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a b s t r a c t

Objective: An electroencephalographic brain–computer interface (BCI) can provide a non-muscular
means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular dis-
orders. We present a novel P300-based BCI stimulus presentation – the checkerboard paradigm (CBP).
CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell
and Donchin (1988).
Methods: Using an 8 � 9 matrix of alphanumeric characters and keyboard commands, 18 participants
used the CBP and RCP in counter-balanced fashion. With approximately 9–12 min of calibration data,
we used a stepwise linear discriminant analysis for online classification of subsequent data.
Results: Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting
for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than
for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial
tests with three advanced ALS participants produced similar results. Furthermore, these individuals pre-
ferred the CBP to the RCP.
Conclusions: These results suggest that the CBP is markedly superior to the RCP in performance and user
acceptability.
Significance: The CBP has the potential to provide a substantially more effective BCI than the RCP. This is
especially important for people with severe neuromuscular disabilities.
� 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Brain–computer interfaces (BCIs) facilitate reestablishing com-
munication and environmental control for people whose motor
and communicative abilities have been impaired by severe neuro-
muscular disease (Wolpaw and Birbaumer, 2006). For example,
although cognitive function is usually spared, the motoneuron
death associated with amyotrophic lateral sclerosis (ALS) ulti-
mately renders people physically incapacitated as they lose all vol-
untary muscle control. These people may become ‘‘locked-in” to
their bodies, unable to communicate, and completely dependent
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upon caregivers to attend to their basic needs. Importantly, how-
ever, the use of a BCI can mitigate the isolation and dependence
they experience by providing a mode of communication not con-
tingent on neuromuscular activity.

BCIs translate volitional modulation of brain signals into com-
puter commands, which can be recorded from the scalp using elec-
troencephalography (EEG; e.g., Farwell and Donchin, 1988;
Wolpaw and McFarland, 2004), from the dura mater or cortical
surface using electrocorticography (ECoG; e.g., Leuthardt et al.,
2004), or from neurons within the cortex (e.g., Hochberg et al.,
2006). A common signal for BCI is the P300 event-related potential
(ERP). The P300 ERP is a positive deflection in the EEG over parietal
cortex that occurs approximately 300 ms after an ‘‘oddball” stimu-
lus: a rare but meaningful stimulus among a series of frequently
occurring stimuli. Because the P300 occurs amid other ongoing
EEG activity, several P300 responses must usually be averaged
for the response to be recognized (Fabiani et al., 1987; Polich,
2007; Pritchard, 1981).
ed by Elsevier Ireland Ltd. All rights reserved.
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Farwell and Donchin (1988) introduced the first P300-based BCI
paradigm. In this paradigm, a computer presents a 6 � 6 matrix of
letters and commands on-screen and participants attend to the
item they wish to select. Groups of matrix items are flashed ran-
domly. Only flashes of groups containing the attended item should
elicit a P300. In this original implementation of a P300 BCI, and in
most subsequent implementations, items are grouped for flashing
as rows and columns; hence, the row–column paradigm, or RCP.
The computer identifies the attended item as the intersection of
the row and column that elicited the largest P300.

1.1. Improving the RCP

The RCP has been tested in various configurations to achieve
efficient communication that is practical for in-home use. For
example, researchers have explored various electrode montages
(Krusienski et al., 2006), stimulus properties such as inter-stimulus
interval (ISI) and matrix size (Sellers et al., 2006), and various sig-
nal processing methods (Kaper et al., 2004; Krusienski et al., 2006;
Lenhardt et al., 2008; Serby et al., 2005).

Others have modified the RCP paradigm. For example, Martens
et al. (2009) compared the RCP speller to an apparent motion par-
adigm where motion occurs in rows and columns. Similarly, Hong
et al. (2009) compared the RCP to an apparent motion and color
onset paradigm that also presents the color and motion stimuli
in a row/column arrangement. Takano et al. (2009) recently inves-
tigated RCP accuracy using three different luminance and chro-
matic flash patterns: a white/grey pattern (luminance condition);
a green/blue isoluminance pattern (chromatic condition); and a
green/blue luminance pattern (luminance chromatic condition).
The luminance chromatic condition produced online accuracy
higher than the luminance or chromatic condition alone. Salvaris
and Sepulveda (2009) compared changes to the background/fore-
ground colors, item size, and distances between items. Their re-
sults demonstrated that, although no single paradigm was best
for everybody, a white background produced the highest mean off-
line classification accuracy, and small symbol sizes produced the
lowest mean classification accuracy. Finally, Guger et al. (2009)
compared the RCP to a paradigm in which single items flash at ran-
dom. They found that the RCP yielded higher accuracy and bit rate
than the single item flash paradigm, even though the P300 re-
sponses were larger for the latter. In sum, none of these alternative
paradigms substantially improves P300-based BCI performance.

Two additional studies have used stimuli that are not presented
in a RCP format. Allison (2003) presented random groups of items
in an arrangement referred to as a ‘‘splotch” presentation, some-
what similar to the method presented in this article. The splotch
presentation reduced the number of flanking items that flash with
the target, and participants reported that they preferred the meth-
od; however, no data with regard to BCI performance were re-
ported. Hill et al. (2009) also tested a variation of a random
stimulus presentation using an offline leave-one-out cross-valida-
tion. Their results suggested that the random presentation did not
perform as well as the standard RCP; however, no statistical anal-
yses were performed to test the performance difference.

1.2. RCP and BCI errors

The RCP remains subject to errors that slow communication,
cause frustration, and diminish attentional resources. Importantly,
these errors appear to have two primary causes.

First, errors typically occur with the greatest frequency in loca-
tions adjacent to the attended item (i.e., the target item) and al-
most always in the same row or column (Fazel-Rezai, 2007). This
inherent RCP error occurs because each time a target item flashes,
a P300 is produced for every item in the row or column. However,
only the intersection of the target row and column is unique to the
target item. Errors arise when flashes of non-target rows or col-
umns that are adjacent to the target, attract the participant’s atten-
tion, thereby producing P300 responses. We refer to these
relatively systematic errors as ‘‘adjacency-distraction errors” (or
the ‘‘adjacency-distraction problem”). This phenomenon is well
documented in the spatial attention literature. For example, in a
standard flanker task, response time significantly increases when
nearby items belong to a response class different from the target
class (e.g., Sanders and Lamers, 2002). In the RCP, when adja-
cency-distraction errors occur with sufficient frequency, the dis-
tractions cause one of the four adjacent items (or another item in
the same row or column of the target) to be selected
unintentionally.

Second, in order to conform to the oddball paradigm, sets of
items must be intensified in random order. This allows target items
to, at times, flash consecutively. That is, when a row flash is fol-
lowed by a column flash (or vice versa), and the target item is at
the intersection of that particular row and column, the target item
flashes twice in immediate succession. Due to the rapid rate of
intensification, double flashes can cause errors of two types. One,
if the target item is involved in a double flash, the second flash
may go unnoticed by the participant, so that it does not produce
a P300 response. Two, even if the second flash is perceived, the
P300 responses to the two flashes overlap temporally. This can re-
duce P300 amplitude or change its morphology (Martens et al.,
2009; Woldorff, 1993). We refer to these errors as ‘‘double-flash
errors” (or the ‘‘double-flash problem”).

1.3. Is there a better alternative to the RCP?

Further RCP research could possibly help severely disabled BCI
users, who desire speed, accuracy, and ease of use. However, the
kinds of errors that are inevitably associated with the RCP can still
make it frustrating for users and burdensome for their caregivers
(Vaughan et al., 2006). Moreover, with the RCP, some people are
not able to achieve accuracy high enough for practical BCI use (Sell-
ers and Donchin, 2006). In recognition of these issues, we sought to
create an alternative stimulation paradigm that is faster, more
accurate, and more reliable than the RCP.

To achieve this goal, we designed an alternative to the RCP that
is called the checkerboard paradigm, or CBP. We used an 8 � 9 ma-
trix containing 72 items. In the RCP, the eight columns and nine
rows flash at random (Fig. 1A). In contrast, in the CBP, the standard
8 � 9 matrix is virtually superimposed on a checkerboard (Fig. 1B,
left), which the participants never actually see. The items in white
cells of the 8 � 9 matrix are segregated into a white 6 � 6 matrix
and the items in the black cells are segregated into a black 6 � 6
matrix. Before each sequence of flashes, the items in Fig. 1B (left)
randomly populate the white or black matrix, respectively, as
shown in Fig. 1B (middle). The virtual checkerboard layout controls
for adjacency-distraction errors, because adjacent items cannot be
included in the same flash group. The end result is that the partic-
ipants see random groups of six items flashing (as opposed to rows
and columns) because the virtual rows and columns depicted in
Fig. 1 (middle) flash. For example, the top row of the white matrix
includes the items: 2, Bs, Shift, H, Sp, EC. In this example, the par-
ticipant is shown the standard 8 � 9 matrix Fig. 1B (right) and the
six items from the top row of Fig. 1B (middle, top) flash. In other
words, the standard matrix never changes; only the pattern of
flashing items is changed. During one sequence, the six virtual
rows in the white matrix (Fig. 1B, middle) flash in order from top
to bottom followed by the six virtual rows in the black matrix.
Then the six virtual columns in the white matrix flash in order
from left to right followed by the six virtual columns in the black
matrix.



Fig. 1. (A) The row–column paradigm (RCP) for the 8 � 9 matrix, with one row flashing. (B) The Checkerboard paradigm (CBP) for the 8 � 9 matrix. On the left is the
checkerboard pattern. In the middle are the two virtual 6 � 6 matrices derived from the checkerboard. On the right is the matrix as presented to the participant with the top
row of the white 6 � 6 virtual matrix flashing. See text for details.
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Due to the fact that the randomized virtual rows of each matrix
flash first (12 flashes) and then the virtual columns of each matrix
flash (12 flashes), any given matrix item cannot flash again for a
minimum of six intervening flashes and a maximum of 18 inter-
vening flashes. This eliminates the double-flash problem. After all
rows and columns in both matrices have flashed (i.e., 24 flashes,
comprising one complete sequence), the program re-randomizes
the positions of the items in each virtual matrix and the next se-
quence of flashes begins. In addition, the CBP almost completely
avoids overlapping target epochs because six intervening flashes
correspond to 750 ms and we used classification epochs of
800 ms. Simply eliminating the double-flash problem does not en-
sure that enough time will be presented between target items to
keep the target epochs from overlapping, and this has been shown
to cause deleterious effects to the P300 (Squires et al., 1976). By
maximizing the time between successive flashes of the target item,
the CBP should increase the amplitude of the P300 responses (Po-
lich et al., 1991) and should also improve BCI speed and accuracy.

1.4. The present study

In this study, our hypothesis is that the CBP will produce supe-
rior performance as compared to the RCP because it avoids the
adjacency-distraction and double-flash errors to which the RCP is
prone. In addition to comparing the two paradigms, we also sought
to optimize the stepwise linear discriminant analysis (SWLDA;
Draper and Smith, 1981) classifier to achieve the highest online
speed and accuracy (i.e., bit rate) possible. Moreover, the expansion
to an 8 � 9 matrix allows the inclusion of both alphanumeric keys
and function keys, giving the participant more control and commu-
nication options. The larger matrix should also produce larger P300
amplitudes for the target items because the probability of the tar-
get stimulus occurring is reduced. This relationship is found in
standard oddball experiments (e.g., Duncan-Johnson and Donchin,
1977) and also in BCI applications (Allison and Pineda, 2003; Sell-
ers et al., 2006). Finally, while the larger matrix increases the time
needed for each selection, it should increase the information trans-
ferred per selection.
2. Methods

2.1. Participants

Eighteen able-bodied adults (11 men, and seven women) were
recruited from the East Tennessee State University undergraduate
participant pool. All were naïve to BCI use. None had uncorrected
visual impairments or any known cognitive deficit. The study
was approved by the East Tennessee State University Institutional
Review Board and each person gave informed consent.

In addition, three people with ALS (two women, one man) were
recruited. They were all ventilator-dependent and were still able to
move their eyes. Two were otherwise totally paralyzed (i.e.,
locked-in) while one retained a slight eyebrow twitch. The study
was approved by the New York State Department of Health Institu-
tional Review Board and each person gave informed consent.
2.2. Data acquisition, processing

Each participant sat in a comfortable chair approximately 1 m
from a computer monitor that displayed the 8 � 9 matrix. The
EEG was recorded with a standard 32-channel electrode cap (with
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tin electrodes; Electro-Cap International, Inc.). All channels were
referenced to the right mastoid and grounded to the left mastoid,
and impedances were reduced below 10.0 kO before recording.
The signals were amplified and digitized by two g.tec (Guger Tech-
nologies) 16-channel USB biosignal amplifiers (amplification to
±2 V before ADC; high-pass and low-pass filters 0.5 Hz and 30 Hz,
respectively; digitization rate 256 Hz). Only electrodes Fz, Cz, P3,
Pz, P4, PO7, PO8, and Oz (Sharbrough et al., 1991) were used for
BCI operation (Krusienski et al., 2008). The general-purpose BCI
software platform BCI2000 (Schalk et al., 2004) controlled stimulus
presentation, data collection, and online processing. Data acquisi-
tion and processing was identical for the ALS users with the excep-
tion that they used either a single 8-channel or 16-channel g.tec
amplifier with the same characteristics described above, and they
sat in their wheelchairs.
2.3. Experimental paradigm

Each participant completed two experimental sessions on sepa-
rate days within a one-week period. Sessions were counter-bal-
anced such that half of the participants began with the RCP
session and the other half began with the CBP session. Each session
consisted of a calibration phase and an online test phase. Classifi-
cation coefficients were generated with data collected during the
calibration phase and were subsequently applied during the online
test phase. In each phase, participants were provided with strings
of items to select. The string is displayed at the top of the monitor
with the next item-to-spell (the target item) indicated in parenthe-
ses at the end of the string (Fig. 1A). For example, if the assigned
string was ‘‘WADSWORTH,” it would appear at the beginning of
the run as: WADSWORTH (W). The participant’s task was to attend
to (or count) the number of times the item in parentheses flashed.
After each target item was presented, a 3.5 s pause ensued before
the next target item appeared in parentheses (e.g. WADSWORTH
(A)). This process repeated until the string of items was complete
(one run). We used data from five such runs (four words and one
numeric string) to train the feature weight classifier. For both the
RCP and CBP, each set of items flashed for 62.5 ms, followed by a
62.5 ms inter-stimulus interval. Thus, a set flashed every 125 ms
(i.e., eight flashes/s). For each of 38 item selections, five complete
sequences (i.e., including 10 flashes of the target item) occurred.
One RCP sequence included 17 flashes (eight columns; and nine
rows), and one CBP sequence included 24 flashes (12 columns;
12 rows). As a result, each RCP selection took 10.63 s, and each
CBP selection took 15.00 s. Thus, for each participant, 8 min,
53.25 s of calibration data were collected for the RCP, while
11 min, 39.50 s were collected for the CBP. However, the number
of target items was the same for the two paradigms. Given that
the goal is to classify after a minimal number of target presenta-
tions, we opted to present the same amount of targets per se-
quence rather than holding time constant and presenting
additional targets in the RCP. Because the CBP presented more
non-target stimuli, it is possible that it would produce a more effi-
cient classifier than the RCP. Due to this discrepancy we conducted
an analysis using only 2850 non-targets as input to the CBP classi-
fier (the same amount used in the RCP), effectively controlling for
the difference in presentation time.

The online test phase was identical to the calibration phase ex-
cept for two differences. First, the number of sequences/selection
was changed from five to a participant-specific number (described
in Section 2.5.). Two, item selections were classified using SWLDA
feature weights generated from the calibration data and visual
feedback of the selections was provided to the participant directly
below the item to be selected (in the grey area underneath the tar-
get string, Fig. 1A).
For the ALS users, the procedure was different in the following
respects. First, in each session they used different numbers of char-
acter selections. User 1 was presented a variable number of charac-
ters in each session. Users 2 and 3 were each presented with 19
selections, although they were not the same selections. In addition,
the users’ stimulus onset asynchrony (SOA) was different. SOA for
User 1 and 2 was 250 ms (187.5-ms flash) and SOA for User 3 was
125 ms, (62.5-ms flash). Finally, the time between selections was
increased from the 3.5 s used in the able-bodied participants to
4.75 s in Users 1 and 2 and 9 s in User 3.
2.4. Classification

As described in Krusienski et al. (2008), independent SWLDA
classifiers were derived for the RCP and CBP (Draper and Smith,
1981). In the RCP calibration phase, each item selection included
85 flashes (i.e., 85 800-ms data segments from 10 target flashes
and 75 non-target flashes). Thus, the RCP calibration phase consist-
ing of 38 item selections, included data from 3230 flashes (380 tar-
gets and 2850 non-targets). In the CBP calibration phase, each of
the 38 item selections included data from 4560 flashes (380 targets
and 4180 non-targets). We used the SWLDA algorithm to deter-
mine the signal features that best discriminated between target
and non-target flashes (MATLAB version 7.6 R2008a, stepwisefit
function).

For online classification, epochs from each stimulus item were
averaged before applying the SWLDA classification coefficients. In
the RCP, the coefficients were applied to the spatiotemporal fea-
tures of each row and column and then summed. The intersection
of the row and column with the highest scores was selected and
presented to the participant as feedback. In the CBP, the coeffi-
cients were applied to the specific spatiotemporal features of each
of the 72 items and summed. The item with the highest score was
selected and was presented to the participant as feedback.

For the ALS patients the procedure was the same; however, gi-
ven the differences in the amount of available data, more calibra-
tion data was used as input to the SWLDA analysis.
2.5. Determining the optimal number of sequences

Due to the P300 response’s relatively low signal-to-noise ratio,
each item must be flashed multiple times and the results averaged
(Cohen and Polich, 1997). During calibration, the number of target
item flashes was constant across participants and presentation
methods. Item sets were flashed in random sequences with two
flashes of the target item per sequence, and thus 10 target item
flashes in the five sequences used for each selection.

During the online testing phase, we optimized the number of
sequences from each participant’s maximum written symbol rate
(WSR, or symbols/min; Furdea et al., 2009). This metric represents
the number of item selections a participant can correctly make in
1 min, taking into account error correction. For practical purposes,
people using the P300 speller need to correct errors. For a word
processing application, this requires a backspace option. An error
takes one extra item selection to erase it by using backspace and
one more extra selection to choose the correct item. Assuming that
the participant attempts to correct all errors, the WSR can be deter-
mined from the number of bits transmitted per trial (B; McFarland
et al., 2003). First, the symbol rate (SR) is determined from B:

SR ¼ B
log2N

where N is the number of possible items used to calculate B. The
WSR can then be determined as follows:
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WSR ¼
2SR�1

T SR > 0:5
0 SR 6 0:5

(

where T is the time to select one item. This metric only counts cor-
rectly selected items and excludes backspaces because they do not
contribute to the final conveyed message. A WSR < 0.5 indicates
that a participant will, on average, make more errors than s/he is
able to correct. Consequently, the final message will contain an
abundance of uncorrected errors and will likely be indecipherable.
Therefore, this range is assigned a WSR of zero. Importantly, the
WSR provides a realistic (i.e., ecologically valid) measure of actual
written communication rate that is useful for determining a suit-
able number of flashes for practical application of the P300 speller.

