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We oftenmake decisions based on sensory evidence that is accumulated over a period of time. How the evidence
for such decisions is represented in the brain and how such a neural representation is used to guide a subsequent
action are questions of considerable interest to decision sciences. The neural correlates of developing perceptual
decisions have been thoroughly investigated in the oculomotor system of macaques who communicated their
decisions using an eyemovement. It has been found that the evidence informing a decision tomake an eyemove-
ment is in part accumulatedwithin the sameoculomotor circuits that signal the upcomingeyemovement. Recent
evidence suggests that the somatomotor system may exhibit an analogous property for choices made using a
hand movement. To investigate this possibility, we engaged humans in a decision task in which they integrated
discrete quanta of sensory information over a period of time and signaled their decision using a handmovement
or an eyemovement. The discrete formof the sensory evidence allowedus to infer the decision variable onwhich
subjects base their decision on each trial and to assess the neural processes related to eachquantumof the incom-
ing decision evidence. We found that a low-frequency electrophysiological signal recorded over centroparietal
regions strongly encodes the decision variable inferred in this task, and that it does so specifically for handmove-
ment choices. The signal ramps upwith a rate that is proportional to the decision variable, remains graded by the
decision variable throughout the delay period, reaches a commonpeak shortly before a handmovement, and falls
off shortly after the hand movement. Furthermore, the signal encodes the polarity of each evidence quantum,
with a short latency, and retains the response level over time. Thus, this neural signal shows properties of evi-
dence accumulation. These findings suggest that the decision-related effects observed in the oculomotor system
of the monkey during eye movement choices may share the same basic properties with the decision-related ef-
fects in the somatomotor system of humans during hand movement choices.

© 2013 Elsevier Inc. All rights reserved.

Introduction

We often make important decisions based on sensory evidence ac-
crued over a time period. For instance, a driver often needs to change
lanes. To do so, she must carefully assess the position and speed of the
neighboring vehicles. Once she has obtained enough evidence that it is
safe to change lanes, she moves the steering wheel.

Pioneering work in the oculomotor system of the monkey has shed
light on the neural signals that underly the fine-grained accumulation
of sensory evidence and on the signals that underly the generation of
the subsequent motor command. This work has revealed that neurons

in oculomotor structures including the parietal eye fields (Roitman and
Shadlen, 2002; Shadlen and Newsome, 1996), the frontal eye-fields
(Gold and Shadlen, 2000), and the superior colliculus (Horwitz and
Newsome, 1999) reflect the cumulated amount of evidence (“decision
variable”) on which monkeys base their decision to make an eye move-
ment. This neural effect is observed already during the presentation of
the stimulus while evidence is being accumulated. Furthermore, this
work has demonstrated that the evidence for a decision to make an eye
movement is represented within the same oculomotor circuits that
give rise to the subsequent eye movement (Gold and Shadlen, 2000;
Hanks et al., 2006).

The work in the macaque oculomotor system has laid the grounds
for neurally informed theories of choice behavior (Gold and Shadlen,
2007; Ratcliff and McKoon, 2008). However, that work also raises the
question whether the neural findings obtained in the macaque oculo-
motor systems generalize to other systems. There is some evidence
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that this may be the case. In particular, recordings in monkeys have
demonstrated that activity in sensorimotor regions ismodulated by cer-
tain parameters of a stimulus in vibrotactile decision tasks inwhich a re-
sponse is mediated using a hand movement (Haegens et al., 2011;
Hernández et al., 2010). Furthermore, a study in humans (Donner
et al., 2009) found that in a motion detection task, the centroparietal
cortex shows a gradually building low-frequency signal that indicates
a person's upcoming choice of which hand to use to press a button.
The gradual signal buildup reported in that study is reminiscent of the
signal buildup observed in the oculomotor system during an animal's
plan to make a saccade into the neuronal response field (Shadlen and
Newsome, 1996). As in the oculomotor system, this signal may bemod-
ulated by a decision variable (DV) onwhich subjects base their decision
to make a given movement, and this modulation may be observed al-
ready during the presentation of the stimulus while the evidence is
being accumulated. Although this possibility has been proposed
(Donner et al., 2009), it has not been directly tested.

There is some evidence in recent human literature that cortical signals
may be modulated by a DV (O'Connell et al., 2012; Wyart et al., 2012).
The study of Wyart et al. (2012) in part shows amodulation of a low fre-
quency cortical signal by an accumulated DV. However, this signal is
modulated by the accumulated DV only shortly prior to a movement
and not during the time when the evidence is being accumulated. The
study of O'Connell et al. (2012) demonstrates amodulation of cortical po-
tentials by a DV already during the accumulation period. These cortical
potentials nonetheless differ from the low-frequency neural signal con-
fined to centroparietal regions (Donner et al., 2009).

To test whether or not the centroparietal low-frequency neural sig-
nal (Donner et al., 2009) is modulated by a decision variable informing
the decision to make a hand movement, we engaged humans in a per-
ceptual decision task while recording electroencephalographic (EEG)
activity. We designed a task in which the evidence for a decision is de-
livered to subjects in discrete quanta, through click sounds presented to
the right ear and to the left ear over a brief period of time. This discrete
design enables the computation of the decision variable onwhich a sub-
ject bases her decision on each trial, as well as the investigation of the
behavior of the neural signal in regard to each quantum of the decision
evidence. We found that the signal is strongly graded by the decision
variable on which subjects base their decision to make a hand move-
ment. The signal further exhibits properties of accumulation of the indi-
vidual quanta of evidence.

Materials and methods

Subjects

Ten right-handed human subjects participated in the study. The sub-
jects comprised 6 males and 4 females, aged 21 to 58. All subjects were
healthy, had a normal hearing capacity, and gave informed consent
through a protocol reviewed and approved by theWadsworth Center In-
stitutional Review Board.

Task

Subjects sat in a comfortable chair 60 cm in front of a flat-screen
monitor. They wore a 16-channel EEG cap (see the Electrophysiological
recordings section). Subjects wore headphones (MDR-V600, Sony)
which presented a stereo auditory stimulus (see the Auditory stimulus
section). The right arm rested comfortably on a pillow that was placed
on a fixed table. The subjects' right hand was steadily holding a joystick
(ATK 3, Logitech); subjects were ready to simultaneously press the
front and top buttons of the joystick using their right index finger and
the right thumb, respectively. Gaze position of each eye was measured
using an eye tracker (Tobii T60, Tobii Technology) that was integrated
into the flat-screen monitor. Acquisition of EEG signals, eye gaze pa-
rameters, joystick button press parameters, as well as control of the

experimental design were accomplished with the BCI2000 system
(Schalk and Mellinger, 2010; Schalk et al., 2004).

Each trial (see Fig. 1A) startedwith the presentation of a red fixation
cross, 2 visual degrees in size. Subjects had to fixate at the center of the
cross, and keep the eye gaze within a radius of 2 visual degrees. An ab-
sence of eye gaze within the fixation radius for more than 150 ms was
considered as a break of fixation. After acquiring fixation, two icons
appeared, 15° to the right and 15° to the left of the fixation cross. The
right icon was a sketch of a joystick with highlighted top and front red
buttons. The left iconwas a sketch of the eye. At the same time, subjects
were presented with a stereo auditory stimulus (click sounds, see the
Auditory stimulus section), 1.0 s in duration. Subjects had to determine
whether they heardmore clicks in the right ear or more clicks in the left
ear. The stimulus was followed by a variable delay interval, 0.3–1.3 s in
duration. After the delay, the fixation cross shrank to 1° in diameter and
changed its color to green. This event cued the subjects tomake amove-
ment (choice). If subjects heard more clicks in the right ear than in the
left ear, they simultaneously pressed the front and the top button of the
joystick using the right index finger and the right thumb, respectively.
We opted for the two-finger response, as it may engage movement
planning circuitry more prominently compared to if we had only used
the response of a single finger response. In the analyses, movement
onsetwas taken as the timeof the earlier button press (in Figs. 2C bottom
and 9, the button press is detected if either button is pressed). On the
other hand, if subjects heard more clicks in the left ear than in the right
ear, they made an eye movement to the left icon. If subjects broke fixa-
tion or pressed any button before the go cue, or if they failed to indicate
a responsewithin 1200 ms after the go cue, the trial was aborted and ex-
cluded from the analyses. A trial was also aborted if subjects responded
with both movements. The type of error was indicated to the subjects
in red, large-font text (TOO EARLY, TOO LATE,MOVED BOTH). A success-
ful choice was communicated to the subject by shrinking the icon corre-
sponding to the chosen movement (the eye icon or the joystick icon)
from 2° in size to 1° in size. After subjects re-acquired fixation and re-
leased all buttons, theywere given feedback, 0.6 s in duration, indicating
whether they were correct or not. A correct response was indicated by a
green text (+10c, +20c, +30c, +40c, or +50c; in the order of increas-
ing stimulus difficulty). An incorrect responsewas indicated by a red text
(−50c, −40c, −30c, −20c, or −10c). The offset of feedback was
followed by a variable inter-trial interval, 0.6–1.2 s in duration.

Auditory stimulus

The auditory stimulus presented to each ear consisted of a train of
brief (0.2 ms) click sounds drawn fromahomogeneous Poisson process.
Each train lasted 1.0 s. The stereo stimulus was composed such that the
sum of clicks presented to the left ear (Cl) plus the sum of clicks
presented to the right ear (Cr) summed to a fixed number Cl + Cr = Ω,
Ω ∈ {25,32,39,46}. The value of Ω was drawn randomly on each trial.
We imposed theΩ randomization to ensure that subject had to pay atten-
tion to the click sounds in both ears. Stimulus presentation was also sub-
ject to the constraint that two consecutive clicks had to be separated by at
least 5 ms. Furthermore, during early tests of the paradigm, subjects often
claimed that they were biased toward the ear that presented either the
first or the last click. To avoid suchpossible bias, thefirst and the last clicks
in each stimulus occurred in both ears simultaneously, at time 0.0 s and
1.0 s, respectively. Thus, each ear heard at least 2 clicks, and at most
Ω − 2 clicks. We generated ten random versions of all the 130 possible
combinations of Cl and Cr, and loaded the corresponding files into the
memory of the BCI2000 system prior to the start of each experiment.

Behavioral model

We inferred the variable on which subjects base their decision
(“decision variable”) using a behavioral model. The model takes the
number of clicks presented to the right ear Cr and to the left ear Cl in
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each trial as its inputs, and returns the evidence Er for the rightward
choice:

Er ¼
2

1þ exp −βCr−Cl
CrþCl

! "−1:

If Er = 1, the evidence for the rightward choice is maximal; if Er = 0,
no evidence can be gathered; if Er = −1, the evidence ismaximal for the
leftward choice. The numerator of the expression Cr−Cl

CrþCl
compares Cr and Cl.

The denominator accounts for the “distance effect” (Moyer and Bayer,
1976)—it is easier to distinguish between Cr and Cl when they are small
compared to when they are large. The inverse temperature parameter β
is a parameter of the sigmoid transformation. It is a marker of psycho-
physical performance—β grows with growing ability to distinguish the
left and the right stimulus.

We fitted the model's parameters to account for each subject's
choices.We found that subjects were biased toward choosing the right-
ward option—they chose the rightward option in 55% of cases. To ac-
count for this bias, we included in the model a bias term B:

Er ¼
2

1þ exp −β Cr−Cl
CrþCl

þ B
! "! "−1: ð1Þ

The two free parameters β and Bwere fitted to the choice data of each
session according to the maximum likelihood procedure—maximizing
the log likelihood criterion (L):

L ¼
X

t
ln Er tð Þr tð Þð Þ;

where the variable r(t) equals to + 1 if the subject on trial t chose the
rightward option, otherwise equals−1. The fit resulted, over the 10 sub-
jects, in β = 6.9 ± 2.4 (mean ± SD), and in B = +0.060 ± 0.070.

Decision evidence and click step at each time point

The value of the decision variable (decision evidence) at time t
(Figs. 7 and 8) is

Er tð Þ ¼ 2

1þ exp −β

Z t

0
cr τð Þ−cl τð Þ½ &dτ

Z t

0
cr τð Þþcl τð Þ½ &dτ

þ B

0

B@

1

CA

0

B@

1

CA

−1;

where ∫0
t
cr(τ) and ∫0

t
cl(τ) are the numbers of right and left clicks, re-

spectively, presented up to time t. The parametersβ and B are estimated
as above, i.e., after all evidence has been presented.
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Fig. 1. Decision task and behavioral model. (A) After acquiring a fixation cross, subjects listen to a binaurally presented auditory stimulus. Subjects decide whether they hear
more click sounds in the right ear or in the left ear. The stimulus is followed by a variable delay period. After the delay, the fixation cross shrinks and changes color to green,
thus cuing the subject to make a choice. If subjects heard more clicks in the right ear, they press two buttons of the joystick with their right index finger and the thumb. Oth-
erwise, they make a saccade to an eye icon on the left side of the screen. (B) Mean ± SEM percentage of subjects' correct choices as a function of the modeled evidence for
that response. The dashed line represents an ideal match between the model's predictions and the probabilistic behavior. The ideal match explains 97.6% of the variance in
the 5 data points. The brown histogram gives the number of trials in each bin. (C) Mean ± SEM reaction time for four levels of decision evidence (see text), separately for button
press choices (red), and saccade choices (blue).
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In the analysis shown in Fig. 8, we further defined a “click step” sig-
nal in(t) that conveys the temporal progression of the input, the individ-
ual click elements. For a given trial, this signal equals +1 (−1) at the
time a right (left) click is presented, and retains this value until the
next click is presented. Mathematically, the value of this input signal
at time t is

in tð Þ ¼
X

i

si H t−tið Þ−H t−tiþ1
# $% &

;

where ti is the time of the occurrence of the i-th click, H(t) is the Heav-
iside step function, and si = +1 if the i-th click is a right click and
si = −1 if the i-th click is a left click.

Online adaptive procedure

Our objective was to make our subjects at times certain and at times
uncertain about their decision, with a uniform spectrum in between. To
achieve that, Erwas drawn in each trial from a uniformdistribution over
the interval (−1, + 1). Having generated a random Er, we then ran-
domly selected one of the 10 pre-generated auditory stimuli with
such Cr and Cl that—according to the currentmodel—most closely corre-
spond to the generated Er. From Eq. (1), it follows that

Cr ¼
1
2β

ln
Er

1−Er

' (
þ 1
2

' (
Ω; ð2Þ

where Ω = Cr + Cl and thus Cl = Ω − Cr. To keep the online adapta-
tion task one-dimensional (optimizing one parameter β only), the on-
line procedure did not include the choice bias term (we set B = 0 in
Eq. (1) during the online procedure, and thus Eq. (2) does not feature
this term).

We designed the experiment to adjust the difficulty of the presented
stimuli to the performance of each subject. Our objective was to keep
each subject at approximately 75% correct responses. To achieve this,
an online algorithm adapted the value of β (initial value in Eq. (2),
β = 4) to each subject's performance over the last 20 trials according
to the following update rule:

βnew ¼ βold1:2
A−75ð Þ=10

;

where A is the accuracy, in %, over the past 20 trials. Notice that when
A N 75, β increases; when A b 75, β decreases; and when A = 75, β
does not change. This procedure allowed subjects to perform close to
the desired accuracy (75.4% ± 2.0% (mean ± SD)).

Each session started with a sequence of 10 easy warm-up stim-
uli (E = [+1, − 1, + 1, − 1, − 1, + 1, + 1, − 1, + 1, − 1] (these
values are approximate to the actually presented evidence because
each stimulus contained at least two clicks and thus E must always fall
slightly short of ±1)). If a subject reached at least 75% accuracy during
this warm-up, the adaptive procedure was initiated. Otherwise, the
warm-up was extended by another 10 trials. Only one subject needed
an additional 10 warm-up trials to reach the 75% accuracy.
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Fig. 2. The human centroparietal cortex reflects the dynamics of a perceptual decision process. (A) Topography of the choice effect, i.e., the significance of the difference between
desynchronization on button press versus saccade trials during the delay period. The bright colors represent locations at which neural activity is more desynchronized for button presses
compared to saccades. The dark colors represent the converse. (B) Mean ± SEM neural desynchronization at C3 and CP3 during the delay period as a function of decision evidence, sep-
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Electrophysiological recordings

Neural data were recorded using a 16-channel EEG cap (Electro-Cap
International, Inc., Eaton, OH). The channels were positioned according
to the International 10–20 method of electrode placement (F3, Fz, F4,
T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4, PO7, PO8, Oz). The left and right
mastoids served as ground and reference, respectively. The neural signals
were acquiredwith a g.USBamp series B amplifier (g.tec, Graz, Austria) at
24-bit resolution at a rate of 256 Hz per channel. The device applied ap-
propriate antialiasing filters.

Signal processing

The acquired neural data were filtered using an IIR filter in the alpha
and beta frequency range (8–26 Hz; 80 dB cut-off at 7 Hz and 30 Hz).
To avoid phase distortion, we applied the filter using the filtfilt() func-
tion in Matlab (The MathWorks, Natick, MA). This filtering method
performed zero-phase digital filtering by processing the input data in
both the forward and reverse directions. The signals were then re-
referenced to a common reference: for a given channel, the voltage
waveform resulting fromaveraging thevoltagewaveformsover all chan-
nels was subtracted from the voltage waveform at that given channel.
For each channel, we computed “desynchronization” as the relative de-
crease in power of the filtered signals in a particular temporal window
of interest with respect to the mean power at that channel over the en-
tire session of each subject. Although desynchronization could be com-
puted relative to a baseline preceding each trial, we did not have to
resort to such additional manipulation to obtain robust effects.

Visualization of evidence

Throughout the paper, we quantified behavioral and neural effects
over individual trials (trial-wise analysis). To present data graphically,
we grouped the data for a given correct choice into three terciles of
growing evidence for that choice (LO, ME, HI). In addition, we also
assessed the cases in which evidence points in the opposite direction
with respect to a given choice (E b 0; OP). From the perspective of the
experimenter, the OP trials represent error (incorrect choice) trials.
From the perspective of the subject (when the subject's choice is
ignored), OP trials are of the same kind as the correct trials.

Visualization of topographies

Wevisualized data at each channel using the topoplot function avail-
able at http://sccn.ucsd.edu/eeglab/allfunctions/topoplot.html.

Statistical analysis

We test the significance of an effect using the general linear ANOVA
or ANCOVA models. These models feature the variable being tested
(e.g., a variable indicating whether a subject chose a button press or a
saccade) and include subject as an additional random group variable.
When performing the analysis in Fig. 2A, we excluded from the
concatenated data the top and the bottom 1% of desynchronization
values. The removal of the outliers increased the statistical robustness
of the effect reported in this figure. In subsequent analyses, all data
were included. All topographical plots were Bonferroni corrected for
the number of channels (by the factor of 16 in Fig. 2A), and for the num-
ber of channels and comparisons (by the factor of 16 ∗ 2 in Fig. 9).

Trial-wise fits to neural data during the stimulus period

We testedwhether neural data on each trial during the stimulus pe-
riod are better approximated with a line function or a step function. A
line has two free parameters—slope S and intercept I. A step has three
free parameters—starting level Ls, time of the step T, and ending level

Le. The step fit was allowed to be flat (at a constant value Ls). We
asked which of these two fits explains more variance in the neural
data on each trial. To compare these two fits in a fair way, we reduced
the number of free parameters such that eachfit had one free parameter
(line: S, step: T). We did this in twoways. First, we set Le = 33.0, which
is the level of average neural signal at the end of the stimulus period for
high evidence trials. We chose the high evidence level, because the step
function shall emulate a binary change of state from uncertain (about
which option to choose) to certain. On average, subjects are likely
more certain at the end of the stimulus presentation during high evi-
dence trials compared to trials in which evidence was low. Second, be-
fore computing the fits, we subtracted from neural activity on each trial
the baseline neural activity on that trial. We defined the baseline as the
average neural activity on each trial in the interval 0 to 200 ms follow-
ing the onset of the stimulus. By subtracting away the baseline, we re-
duced the number of free parameters of each fit by one (we spared
the use of the I parameter of the line, and the Ls parameter of the
step). This way, both fits had 1 free parameter (S and T for the line
and step fits, respectively). We then measured the proportion of vari-
ance that eachfit (f) explains in the neural signal (s):R2 ¼ 1−Var s− fð Þ

Var sð Þ . No-
tice that if a fit f is grossly inadequate, Var(s − f) N Var(s), and thus it is
possible for R2 to be negative. We validated this procedure using an
additional simulation. This simulation amplitude-modulated a 10 Hz
signal by a step function, subsequently performed the same filtering/
fitting functions as described above, and correctly identified that the
step function was a better fit to the data than the line function.

The above analysis uses a heuristic to match the number of pa-
rameters in the two models. We also performed an analysis that
did not constrain the two models. In particular, the Bayesian infor-
mation criterion (BIC; Schwarz, 1978) evaluates the likelihood of a
model candidate to be suitable to account for the data while penalizing
the number of free parameters. This information criterion is computed
as BIC = n ln(σe

2) + k ln(n) where n is the number of samples (in our
case, 256 samples during the 1.0 s stimulus period), k is the number of
parameters to be estimated (k = 2 for the line fit, k = 3 for the step
fit), and σe

2 is the variance in the error residuals, σ2
e ¼ 1

n∑
n
i¼1 xi−bxi

# $2

where xi are the actual samples and xi are the samples estimated by the
model fit. Note that a caveat of this method over the above heuristic
method is that the BIC computation assumes independence of the indi-
vidual samples. It is however unclear at which sampling rate should the
individual samples of a neural signal, if at all, be considered independent.
This analysis, in comparison to the heuristic method, should thus be
interpreted with care.

Accounting for eye gaze and reaction time

We testedwhether the neural effects can be explained, besides deci-
sion evidence E, by eye gaze parameters or the subject's reaction time.
Specifically, we quantified, during the delay period, and during move-
ment, the mean horizontal gaze position (Gmean), the variance in hori-
zontal gaze position (Gvar) and the subject's reaction time (RT). These
variables were considered as additional regressors, besides E, in the
multiple regression on neural activity on each trial:

Desyn ¼ SlopeE þ β1Gmean þ β2Gvar þ β3RT þ γ; ð3Þ

where Desyn is the amplitude of desychronization as described above, E
is the decision evidence (Eq. (1)), and Slope, βi, and γ are the coeffi-
cients to be determined.

Measurement of hand EMG

We measured the electromyographic (EMG) activity of the anterior
forearm muscles in ten subjects in a modified version of the task that
used the same stimuli and the same stimulus period. Bipolar measure-
mentsweremade through two surface leads (GS27 pre-gelled disposable
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sEMG sensors) placed 2 cm apart along the flexor carpi radialis, and two
surface leads placed 2 cm apart along the flexor digitorum superficialis
(which may in part also reflect activity of the palmaris longus). For both
muscles, we used the lead further apart from the wrist as the recording
reference. The EMG signals were filtered using an IIR band-pass filter
(20–100 Hz, 80 dB cut-off at 19 Hz and 105 Hz). To avoid phase distor-
tion, we applied the filter using the filtfilt() function in Matlab. The
EMG power was measured in 100 ms windows overlapping by 1 sample
(3.9 ms).

Results

Decision task

Weengaged humans in a perceptual decision task (B.W.B. and C.D.B.,
Soc. for Neurosci. No. 281.7 (2009); Brunton et al., 2013). In this task,
subjects listen to a stereo auditory stimulus comprising a 1.0 s train of
Poisson-distributed click sounds (see theMaterials andmethods section).
Subjects decide whether they hear more clicks in the right ear or more
clicks in the left ear.We used this task over alternatives (e.g., the dotmo-
tion stimulus initially used to compare psychometric to neurometric dis-
crimination performance in the motion-sensitive area MT (Britten et al.,
1992)), as in this task the individual quanta of evidence for and against
a decision are well defined and separated in time. These discrete ele-
ments of decision evidence allow us to construct a simple analytic
model of subjects' choice behavior. Furthermore, this task allows us to in-
vestigate the neural encoding of each element of the decision evidence.

To indicate that subjects heard more clicks in the right ear, they
press the top and the front buttons of a joystick with their right index
finger and the thumb (see the Materials and methods section). To indi-
cate that subjects heard more clicks in the left ear, they make a saccade
to a target on their left (Fig. 1A). The stimulus is followed by a variable
delay interval (300 ms–1300 ms). After the delay, a go cue signals sub-
jects tomake a choice.We introduced the variable delay for two reasons.
First, the delay period is an ideal portion of the trial to quantify the neural
effect, as in this period data are not confounded by sensory parameters of
the stimulus (since all evidence has been already presented) or by subse-
quent elements of the task (e.g., the go cue). Second, the variable nature
of the delay prevents subjects from anticipating the go cue and thus from
planning a response before they are cued to do so. This is to eliminate the
possible purely motor confounds. A choice was considered valid if it
came within 1200 ms after the presentation of the go cue. Trials with
premature or late choices were aborted and discarded.

Behavior

Subjects learned the task rapidly, in most cases within the first 10
warm-up trials (see theMaterials andmethods section). The percentage
of valid choices was 93.4% ± 3.1% (mean ± SD) across the 10 sub-
jects. Each of the 10 subjects completed two sessions, and each ses-
sion consisted of 200 valid trials. An algorithm monitored subject
performance on-line and adjusted task difficulty so as to keep perfor-
mance levels close to 75% correct (see the Materials and methods
section).

Behavioral model

To estimate the decision variable (DV) on which subjects base their
decision, we fit each subject's behavior using a behavioral model. The
model compares the sum of the clicks accumulated in the right ear to
the sum of the clicks accumulated in the left ear, and passes the result
through a sigmoid function to give the resulting DV (see the Materials
and methods section). We validated the model by observing a close
match between the modeled DV and the actual behavior (Fig. 1B). The
figure shows that the modeled DV serves as an estimate of the amount
of subjective evidence (briefly, “evidence”) a subject has obtained for a

response: the more evidence was cumulated in favor of a response, the
more likely a subject is to choose that response.

Fig. 1B, brown histogram, shows that subjects were presented with
trials of low evidence andwith trials of high evidence, with a continuum
in between. This was the goal of our experimental design. The slightly
higher proportion of trials in which evidence is high is due to the con-
vergence time of the online adaptive procedure—the procedure started
with easy trials before it adapted to each subject's performance (see the
Materials and methods section).

When a subject has obtained strong evidence for a decision, shemay
respond faster. The model's output may therefore reflect not only sub-
jective evidence but also reaction time. This is indeed what we found
(Fig. 1C). In this and followingfigures, decision evidencewas discretized
(see the Materials and methods section) such that the first bin (OP) re-
fers to evidence pointing in the opposite direction to a given choice
(error trials from the perspective of the experimenter), and LO, ME,
and HI refer to correct choices of growing evidence for those choices.
In this and following analyses, we quantify behavioral and neural effects
over individual trials (trial-wise analysis), and include all trials, i.e., tri-
als spanning the full range of decision evidence, in the analysis. The
slope of evidence on RT in an ANCOVA model (see the Materials and
methods section) is − 33.8 ms (p = 0.017, F1,1774 = 5.7) for saccades
and− 100.3 ms (p b 10−11, F1,2209 = 50.7) for button presses. The de-
crease remains significant when only correct choices are considered
(p b 10−3, F1,1260 = 12.1, and p b 10−3, F1,1839 = 11.6 for saccades
and button presses, respectively). The presence of this effect is of inde-
pendent interest given that subjects had ample time to make up their
mind during the presentation of the stimulus (1.0 s) and the delay pe-
riod (0.8 s on average).

An electrophysiological signal encodes choice

It has been shown that low-frequency cortical signals recorded over
centroparietal regions encode an upcoming choice of a handmovement
(Donner et al., 2009). We first tested whether our data reproduce this
finding. To do so, we band-pass filtered the recorded neural signals in a
range spanning the alpha-beta portion of the spectrum (8–26 Hz, see
the Materials and methods section for details). For a given session and
channel, we then computed the change in power (“desynchronization”)
of the filtered signals during the delay period—while subjects were hold-
ing a decision in theirmemory—relative to themeanpower for that chan-
nel over the entire session. We then assessed the effect of choice (also
referred to in this paper as decision outcome, motor command, motor
plan, or action) by contrasting neural activity on trials in which subjects
chose the button press with neural activity on trials in which subjects
chose the saccade.

Fig. 2A shows the spatial extent of the neural effect of decision out-
come (choice of a saccade or a button press) during the delay period.
The figure reveals a highly significant and localized difference in neural
activity for the two movement plans. Specifically, plans to make a but-
ton press are accompanied by a substantially higher desynchronization
compared to plans to make a saccade. The effect peaks at channels C3
(ANOVA, p b 10−9, F1,3846 = 44.2) and CP3 (p b 10−9, F1,3846 = 41.6),
which are positioned over the centroparietal cortex contralateral to the
involved hand. Since C3 and CP3 show similar effects, we henceforth av-
erage neural activity over these two channels.

The neural signal encodes the input decision variable

To test the central hypothesis of this study, we then investigated
whether the same neural signal encodes the input variable on which a
decision is based (i.e., the inferred DV, “decision evidence”). Specifically,
we tested whether for a given decision outcome—for a single, fixed
movement—the signal is modulated by the decision evidence for that
movement.
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We found that the signal is stronglymodulated by decision evidence
(Fig. 2B). For all trials that resulted in a button press (red), neural activ-
ity during the delay period is desynchronized in a graded fashion as a
function of growing evidence. The magnitude of this modulation
(slope of desynchronization over decision evidence; ANCOVA) is 30.2%
(p b 10−9, F1,2182 = 40.2). The effect is weaker for trials that resulted
into a saccade (blue), with a modulation of 12.6% (p = 0.022,
F1,1713 = 5.2). Similar results are obtained when we split the data by
individual subject: the signal encodes the decision variable in the 10
subjects during button press choices (median slope 22.7%, p = 0.002,
two-tailed Wilcoxon signed rank test, N = 10), and less prominently
during saccade choices (median slope 8.7%, p = 0.084, two-tailed
Wilcoxon signed rank test, N = 10).

Dynamics of the neural signal

We then investigated the time course of the decision- and choice-
related effects. Fig. 2C presents the signal as a function of time separate-
ly for button press (red) and saccade (blue) choices, and separately for
choices for which evidence was strong (dark) and for which evidence
was weak (light). Thus, the figure shows two effects—the effect of deci-
sion evidence (dark versus light) and the effect of decision outcome
(red versus blue). First, we focus on the effect of decision evidence, for
all button press trials (dark red versus light red). A significant difference
between the two traces is observed starting at 481 ms following stimu-
lus onset (Wilcoxon rank sum test, p b 0.05 for at least ten consecutive
time samples). The magnitude of the difference grows throughout the
stimulus period, remains steady during the delay period, weakens to-
ward the end of the delay period, and disappears entirely shortly after
the go cue. Second, we focus on the effect of decision outcome (red
versus blue). Button press choices (red), compared to saccades (blue),
are accompanied by a substantial desynchronizationof the centroparietal
rhythms. Desynchronization for button press choices continues to grow
from the time of the go cue, and falls off sharply immediately after the
movement. Notably, at the time of the movement, the signal reaches a
common level irrespective of the amount of evidence that has accumu-
lated for the decision to make a button press. Such signal property may
be an indicator of a presence of a choice bound, one of the defining prop-
erties of the diffusion-to-bound class of models of choice behavior in
reaction-time (Stone, 1960; Edwards, 1965; Vickers, 1970; Gold and
Shadlen, 2007). This possibility should specifically be tested in reaction
time tasks in the future.

The signal is graded by the decision variable early in the trial

Fig. 2C reveals that for button press choices, the difference in the sig-
nal duringhigh evidence and lowevidence stimuli increases throughout
the stimulus period. This effect is obscuredby the low-frequency transient
that occurs from about 0.2 s to 0.6 s after stimulus onset and is common
to all trials. As a control, we subtracted themean saccade trace from each
button press trace. The result is shown in Fig. 3. Thefigure reveals that the
strength of desynchronization ramps upward or downward with a rate
that increases with the amount of sensory evidence—the more evidence,
the faster (steeper) the rise. The rise stops around the time of the offset of
the stimulus. Following stimulus offset, the effect drops off slightly, yet the
signal remains substantially graded by the strength of decision evidence
throughout the delay period. The signal reaches a common level at the
time of the behavioral response, and falls off sharply thereafter.

To confirm that the signal during the stimulus period builds upwith
a rate that is proportional to decision evidence, we fitted a line to the
neural signal on each trial during the stimulus period, and measured
the slope of this line fit as a function of decision evidence. Indeed, the
slopes of the trial-wise line fits are steeper with increasing decision
evidence (Fig. 4) and this effect is significant (ANCOVA, p b 10−4,
F1,1828 = 19.3).

The average signals observed in Fig. 3 diverge continuously through-
out the stimulus period. It is possible that this continuous trend could be
produced by averaging, across trials, a truly continuous signal (such as
the considered line function), or else by an abrupt motor switch signal
(a step function) that on each trial changes its state from low to high
at varying times distributed over the stimulus period. There is, however,
no increase in trial-by-trial variance during the period in which the sig-
nal rises, compared to the periods immediately before and after this rise.
This argues against a series of abrupt steps distributed in time. To fur-
ther distinguish between these twopossibilities, we fitted two functions
to the neural (Fig. 3) on each trial during the stimulus period—a line,
and a step function. As in Fig. 3, in this analysis, the mean neural signal
during saccade choices was subtracted from the neural signal on each
trial during button press choices. The step fit was allowed to remain
flat, i.e., not to ramp at all. We then asked which of these two fits was
a better approximation of the neural data (see the Materials and
methods section and Fig. 5A). Although both fits have one free parame-
ter, the trial-wise line fit explains substantially more variance (mean
R2 = 0.16) than the trial-wise step fit (mean R2 = 0.08), and this dif-
ference is significant (ANOVA, p b 10−4, F1,1809 = 18.9).

We further compared the two fits using the Bayesian information
criterion (BIC; Schwarz, 1978). The BIC evaluates the likelihood of a
model candidate to be suitable to account for data while penalizing
model's complexity (the number of free parameters to be estimated).
The penalty for the number of parameters bypasses the necessity to
match the number of parameters in each model. The unconstrained
models have two (line fit) and three (step fit) parameters (see the
Materials and methods section). Fig. 5B gives the BIC for each of the
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twomodels, for each button press trial. The line fit gives themean BIC of
1151.2, the step fit 1162.6 (mean difference of 11.4). This difference
is substantial and corresponds to the probability ratio of 305.6 : 1
(Eq. (22) in Raftery, 1995) that the line fit is the better fitting
model (a lower BIC indicates a better candidate).

The results of these analyses suggest that the ramping signal ob-
served in the average time courses in Fig. 3 is also present during indi-
vidual trials.

The signal shows properties of early evidence accumulation

Thus far, we demonstrated that the neural signal is modulated by a
decision variable that quantifies the amount of evidence accrued for a
decision during the stimulus period. Furthermore, we have shown that
the buildup rate of the signal during the stimulus period is governed by
the amount of the accumulated evidence. This raises the possibility
that the neural signal may in part encode the cumulative sum of the in-
dividual quanta of evidence, an integral of the sort featured in drift-
diffusion models of choice behavior in reaction-time tasks (Edwards,
1965; Ratcliff and McKoon, 2008; Stone, 1960; Vickers, 1970).

A signal that represents an integral of the individual quanta of evi-
dence must exhibit three crucial properties. First, the signal must re-
spond rapidly to each incoming quantum of evidence (the click sound
in our case). Second, that responsemust distinguish the quantum of ev-
idence that supports a given decision from the quantum that speaks
against that decision (in our case, a right click informing the decision
to make a button press from a left click contradicting that decision).
Third, the response must show a memory trace, i.e., a sign of temporal
integration; the response must not be transient in nature.

We tested whether the signal reported in our study shows these
three properties. The design of our task allows us to test these properties
without the necessity to assume a particular behavioral model. Specifi-
cally, we investigated the behavior of the signal in regard to each evi-
dence element by aligning the signal to the onset time of each click.
The responses to the right and the left click, relatively to average re-
sponse to all clicks, for all trials that result in a button press, are given
in Fig. 6. Fig. 6 top left gives the responses in the left centroparietal re-
gions and includes clicks from the entire stimulus interval. Thefigure re-
veals that the signal strongly distinguishes the evidence in support of a
button press (a right click) from the contrary evidence (a left click). The
response to a click is robust and rapid; a significant difference between a
right and a left click is observed starting at 74 ms (p b 0.01, two-tailed
t-test) following a click. Following the initial response, the distinction
between the right and the left click responses remains significant
throughout the trial. Note that the maintained difference is not due to
the occurrence of clicks following the current click of interest, because
in that case the signalwould show the samedifference for clicks preceding
the current click; no significant difference between the responses is ob-
served prior to a click.

Importantly, these responses are unlikely to represent purely senso-
ry responses, for two reasons. First, the effect shows a steady temporal,
not a transient characteristic. Second and critically, the effect is not ob-
served over auditory regions of the samehemisphere (channel T7; Fig. 6
bottom left).

We further investigated whether the signal shows the properties of
evidence accumulation already early in the trial, for clicks occurring
within the first 400 ms. This investigation is important given that the sig-
nal is impacted by a transient common to all data early in the trial
(Fig. 2C). Indeed, while the effect is reduced in magnitude, we observe
the same principal characteristics in this early portion of the trial (Fig. 6
right panels).

Together, the signal reported in our study shows rapid, evidence-
polarity-specific, and maintained responses to each quantum of deci-
sion evidence.

Encoding of the decision variable at each time during integration

If the neural signal reported in this study in part encodes an integral
of each decision quantum, the signal should encode the instantaneous
value of the decision evidence at each time during the evidence accu-
mulation. We tested this possibility by computing the correlation of
the instantaneous value of the decision variable at a given time during
the evidence accumulation (see the Materials and methods section)
and the instantaneous value of the neural signal at that time. The result,
for all trials that result in a button press, is given in Fig. 7.

The figure reveals that the neural signal encodes the instantaneous
value of the evidence that has accumulated for a decision at each time
throughout the stimulus period. The effect reaches significance already
early during the stimulus period, starting at 137 ms following stimulus
onset. In linewith the result of Fig. 6, the correlation of the neural signal
with the decision evidence rises progressively throughout the stimulus
period and reaches a maximum at the end of the stimulus period. This
effect likely reflects a property of the neural circuitry given that a behav-
ioral study using a large data set found that subjects assign approxi-
mately equal weight to clicks occurring at different times throughout
the stimulus period (Brunton et al., 2013).
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Comparison of the encoding of the input quanta and the cumulated decision
evidence

The neural signal encodes the polarity of each evidence quantum
(Fig. 6), as well as the instantaneous cumulated evidence (Fig. 7).
Next, we directly compared the encoding of these two quantities. We
aligned the data to the onset of each click.We then regressed the instan-
taneous cumulated evidence (the quantity used in the previous para-
graph) and a signal that represents the onset and the polarity of each
click (“click step”, see theMaterials andmethods section) on the neural
signal, separately for each timepoint following a click.We then assessed
the t-statistic of the associatedweights in this linearmodel, at each time
point following a click (Fig. 8).

The figure shows that the input evidence elements and the cumulat-
ed evidence significantly contribute to the variability in the neural sig-
nal. The figure reveals that the cumulated evidence is encoded much
more strongly compared to the input evidence elements (mean t over
the 300 ms following a click: tevidence = 14.1, tinput = 4.8). Thus, the
neural signal predominantly reflects the accumulated evidence.

The neural response to the input evidence elements increases over
time and peaks at 133 ms following a click. That time approximately co-
incides with an increase in the encoding of the cumulated decision evi-
dence. This suggests that the neural effect of the cumulated evidence is
most prominent shortly after a click is registered in the neural signal.
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Whole-brain analysis of the representation of the decision variable

Our data indicate that the left centroparietal regions encode, besides
a decision outcome, also the input decision variable.Wenext performed
a whole-brain analysis to investigate whether the decision variable is
represented in any other cortical region. To do so, we quantified the
neural effect of decision evidence for each channel by fitting a line to
the relationship between neural desynchronization during the delay
period and decision evidence, and determining whether the slope of
this line is significantly different from zero. The associated p-values,
corrected for multiple comparisons, are given in Fig. 9. The left panel
in this figure shows that the human cortex encodes decision evidence
for saccadic choices. The effect for saccadic choices peaks over parietal
channels P4 (p b 10−8, F1,1713 = 36.8, ANCOVA) and Pz (p b 10−5,
F1,1713 = 19.7). The bias toward the right hemisphere is expected
given that subjects made each saccade to a target located in the left vi-
sual hemifield (Hamed et al., 2001;Medendorp et al., 2007). In compar-
ison, the neural effect of decision evidence for button press choices
(right panel) peaks in contralateral centroparietal regions, in particular,
over channels C3 (p b 10−7, F1,2182 = 32.3) and CP3 (p b 10−8,
F1,2182 = 36.9). The effect of decision evidence for button press choices

is also observed, to a somewhat reduced extent, in centroparietal re-
gions of the ipsilateral hemisphere.

In an additional analysis, we investigated the dynamics of the deci-
sion process in the right parietal cortex (channels P4 and Pz, Fig. 10).
This region showsdynamics similar to those observed over the contralat-
eral centroparietal cortex (Fig. 2C). This analysis reveals that in compar-
ison to the left centroparietal cortex, the right parietal cortex encodes
decision evidence for both movement types.

Representation of the decision variable at each frequency

We investigated how the effect of decision evidence is represented
at each individual frequency of the neural signals. To do so, we comput-
ed the effect of decision evidence for each frequency in the range 1 Hz to
50 Hz (Fig. 11). The figure reveals that the effect is consistently signifi-
cant in the frequency band from about 8 Hz to about 22 Hz. Starting at
about 30 Hz, the effect reverses its sign and becomes non-significant. This
result is consistent with previous studies that observe an effect sign
reversal in high-frequency compared to low-frequency bands (Crone
et al., 1998b; Donner et al., 2009; Pfurtscheller et al., 2003). Although
in our hands the decision-related effect for higher frequencies is
non-significant, there is some evidence that high-frequency (gamma)
oscillations carry choice-predictive information (Donner et al., 2009).
This high-frequency signalmay possibly encode also a decision variable.
Future studies usingmore sensitive imagingmodalities (e.g., electrocor-
ticography (ECoG), magnetoencephalography (MEG)) should investi-
gate this issue.

Control for reaction time, eye gaze, and sensory signals

Finally, we tested whether the observed effect of decision evidence
could be explained by other factors, including the subject's reaction
time, the mean and variance in eye gaze, and sensory signals of the
hand. To account for these factors, we included, besides decision evi-
dence, also the subject's reaction time and eye gaze mean position and
variance as additional regressors on neural activity (see Eq. (3)). We
computed the kinematic parameters of eye gaze both during the delay
interval, and during movement. These additional factors did not signifi-
cantly change the effects of decision evidence when these factors were
considered in either the delay interval (modulation of desynchronization
at C3 and CP3 during delay period by decision evidence (slope) for but-
ton presses: 37.4%; slope for saccades: 3.3%) or during movement
(slope for button presses: 38.5%; slope for saccades: 3.3%).We also tested
whether the decision-related signal in centroparietal regions could re-
flect sensory input related to a change of activation of the handmuscles.
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A different set of subjects performed a modified version of the task (see
the Materials and methods section) while we recorded electromyo-
graphic (EMG) activity of the flexor carpi radialis and flexor digitorum
superficialis muscles in addition to EEG signals. The activity of the
more sensitive flexor carpi radialis muscle was minimal during the
stimulus period, and the first time sample of the muscle activity that
distinguishes between the two choices occurs at 660 ms following
stimulus onset (Wilcoxon rank sum test, p b 0.001, see the Materials
and methods section). The activity of the hand muscle is notable first
shortly before subjects make the hand movement. In comparison, the
signal in the centroparietal cortex, extracted in the same way as in the
present study, begins to significantly distinguish between the two
choices already at 230 ms (Wilcoxon rank sum test, p b 0.001) follow-
ing stimulus onset. Thus, the activation of the muscle substantially lags
behind the activation of the cortex. Hence, it is unlikely that the effects
identified in our study are due to sensory activation.

Discussion

We tested whether a low-frequency neural signal recorded over the
centroparietal cortex and reported previously to reflect the choice of a
handmovement (Donner et al., 2009) is modulated by the decision var-
iable informing the choice of a hand movement. We found that the

signal strongly encodes the decision variable on which subjects base
the decision to make a hand movement. On each trial, the signal
ramps up with a rate that is strongly graded with the DV, remains at a
steady level during the delay period, peaks shortly before a handmove-
ment, and falls off upon the termination of the movement. We further
found that the signal show properties of evidence accumulation. In par-
ticular, the signal encodes each quantum of evidence in a ramp-like
fashion and distinguishes the quantum supporting from the quantum
contradicting the decision to choose a button press.

Studies of decision-related neural dynamics in non-human primates
have been subjected to the criticism that decision variables are encoded
in oculomotor circuits (Gold and Shadlen, 2000, 2002; Horwitz and
Newsome, 1999; Kable and Glimcher, 2009; Platt and Glimcher, 1999)
simply because animals were conditioned to map perceptual decisions
onto motor outputs through extensive training (Connolly et al., 2009).
Our finding argues against this lingering criticism by showing that a per-
ceptual decision variable is represented in motor circuits of the brain
even when subjects are not extensively trained in a decision task.

The presence of a DV in the somatomotor system has been demon-
strated in a recent study (Selen et al., 2012). In this study, human subjects
decided on the direction of a dot motion stimulus and communicated
their decision using an arm movement. The authors found that when
themuscular system is perturbed to elicit a spinal cord reflex, the electro-
myographic (EMG) activity of the armmuscles reveals the current state of
the DV at the time of the perturbation. Thus, the spinal cord reflex gates
the developing perceptual DV into the muscles, presumably from an up-
stream cortical region. Here we show that the cortex indeed encodes a
developing DV for hand movement choices. Furthermore, the approach
of recording cortical signals allows us to characterize the dynamics of
the decision-related effects not only at a time following a perturbation
but continuously throughout the decision process and at the time of the
behavioral response (Kubanek and Kaplan, 2012).

Themodelwe used to describe the behavior of subjects in our task is
an extension of the drift-diffusion model (DDM), a model commonly
applied to explain choice behavior and reaction time in reaction time
decision tasks (Edwards, 1965; Gold and Shadlen, 2007; Ratcliff and
McKoon, 2008; Stone, 1960; Vickers, 1970). In a simple, symmetric,
and noiseless DDM, inwhich each pro-quantumof evidence contributes
a change in the decision variable δ and each contra-quantum to a
change of− δ, the value of the decision variable at the end of the stim-
ulus period is Crδ − Clδ = (Cr − Cl)δ, where Cr is the number of cumu-
lated quanta in favor of and Cl against a decision. Ourmodel features the
same principal term (Cr − Cl) and extends this term in two ways to ac-
commodate the variable delay incorporated in our task. First and impor-
tantly, in reaction time tasks assumed by the DDM, subjects make a
choice at the time they have reached a decision. In contrast, in our
task, subjects are forced, after a delay, to make a choice regardless of
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the current amount of cumulated evidence. In our model, this enforced
commitment to a choice alternative ismodeled using a sigmoid function
that rectifies the difference in the two accumulators. Second and less
importantly, we included in the model a normalizing term (Cr + Cl)
for the overall number of evidence elements presented on a given trial.

The low-frequencyneural signal recorded over centro-parietal regions
in our study shows two critical properties of the diffusion-to-bound class
of behavioral models (Edwards, 1965; Gold and Shadlen, 2007; Ratcliff
and McKoon, 2008; Stone, 1960; Vickers, 1970). First, the signal encodes
the amount of evidence that has cumulated for a button press during
the stimulus period (Figs. 3 and 4).Moreover, the signal shows properties
of integration of each individual piece of evidence (Fig. 6). In particular,
the signal, shortly after a click is presented, distinguishes a pro-button
piece of evidence (a click in the right ear) from a contra-button piece of
evidence (a click in the left ear; Fig. 6). Furthermore, this response to
each piece of evidence appears to be integrated over time as the effect
retains the level it has reached following the response to each piece of
evidence. The signal shows these properties already early during the
stimulus period, for clicks occurring within the first 400 ms. Second,
the signal reaches a common level at the time of the button press
(Fig. 3), regardless of the amount of evidence that a subject has obtained
for the decision to make a button press. The hypothesis that choice is
madewhen a signal representing cumulated evidence reaches a critical
level (Edwards, 1965; Ratcliff and McKoon, 2008; Stone, 1960; Vickers,
1970) has found initial support through neural data in themacaque oc-
ulomotor system (see Gold and Shadlen, 2007 for an overview of that
literature). Our study and a recent study (O'Connell et al., 2012) suggest
that low-frequency signals recorded over centroparietal regions may
also exhibit this property. These two properties of the neural signal
reported here encourage future studies to use a reaction-time tasks
(e.g., subject responds at the time she has reached a decision) to inves-
tigate the early evidence accumulation process under the behavioral
proxy of the drift-diffusion model.

The modulation of neural signals recorded in humans by a decision
variable has in part been investigated by three recent studies (Donner
et al., 2009; O'Connell et al., 2012; Wyart et al., 2012). The individual
studies share some common aspects but differ in important ways,
which are discussed below.

In regard to encoding a DV, anMEG study (Donner et al., 2009) found
that an integral of gamma activity over a putative human homologue of
macaque area MT correlates with signals recorded over centroparietal
regions. Although this finding suggests that centroparietal signals may
encode a DV (the integral of motion-sensitive activity in MT), this
study does not directly test whether centroparietal regions encode the
DVonwhich subjects base their decision in that task (i.e., the DV inferred
from subjects' choice behavior). For instance, an integral of gamma activ-
ity in brain regions other than the MT homologue may also correlate
with the centroparietal signals. This would not necessarily imply that
centroparietal signals represent a DV. We directly tested this hypothesis
by inferring the DV on which subjects base their decision and by sorting
the neural signal based on the DV. We support the hypothesis raised by
thework of Donner et al. (2009) by showing a prominent grading of the
neural signals by the inferred DV.

The neural signal reported in our study encodes the sign of each ele-
ment of incoming decision evidence. A recent study (Wyart et al., 2012)
also found that a low-frequency signal recorded over centroparietal re-
gions encodes the individual elements of decision evidence, in particular
the orientation of each successive visual patch (their Fig. 7A). However,
in that study, the signal starts to significantly encode the orientation of
each decision element first at about 400 ms following an element
onset (their Fig. 7A). This is substantially later compared to our study,
in which we observe significant encoding as early as at 74 ms following
an element onset. The delay of the response in that study compared to
our rapid response may be due to the relatively longer time required to
assess the direction of each decision element compared to the side of
the occurrence of simple click sounds used in our study.

Our study and the study of Wyart et al. (2012) show an additional
important difference in regard to the encoding of the cumulative sum
of the evidence elements (the DV). In our study, the neural signal signif-
icantly encodes the DV already at 211 ms (137 + 74 ms) following the
stimulus onset (Fig. 7). This is 789 ms (the time until the rest of the
stimulus period) plus 800 ms (the average duration of the delay period)
plus 492 ms (the average reaction time), together 2081 ms prior to a
button press. In comparison, in the study of Wyart et al. (2012), the sig-
nal encodes the DV in that task—the sum of the orientations of the indi-
vidual elements—earliest at about 500 ms preceding movement onset
(their Supplementary Fig. 7A). This is a surprising result given that the
signal in our study and the signals recorded in the oculomotor system
of themonkey encode the decision variable early in the trial, when sub-
jects assess the decision evidence (e.g., Gold and Shadlen, 2007; Platt
and Glimcher, 1999). Progressively through the trial, once a decision is
made, the grading of the signals due to decision evidence vanishes
and is replaced with a signal that indicates subjects' choice (Gold and
Shadlen, 2007; