension.

The most significant difficulty of the ALAP filter described here is the local minimum
problem of gradient descent searching. A better solution might be to use evolutionary
computation techniques, such as a genetic algorithm (Srinivas and Patnaik 1994) or particle
swarm optimization (Kennedy and Eberhart 1995). However, these techniques would add
computational complexity. As shown in section 3.2, the computation complexity of the
ALAP filter is a cubic function of the channel numbers, which suggests that selecting fewer
channels can dramatically accelerate the computation. Therefore, combining evolutionary
computation and a channel selection technique is a potential approach to improving the
ALAP filter.

The LOO error used here as the optimization criterion of the ALAP filter is a squared loss
function (i.e., Eq.(10)). That is sensitive to extreme data points. Furthermore, it was
originally designed for solving regression problems. In dealing with classification problems,
it penalizes correctly classified data points if their output values are larger than the
corresponding labels. To overcome this disadvantage, techniques to reshape the error, such
as a sigmoid function (Bo et al 2006) or hinge loss (Bartlett and Wegkamp 2008), have been
proposed. In the future, such methods may enhance the robustness of ALAP and provide a
version specialized for classification problems.

In BCI experiments, small variations in the placement of the electrodes may occur. As a
result, EEG signals are recorded from slightly different positions. This is a problem for all
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spatial filter methods. For ALAP, when θ is small, the slight change (noise) can be reduced
by averaging more channels, but more channels will be influenced by this noise; when θ is
great, the influence of the noise will be restricted to the smaller area, but more influenced by
each neighbor channel. In addition, for different channels (e.g., within/beyond the motor
area), the variations in the placement may have a different influence on spatial filtering, and
it is hard to analyze how sensitive the ALAP is to these effects. At present, we think that if
the variations in the placement of the electrodes exists between the sessions within the
training set, the ALAP filter will seek the optimal θ to minimize the estimation of
generalization error (i.e., LOO error) in contrast to a fix θ, such as that of SLAP and CAR. If
variations exists between the training sessions and test sessions, then information of the test
set should be explored (e.g., use of a semi-supervised approach or a transfer learning
approach). This problem should be examined in future work.

The time, frequency and spatial characters of SMR have close relationships with each other.
Some studies have demonstrated that embedding the selection of time/frequency- dependent
parameters into spatial filter algorithm may further enhance BCI performance (Lemm et al
2005, Dornhege et al 2006, Wu et al 2008, Wu et al 2011). Generally, it can be considered
as an optimization problem in a border parameter space. Although the overfitting risk could
be greater, it is another promising direction to improve the ALAP filter.
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Appendix

Frequency band selection for spatial filtering
Here we provide a heuristic approach to select the frequency band as a general
preprocessing step for all the spatial filters evaluated in the experiment. For this approach,
we used the channels from motor areas of the hands and/or feet most involved in the mental
tasks used in the different datasets. These 13 channels included C3, Cz, C4, FC3, FCz, FC4,
C5, C1, C2, C6, CP3, CPZ, CP4. The frequency band that can obtain lowest LOO error with
LRR using log-variance features from these channels were chosen. The pseudo code of this
approach is listed in table 7. The selected frequency band for each subject is listed in table 8.
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Figure 1.
The frequency response of CAR, SLAP, LLAP and ALAP filters with different kernel
parameters in a two dimensional spatial domain. Fx (Fy) is the normalized frequency in the
horizontal (vertical) direction. The color bar under each plot shows the response magnitude.
See text for full description.
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Figure 2.
Convergence of the gradient-based optimization procedure of the ALAP algorithm. The
graph shows LOO errors computed (see section 3.2) over the iterations. Each curve
corresponds to one subject.
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Figure 3.
The optimized kernel parameter θ of ALAP for each subject. Here labels A, B, C and D
denote the subjects from different datasets. This graph shows the variation in θ across
subjects.
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Figure 4.
Scalp maps of −hij in Eq.(20) for channel C3 (the green point in the blue areas) with
different θ s. These scalp maps are based on the channel positions of cursor movement
control dataset (i.e., subjects D1–D12).
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Figure 5.
Scalp maps from representative subjects of the correlation r2 values between training labels
and the features extracted from each channel with different spatial filters.
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Figure 6.
The most discriminative spatial patterns obtained by CSP algorithm for subjects A1, B3, C2
and D5. Each column corresponds to one subject.
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Table 1

ALAP filtering algorithm

1 Initialization: given multichannel EEG dataset , two-dimensional channel position v ∈
RC×2, set initial parameters θ(0) and λ(0), iteration number L, stop criterion δ.

2 for t = 1: L

3 Filter the EEG signal for each channel with respect to the dataset , kernel radius θ(t−1) and channel position v, by Eq. (3),
(4);

4 Extract the power-features by Eq.(5),(6), then get the feature matrix F;

5 Calculate the LOO error J (θ(t−1), λ(t−1)) by Eq. (9), (10);

6
Calculate  by Eq. (11)–(18), and compute ;

7

Update (θ(t−1), λ(t−1)) to (θ(t), λ(t)) with ;

8 Calculate J (θ(t), λ(t)) by Eq. (9), (10);

9 If |J (θ(t), λ(t)) − J(θ(t−1), λ(t−1))| < δ, break, end;

10 end;

11 Calculate α by Eq. (8) with the optimized θ and λ, then output them.
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Table 2

The affiliations between the subjects and datasets.

Data sets Subjects

Data Set IV, BCI Competition II A1

Data Set IVa, BCI Competition III B1–B5

Data Set I, BCI Competition IV C1–C4

Data Set of Cursor Movement Control D1–D12
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Table 5

Classification accuracies (%) obtained for each subject with each filters using 17 channels from motor areas.
The averages and stand deviations for all the subjects together are also provided. The best results for each
subject and the best average are in bold italics.

Sub. CAR SLAP CSP ALAP

A1 69.00 68.00 75.00 72.00

B1 87.50 83.04 86.61 87.50

B2 96.43 98.21 100.00 98.21

B3 68.88 66.33 69.90 68.88

B4 83.48 86.16 85.71 86.16

B5 85.71 91.27 91.67 90.48

C1 80.00 86.00 86.00 88.00

C2 59.00 65.00 76.00 65.00

C3 80.00 79.00 88.00 80.00

C4 91.00 90.00 91.00 92.00

D1 78.85 57.69 77.88 77.88

D2 61.54 66.35 63.46 63.46

D3 91.35 85.58 93.27 91.35

D4 83.65 79.81 79.81 85.58

D5 81.00 88.00 89.00 91.00

D6 83.00 73.00 86.00 83.00

D7 93.52 88.89 87.04 93.52

D8 77.78 83.33 77.78 85.19

D9 97.92 98.96 100.00 97.92

D10 67.50 81.67 84.17 83.33

D11 78.13 76.04 83.33 78.13

D12 95.65 100.00 98.91 98.91

Avg. 81.40 81.47 85.02 84.43

Std. 11.00 11.64 9.34 10.22
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Table 6

Mean squared errors obtained for each subject with each filter using 17 channels from motor area. The
averages and stand deviations for all the subjects together are also provided. The best results for each subject
and the best average are in bold italics.

Sub. CAR SLAP CSP ALAP

A1 0.2084 0.2139 0.1903 0.1869

B1 0.1100 0.1257 0.1210 0.1094

B2 0.0710 0.0494 0.0358 0.0488

B3 0.2006 0.2102 0.1928 0.2006

B4 0.1387 0.1138 0.1287 0.1111

B5 0.1470 0.0956 0.1020 0.1141

C1 0.1434 0.1215 0.1019 0.1093

C2 0.2198 0.2292 0.1917 0.2183

C3 0.1635 0.1467 0.1579 0.1629

C4 0.1021 0.0947 0.0943 0.1013

D1 0.1658 0.2807 0.1709 0.1657

D2 0.2430 0.2233 0.2351 0.2303

D3 0.0927 0.1679 0.0960 0.0928

D4 0.1138 0.1200 0.1527 0.0984

D5 0.1933 0.1348 0.1158 0.1259

D6 0.1346 0.1693 0.1174 0.1357

D7 0.0813 0.0934 0.0847 0.0814

D8 0.1731 0.1588 0.1863 0.1644

D9 0.0486 0.0470 0.0627 0.0435

D10 0.2047 0.1505 0.1476 0.1510

D11 0.1794 0.1990 0.1764 0.1802

D12 0.0714 0.0344 0.0250 0.0377

Avg. 0.1457 0.1445 0.1312 0.1304

Std. 0.0544 0.0640 0.0543 0.0545
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Table 7

Frequency band selection algorithm

1 Input multichannel EEG dataset , where C denotes the number of channel set, T denotes the
number of sampled time points in a trial.

2
Filter EEG data Xi into narrow bands  channel by channel, where fk ∈ [7 + 2(k − 1), 7 + 2k] Hz, k = 1, 2,…,12 and

extract the log-variance of  as features .

3
Train linear ridge regression model with feature set  and seek the optimal regularization coefficient with lowest LOO
error. Then the negative of this lowest LOO error is used as the score of frequency band fk, denoted by Sfk

4
With , record the initial best score and frequency band S* ← Sfk*, f* ← [7 + 2(k* − 1), 7 + 2k*] Hz, and get

the initial bounds k0 ← k* − 1, k1 ← k*

5 for j = 1:12

6 Extend the frequency band:

a. If k0 = 1 and k1 = 12, then break.

b. If k0 > 1 and k1 = 12, then k0 = k0 − 1; If k0 = 1 and k1 < 12, then k1 = k1 + 1; Similar to step (2) and step (3), but
compute the score of a wider frequency band [7 + 2k0, 7 + 2k1] Hz as Sj.

c. If1 < k0, k1 < 12, there are two candidate bands: [7 + 2(k0 − 1), 7 + 2k1] Hz and [7 + 2k0, 7 + 2(k1 + 1)] Hz. Compute

the scores of them respectively as  and . If , then ; else,

.

7 If Sj > S*, then S* ← Sj and f* ← [7 + 2k0, 7 + 2k1] Hz.

end

8 Output the frequency band f*.
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Table 8

Selected frequency band for each subject.

Sub. Selected frequency band

A1 7–31 Hz

B1 11–17 Hz

B2 7–29 Hz

B3 7–31 Hz

B4 9–15 Hz

B5 7–31 Hz

C1 7–31 Hz

C2 9–31 Hz

C3 7–25 Hz

C4 9–29 Hz

D1 9–13 Hz

D2 7–23 Hz

D3 19–27 Hz

D4 9–15 Hz

D5 15–31 Hz

D6 7–23 Hz

D7 7–27 Hz

D8 7–29 Hz

D9 7–21 Hz

D10 7–17 Hz

D11 11–15 Hz

D12 19–31 Hz
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