The time per selection and the classification accuracy both
influence WSR. For each participant, the number of sequences that
yields the highest WSR was determined. The SWLDA coefficients
used online were derived from all 38 items. However, to determine
the optimal number of sequences for a given participant, we gen-
erated two SWLDA classifiers; the first used the first 22 items of
the calibration phase data as a training set and the last 16 items
for a test set. The second classifier used the last 24 items of the cal-
ibration phase data as a training set and the first 14 items as a test
set. We then determined the number of sequences that produces
the highest WSR for each classifier, averaged the values, and
rounded to the next highest sequence in the RCP and the next high-
est half sequence in the CBP. Fig. 2 shows for one participant the
estimated accuracies and WSRs for 1–5 sequences, using the CBP.
For this example, the optimal number of sequences is two with
an accuracy of 93% and a WSR of 7.5 selections/min. As accuracy
increases with number of sequences, the WSR increases accord-
ingly, until accuracy asymptotes at 100% (or some other value),
and then the WSR steadily decreases as additional sequences are
added. Thus, according to the present analysis, two sequences were
optimal for this participant, and this number was used online. Gi-
ven that more data were used to derive the classifier used online
than for determining the optimal number of sequences, we ex-
Fig. 2. Optimizing the number of stimulus sequences. The top panel shows, for one
participant, accuracy (the number of correct target selections) estimated after each
of the five flash sequences. The bottom panel shows the corresponding written
symbol rates (WSRs). For this participant, the optimal number of sequences is two,
and this provides 7.5 selections/min, using the CBP.
pected that the optimal number of sequences would be overesti-
mated. Thus, our estimate of WSR was a conservative one.

2.6. Practical bit rate

Correcting an error requires a minimum of two additional selec-
tions (first a backspace, then a correct selection). Sellers et al.
(2006) conducted a simulation (using 10,000 item selections) to
determine how many selections would be necessary to complete
a sequence of 10 correctly selected items with accuracy rates of
50–100%. With 51% accuracy, fully 500 selections were necessary
to complete the 10-item sequence. Thus, while bit rate is an objec-
tive measure of information transfer rate, the importance of accu-
racy should not be overlooked (Sellers et al., 2006; Wolpaw et al.,
2000, 2002).

To investigate performance with error correction taken into ac-
count, we conducted an analysis of bit rates for the RCP and the
CBP. To determine an ecologically valid metric of performance that
each participant would likely achieve if correcting mistakes, we de-
fined a formula for an error-corrected bit rate or ‘‘practical bit rate.”
For every error made, a penalty of two additional selections would
incur. However, if there is the same likelihood of making an error
during the correcting process as in the original attempt (either while
selecting the backspace or the replacement item) then additional
corrections would be required. Assuming that the probability of
making an error is ‘‘p” and the participant is attempting to commu-
nicate ‘‘N” correct selections, the total number of selections required
to achieve success is given by the infinite series:

N þ 2ðNÞpþ 2ð2ðNÞpÞpþ 2ð2ð2ðNÞpÞpÞpþ � � � ¼ N
X1
i¼0

ð2pÞi

This series converges to N
1�2p provided that 2p < 1, which holds

whenever p < 0:5.
Based on this formulation, we determined the expected number

of total selections required by each participant in order to success-
fully complete all 38 selections in the test conducted, and calcu-
lated the practical bit rate from this result to determine the
expected performance of each participant in a practical application
where error correction is necessary. The value used for the proba-
bility of an error p was 1-accuracy.

3. Results

3.1. Online accuracy and bit rate

Table 1 shows the number of sequences, accuracy, selections/
min, and bit rate for each participant with each paradigm. Online
accuracy was significantly higher for the CBP, 91.52%, than for
the RCP, 77.34%, t(17) = 3.23, p = 0.005. (An offline analysis match-
ing the number of non-target stimuli for each paradigm produced
similar results, i.e., CBP accuracy of 91.22% and RCP accuracy of
77.34%, and the p value for the t-test between the CBP and RCP
was 0.005.) In addition, the number of sequences was significantly
lower for the CBP. However, it took longer to present one CBP se-
quence than one RCP sequence. Therefore, selections/min is a bet-
ter indicator of performance than number of sequences.
Importantly, despite the fact that each CBP selection took longer,
selections/min was not significantly different for the two
paradigms.

While online bit rate was not significantly different for the CBP,
23.17 bits/min and the RCP 19.85 bits/min, the difference did ap-
proach significance t(17) = 1.93, p = 0.071. The bit rate calculation
in Table 1 includes the 3.5 s pause between selections and thus
shows the actual online bit rate. Many other studies have excluded
such inter-selection time in calculating bit rate (e.g., Kaper et al.,



Table 1
Online values for the number of sequences, accuracies, selections/min, and bit rates (bits/min) for the RC and CB paradigms in the online test phase of the experiment.

Participant RC sequences CB sequences RC accuracy CB accuracy RC (sel/min) CB (sel/min) RC bit rate CB bit rate

1 5.00 3.50 100.00 94.74 4.28 4.31 26.38 23.94
2 5.00 4.00 55.26 89.47 4.28 3.89 10.38 19.62
3 3.00 2.00 92.11 89.47 6.13 6.38 32.42 32.12
4 5.00 4.00 71.05 89.47 4.28 3.89 15.06 19.62
5 5.00 3.00 71.05 86.84 4.28 4.84 15.06 23.21
6 4.00 3.50 94.74 89.47 5.04 4.31 27.96 21.73
7 4.00 3.50 97.37 100.00 5.04 4.31 29.39 26.62
8 4.00 4.00 89.47 89.47 5.04 3.89 25.38 19.62
9 5.00 4.50 50.00 86.84 4.28 3.55 8.96 17.03

10 5.00 4.00 44.74 97.37 4.28 3.89 7.61 22.71
11 4.00 4.00 65.79 92.11 5.04 3.89 15.82 20.58
12 5.00 2.50 63.16 94.74 4.28 5.50 12.63 30.52
13 5.00 4.50 47.37 89.47 4.28 3.55 8.27 17.87
14 4.00 2.00 100.00 100.00 5.04 6.38 31.09 39.35
15 4.00 3.50 92.11 100.00 5.04 4.31 26.63 26.62
16 5.00 5.00 86.84 81.58 4.28 3.26 20.52 14.17
17 4.00 3.00 86.84 92.11 5.04 4.84 24.18 25.56
18 5.00 4.50 84.21 84.21 4.28 3.55 19.54 16.22

Mean 4.50 3.61 77.34 91.52 4.68 4.36 19.85 23.17
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2004; Meinicke et al., 2002; Serby et al., 2005). For comparison to
such studies, Table 2 shows the selections/min and bit rates with
the time between selections omitted.
3.2. Practical bit rate and simulated error correction performance

The online bit rate was not significantly different between the
two paradigms, and due to the use of the copy-spelling mode, par-
ticipants did not correct errors. Thus, to simulate error correction
we used the practical bit rate metric. The results of these analyses
demonstrated that the selections/min and bit rate are reduced
compared to the original values. However, the decrease in perfor-
mance was larger for the RCP, 3.24 bits/min, than for the CBP,
0.58 bits/min. The estimated practical bit rate and selections/min
are shown in Table 3. Most importantly, the CBP practical bit rate,
22.59 bits/min, was significantly higher than the RCP practical bit
rate, 16.61 bits/min, t(17) = 2.50, p = 0.02.
3.3. Error analysis

We hypothesized that the CBP would improve performance by
reducing the selection of items adjacent to the target item (adja-
Table 2
Selections/min and bit rate (bits/min) for the RC and CB paradigms, excluding the 3.5-
s pause between selections.

Participant RC (sel/min) CB (sel/min) RC bit rate CB bit rate

1 5.65 5.71 34.84 31.71
2 5.65 5.00 13.70 25.19
3 9.41 10.00 49.75 50.37
4 5.65 5.00 19.89 25.19
5 5.65 6.67 19.89 31.99
6 7.06 5.71 39.17 28.78
7 7.06 5.71 41.17 35.26
8 7.06 5.00 35.56 25.19
9 5.65 4.44 11.83 21.33

10 5.65 5.00 10.05 29.16
11 7.06 5.00 22.16 26.43
12 5.65 8.00 16.69 44.39
13 5.65 4.44 10.93 22.39
14 7.06 10.00 43.55 61.70
15 7.06 5.71 37.31 35.26
16 5.65 4.00 27.10 17.39
17 7.06 6.67 33.88 35.24
18 5.65 4.44 25.81 20.31

Mean 6.41 5.92 27.40 31.51
cency-distraction errors). Fig. 3 (left panel) illustrates the topo-
graphical distribution of errors in relation to the target item for
the RCP. All target items have been centered in the matrix; the
numbers in the black cells represent the number of correct selec-
tions for each paradigm. The numbers in other cells correspond
to the locations of errors relative to the target location. First-degree
errors (dark grey) are those that occurred directly adjacent to the
target item in the RCP, 40.65%, and second-degree errors (light
grey) are those that occurred anywhere else within the same row
or column, 44.52%. Only 14.83% of the 155 RCP errors occurred out-
side of the target row or column. This result confirms Fazel-Rezai’s
(2007) findings, albeit with a much larger data set.

In the CBP, we defined first-degree errors as the cells diagonal to
the target item, since those items could flash with the target item.
We defined second-degree errors as those that occurred in any
location of the target’s virtual matrix. We were successful in reduc-
ing the number of first-degree errors, only 5.17% of the errors were
first-degree errors (dark grey; Fig. 3 right panel), and we reduced
the overall error rate by 14.18%. However, in the CBP, adjacent cells
can never flash together; therefore, only grey cells can flash with
the target (in this illustration). Therefore, for the CBP, 35 of the
72 matrix items represent locations of possible second-degree er-
Table 3
Selections/min and practical bit rates (bits/min) for the RC and CB paradigms taking
error correction into account.

Participant RC (sel/min) CB (sel/min) RC bit rate CB bit rate

1 4.28 3.86 26.38 23.80
2 0.45 3.07 2.76 18.94
3 5.16 5.02 31.82 31.00
4 1.79 3.07 11.07 18.94
5 1.79 3.56 11.07 21.94
6 4.50 3.40 27.79 20.98
7 4.77 4.31 29.44 26.62
8 3.97 3.07 24.50 18.94
9 0.00 2.61 0.00 16.11

10 0.00 3.69 0.00 22.75
11 1.58 3.28 9.77 20.21
12 1.12 4.92 6.91 30.34
13 0.00 2.80 0.00 17.27
14 5.04 6.38 31.09 39.35
15 4.24 4.31 26.15 26.62
16 3.15 2.05 19.40 12.68
17 3.71 4.07 22.86 25.10
18 2.92 2.42 18.01 14.95

Mean 2.69 3.66 16.61 22.59



Fig. 3. Error distributions for the RC paradigm (left) and CB paradigm (right). All target items have been centered in each matrix; the number in the black cell is the number of
correct selections for each paradigm. Numbers listed in other cells represent the number of errors occurring in each cell relative to the target location.
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rors as opposed to only 11 possible second-degree errors for the
RCP. We found that the majority of CBP errors, 74.14%, were sec-
ond-degree errors, as opposed to errors located in the opposite ma-
trix, 25.85%. In other words, for the CBP, 43 of the 58 errors were
items capable of flashing with the target. This result suggests that,
for the CBP, temporal proximity to the target item is much more
important than spatial proximity to the target item. In contrast,
in the RCP, spatial proximity and temporal proximity occur
together.
3.4. Waveform morphologies

The RCP and the CBP produced waveforms that differ in several
respects. Our analyses focused on four electrodes, (Cz, Pz, Po7, and
Po8), since these reliably capture most of the P300 energy in BCI
applications (Kaper et al., 2004; Krusienski et al., 2008). Fig. 4 de-
picts the averaged waveforms for each of the 18 participants. We
averaged these data across the 38 item selections of the calibration
phase in order to keep the amount of data contributing to each
average constant across all participants. Fig. 5 shows, for each of
the four electrodes, target grand means (top row) and non-target
grand means (bottom row). We examined amplitude and latency
differences between targets and non-targets at each electrode loca-
tion by paired t-test.

For the target responses located at electrode Cz, we found that
the latency of the negative peak occurred significantly earlier for
the CBP, 455 ms, than for the RCP, 486 ms, t(17) = 3.36, p = 0.004.
In addition, we found that the amplitude of the negative peak
was significantly larger for the CBP, �4.13 lV, than for the RCP,
�2.86 lV, t(17) = 4.65, p = 0.0002. For the target responses located
at electrode Pz, we found that the amplitude of the positive peak at
approximately 200 ms was significantly larger for the CBP, 2.78 lV,
than for the RCP, 2.00 lV, t(17) = 3.16, p = 0.006. We also found
that the latency of the negative peak occurred significantly earlier
for the CBP, 450 ms, than for the RCP, 499 ms, t(17) = 3.25,
p = 0.005. In addition, the amplitude of the negative peak was sig-
nificantly larger for the CBP, �3.09 lV, than for the RCP, �1.98 lV,
t(17) = 4.56, p = 0.0003.

For the target responses at Po7 and Po8, the negative peaks at
about 190 ms were larger for the RCP, �1.03 lV and �1.29 lV,
than for the CBP, �0.46 lV and �0.52 lV, t(17) = 2.40, p = 0.03
and t(17) = 3.91, p = 0.001. The positive peak at electrode location
Po7 and Po8 occurred earlier for the CBP, 286 ms and 272 ms, than
for the RCP, 336 ms and 347 ms, t(17) = 2.18, p = 0.04 and
t(17) = 3.82, p = 0.001. In addition, at Po8, the latency of the late
negative peak occurred significantly earlier for the CBP, 484 ms
than for the RCP, 551 ms, t(17) = 5.02, p = 0.0001. As at electrode
locations Cz and Pz, at electrode locations Po7 and Po8 the late
negative peaks were significantly larger for the CBP, �1.83 lV
and �1.80 lV, than for the RCP, �1.02 lV and �1.11 lV,
t(17) = 4.22, p = 0.0006 and t(17) = 3.23, p = 0.005.

Fig. 5(bottom) depicts the non-target responses for each of the
four electrode locations. An 8-Hz oscillation is evident in both par-
adigms. This oscillation, which is at the frequency of the stimulus
presentation, is a typical finding. (A comparable but less apparent
oscillation is evident in the target responses, particularly for the
RCP paradigm.) We compared the absolute maximum peak-to-
peak values for the non-target responses over the 800-ms epoch
for each electrode. The absolute amplitude was significantly less
for the CBP at location Cz and Po8, 0.50 lV and 0.40 lV, than for
the RCP, 0.64 lV and 0.63 lV, t(17) = 3.22, p = 0.005 and
t(17) = 2.84, p = 0.01.
3.5. Data from BCI users with ALS

Given the success of the CBP as compared to the RCP in non-ALS
participants, the logical next step was to test the method in people
with ALS. Our initial users were three people (two women, one
man) who had P300-based BCI systems in their homes. We tested
one person severely disabled by ALS (remaining muscle movement
limited to brow twitch and eye movements) on the RCP for 1 ses-
sion, and we compared its accuracy to the CBP for the next 30 ses-
sions, the person used the CBP and average accuracy was 89%
(Fig. 6; User 1). The purpose of providing BCIs to people with ALS
is to give them the best communication option possible. Thus,
upon finding that the CBP improved accuracy by 27% after a single
session we did not conduct additional RCP sessions. Two additional
people locked-in by ALS recently switched to the CBP from the RCP
after extended experience (i.e., both over 2.5 years) with the RCP.
We compared the CBP performance to an equal number of succes-



Fig. 4. Target waveforms for electrode locations Cz, Pz, Po7, and Po8 for each of the 18 participants; RC paradigm data are presented in black and CB paradigm data are
presented in grey. (Amplitude units are lV, scaling is participant specific.)

Fig. 5. Grand mean waveforms for all 18 participants at electrode locations Cz, Pz, Po7, and Po8 (Amplitude units are lVs). The top row consists of target responses for both
paradigms, and the bottom row consists of non-target responses for both paradigms. RC paradigm data are presented in black and CB paradigm data are presented in grey.
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sive RCP sessions that were completed immediately prior to
switching from the RCP to the CBP (Fig. 6; User 2 and User 3).
For example, User 2 had completed 57 sessions of CBP; therefore,
we compared the 57 preceding RCP sessions to the following 57
CBP sessions (similarly for User 3 with 39 CBP sessions). The results
were quite dramatic. In the present study, non-disabled partici-
pants’ average performance increased by 14.18% for the CBP versus
the RCP. In contrast, as shown in Fig. 6, the three people with ALS
using home BCIs obtained an average performance increase of
24.60% with the CBP. To adopt a more conservative measure by
removing User 1 (because only one RCP session was performed),
the mean increase in accuracy was still approximately 23% (31%
for User 2 and 15% for User 3). The p-values in Fig. 6 are based
on paired t-tests for the 57 (User 2) and 39 (User 3) sessions pre-



Fig. 6. Preliminary data from three people severely disabled by ALS. The data were collected in each user’s home and the BCI system was operated by a caregiver. The three
users began with the RC paradigm and switched to the CB paradigm (User 1 only completed 1 RC session). For Users 2 and 3, mean accuracy was compared for equal numbers
of session before and after the switch from the RCP to the CBP.
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and post-switch from RCP to CBP sessions. The practical bit rate
with the CBP for Users 1, 2, and 3 was 13.49, 3.27, and 10.0, respec-
tively. The practical bit rate was not computed for the RCP sessions
because stimulus presentation parameters (i.e., SOAs and numbers
of sequences) were manipulated continually to optimize perfor-
mance. However, the CBP used the same number of sequences as
the optimized RCP, thus each CBP character selection required
additional time. In the non-ALS group, the mean number of se-
quences was 0.9 less in the CBP; thus, the accuracy values for the
ALS group may be slightly inflated as compared to the non-ALS
group in the current study.
4. Discussion

The primary goal of this study was to test a new presentation
method for a P300-based BCI, the checkerboard paradigm (CBP),
and compare it to the standard row/column (RCP) P300-based par-
adigm. Several general points bear mentioning. Foremost, both
paradigms achieved relatively high accuracy and bit rates. With
either paradigm, the P300-based BCI could be calibrated in approx-
imately 10 min, similar to the results reported by Guger et al.
(2009). The 8 � 9 matrix implemented here emulates most of the
functions of a standard keyboard, which should provide disabled
users more control of the tasks they wish to perform, and should
thereby increase the usefulness of the BCI. The calculation of prac-
tical bit rate introduced here may be a worthwhile addition to
other BCI performance measures because it should allow direct
performance comparisons between studies. The WSR is a reason-
able metric for BCI calibration. Using the WSR, a fixed number of
stimuli are presented before classification. Others have used dy-
namic classifiers that stop when a classification criterion is met
(e.g., Lenhardt et al., 2008; Serby et al., 2005); however, on average,
the dynamic classifiers do not achieve online classification accu-
racy or practical bit rates as high as those reported here.

By disassociating the rows and columns, the CBP reduced error
rates, presumably by eliminating adjacency-distraction errors. The
CBP also increased the time between target flashes, thereby elimi-
nating double-flash errors and nearly eliminating overlapping tar-
get epochs, which can be a substantial problem (Martens et al.,
2009; Woldorff, 1993). Because we manipulated both of these fac-
tors concurrently, it is not clear which change was more impor-
tant; however, the reduction in these two forms of errors
appears to be responsible for the observed improvement in overall
performance for the CBP over the RCP. Additional experimentation
is required to determine the exact contribution of these paradigm
changes (i.e., disassociating the rows and columns, or increasing
the time between target flashes). An experiment that includes con-
ditions manipulating the two factors independently and concur-
rently could determine the contribution of each factor to the
increase in accuracy and bit rate. This is an important issue to clar-
ify, which may allow further improvements of the system. None-
theless, whether these factors are working separately or
conjointly, the end result is an improved paradigm which was
our primary goal when designing the CBP.

Additionally, informal polling of participants indicated that they
found the CBP more appealing than the RCP, similar to the partic-
ipants in the Allison (2003) ‘‘splotch” study. While the CBP vs. RCP
performance difference may contribute to this preference, the pref-
erence has practical implications and is therefore important. Most
participants also reported that they experienced less visual fatigue
with the CBP because it was easier to focus attention on the target
items. Finally, and most importantly, preliminary data suggested
that people severely disabled by ALS perform significantly better
using the CBP than the RCP.
4.1. Online accuracy and bit rate

Online accuracy should be the gold standard for evaluating BCI
performance. Offline simulation and cross-validation can be extre-
mely valuable techniques when developing and testing new algo-
rithms. However, if the ultimate goal is to create a practical
system for clinical use, online evaluation should be the standard
evaluation method. An offline leave-one-out cross-validation eval-
uation is not sufficient because it does not test online performance.
While the present study used cross-validation to calculate the
WSR, it was then tested online.

In other words, only online performance can provide tangible
evidence of any BCI system’s validity. Two primary reasons are
responsible for this. One, leave-one-out cross-validation does not
account for the temporal dependency necessary during online clas-
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sification. That is, for online classification, only prior data can be
used regardless of whether the data were collected one second or
one year prior to the online classification. Two, offline analyses
only estimate potential online performance; while they may show
that a paradigm is likely to work, only online testing can establish
that for certain (Klobassa et al., 2009).

In this study, online accuracy was significantly higher by 14.18%
for the CBP compared to the RCP. While the difference in online bit
rate did not reach statistical significance (CBP 23.17 bits/min; RCP
19.85 bits/min) this was largely due to the fact that the CBP takes
about 30% longer to present one sequence of stimuli. Because bit
rate is an objective measure of information transfer rate, this
makes it an attractive option to be used for comparing BCI perfor-
mance. However, in a BCI application, accuracy should be consid-
ered in addition to bit rate. For example, Meinicke et al. (2002)
reported a maximum bit rate of 84.7 bits/min in a P300-based off-
line analysis. Their analysis, however, excluded the time between
item selections and the accuracy level was less than 50%. This is
not sufficient for BCI control, especially for any system intended
for actual clinical use. Bit rate alone is not an adequate metric for
BCI performance. An additional, more clinically relevant metric is
needed.

4.2. Simulated error correction performance and online performance
comparison

In an attempt to provide a realistic estimation of actual perfor-
mance, we introduced a formula to estimate the practical bit rate.
Practical bit rate takes error correction into account, whereas bit
rate only takes accuracy into account. In a paper that focuses on
the problem of using bit rate as the preferred or only performance
metric, Dal Seno et al. (accepted for publication) have presented a
general metric called ‘‘BCI Utility” and show that it predicts BCI
performance better than bit rate (also see Bianchi et al., 2007).

In the current study, the practical bit rate calculation for the CBP
was 22.59 bits/min. This value is only 0.58 bits/min less than the
online bit rate (which does not take errors into account); the small
reduction in bit rate was due to the high mean rate of accuracy,
91.52%. In contrast, the practical bit rate calculation for the RCP
was 16.61 bits/min. This value is 3.24 bits/min less than the online
bit rate because mean accuracy was only 77.34% in the RCP. Accu-
racy could be improved in the RCP by presenting more sequences
of items. This may come with a cost of reducing bit rate because
longer presentation times would reduce bit rate even though high-
er accuracy would increase bit rate. In this study, the number of
selections per minute between the CBP and RCP were not signifi-
cantly different. The number of sequences was limited to five per
character presentation in both paradigms; accordingly, we cannot
evaluate what the exact effects of including additional sequences
would have been on the practical bit rates of the paradigms due
to the non-linear relationship between bit rate and accuracy.
Although, given the current data, the additional time needed to in-
crease RCP accuracy would decrease the number of selections per
minute, which should still result in a significantly higher practical
bit rate for the CBP.

Although they did not correct for errors (similar to this study),
Lenhardt et al. (2008) reported the highest P300 online accuracies
and bit rates prior to this study. They recognized the need to pres-
ent data accounting for the time between items. Thus, they used
two metrics to calculate the time needed to complete 22 item
selections using a 6 � 6 matrix. They defined ‘‘average theoretical
time” as the time to complete the series of item selections with
the time between item selections removed. This metric is not di-
rectly relevant to practical applications. In contrast, their ‘‘average
real time” is relevant for applications, since it calculates the time to
complete the series including the time between item selections.
Therefore, a comparison of their average real time metric and on-
line performance reported here is a valid comparison. Lenhardt
et al. (2008) reported average real time in minutes to complete
the 22 item sequence; we have converted their results to selec-
tions/min to correspond to our online selections/min (Table 1). In
their fastest condition, 3.37 min were necessary to complete 22
item selections, which is a rate of 6.52 selections/min, and corre-
sponds to a practical bit rate of 10.48 bits/min. However, mean
accuracy was 65.53% in this condition; thus this level of accuracy
is not sufficient for effective communication, as 70% is typically as-
sumed to be required (K}ubler et al., 2001, 2009; Sellers et al.,
2006). In their most accurate condition, 87.50%, 5.36 min were nec-
essary to complete 22 item selections, which results in 4.10 selec-
tions/min, and corresponds to a practical bit rate of 15.92 bits/min.
In comparison, CBP accuracy was 91.52% and produced 4.36 selec-
tions/min, which corresponds to a practical bit rate of 22.59 bits/
min (using an 8 � 9 72-item matrix twice as large as their 6 � 6
36-item matrix).

4.3. Error analysis

The CBP should reduce errors for two primary reasons. First, the
CBP should be less susceptible to adjacency-distraction errors than
the RCP, since non-target items in scattered groups of items are
less likely to attract attention than non-target items in entire rows
or columns from the flanker effect (e.g., Sanders and Lamers, 2002),
or from the Gestalt law of grouping (e.g., Prinzmetal, 1981). As ex-
pected, 85.17% of the errors in the RCP occurred in the same row or
column as the target item (Fazel-Rezai, 2007).

Second, errors should be reduced because the CBP eliminates
double-flash errors that result from overlapping stimulus epochs
or when participants do not perceive the second target presenta-
tion, both of which generally serve to reduce the amplitude of
the target response in the standard RCP (Martens et al., 2009;
Woldorff, 1993). The combination of these two important effects
of the paradigm change resulted in a significant reduction in error
rate for the CBP as compared to the RCP. It also dissociated the er-
rors from the rows and columns, which made errors appear ran-
dom (Fig. 3). In the RCP, temporal and spatial relationships
between the target item and non-target items occur together. Thus,
as discussed above, the CBP eliminated one problematic effect of
double-flash errors and reduced adjacency-distraction errors. With
the CBP, errors were much more likely to come from the same vir-
tual matrix than from the opposite virtual matrix. This result sug-
gests that, in the CBP, the temporal relationship between the target
item and non-target items is more significant than the spatial rela-
tionship between the target item and non-target items. The rela-
tionship between the temporal and spatial effects in the CBP and
methods to minimize the errors that might result from the rela-
tionship between them requires further investigation.

4.4. Waveform morphologies

Fig. 4 shows target responses for each of the 18 participants’ at
electrode locations Cz, Pz, Po7, and Po8. While some individual var-
iation is evident, the individual participants’ averaged waveforms
conform to the grand means shown in Fig. 5, which shows that
both the target and non-target waveforms differ in several respects
between the RCP and the CBP. Most notably for the target re-
sponses, the late negative peak is much larger in the CBP than in
the RCP at electrode locations Cz and Pz, and electrode location
Pz has a larger positive peak at about 200 ms. It is possible that
the larger amplitude responses contributed to the higher accuracy
of the CBP by increasing the signal-to-noise ratio. These results are
also consistent with previous P300 research (including P300 BCI
research) which shows that P300 amplitudes are higher when
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the probability of the target item is lower, as in the CBP (e.g., Dun-
can-Johnson and Donchin, 1977; Allison and Pineda, 2003; Sellers
et al., 2006).

At electrode locations Po7 and Po8, a larger late negative peak is
also apparent for the CBP paradigm and the main positive peak is
earlier for the CBP, whereas the RCP has larger negative peaks at
electrode locations Po7 and Po8 at about 200 ms, particularly at
location Po8. This result is similar to those reported by Hong
et al. (2009). While the locations we investigated are more occipi-
tal (relative to the P3 and P7 parietal electrodes they assessed), the
amplitudes produced in the RCP are quite similar to theirs.

Regarding the non-target waveforms, the bottom panel of Fig. 5
shows an attenuated response at all electrode locations in the CBP;
however, the amplitude differences were statistically lower than
the RCP for only two electrodes, Cz and Po8. The non-target oscil-
lating pattern corresponds to the stimulus presentation rate of
8 Hz. It is possible that the lower amplitude non-target responses
contribute to higher classification accuracy rates in an analogous
fashion to the higher amplitude target responses observed at elec-
trode locations Cz and Pz.

4.5. Data from BCI users with ALS

Although the data from BCI users with ALS are only preliminary,
they are encouraging. Fig. 6 shows that average performance for the
ALS group was much lower than the non-ALS group while using the
RCP; however, upon switching to the CBP, ALS group performance
was only slightly lower than the non-ALS group performance. Over-
all, these three users improved their classification accuracy rates by
an average of 24.60% after switching from the RCP to the CBP. The
data suggest that the CBP improvements may be more pronounced
for ALS participants (or for those with lower performance for any
reason) than for non-disabled participants, whose accuracy rates im-
proved 14.18% in the current study. One of the users was already able
to achieve accuracy sufficient for BCI control. For the two others, the
improvement brought them into an accuracy range sufficient for
effective BCI control; previously their accuracy was not consistently
sufficient for effective control. Thus, the CBP is potentially of consid-
erable practical importance for people severely disabled by ALS. It
may help to restore their ability to communicate. For example, User
1 writes poetry with the BCI, for User 2 it is the only means of inde-
pendent communication, and User 3 uses it for work and environ-
mental control.

4.6. Conclusions

Brain–computer interfaces allow severely disabled people a
mode of communication that does not rely on muscles. The CBP
is the first P300-based BCI to demonstrate a significant increase
in performance over the RCP. The online CBP performance pre-
sented here may be the highest online P300-based BCI perfor-
mance to date. Online performance and ‘‘practical bit rate” as
defined here are important measures to consider if the ultimate
goal is to develop practical BCI systems for severely disabled peo-
ple. Moreover, for BCI technology to be embraced on a large scale,
researchers must develop useful and desired applications that can
meet the needs of the disabled community (Vaughan et al., 2006).
As the next logical step, the current results should be replicated in
a study of a much larger group of people with ALS or other severe
motor disabilities.
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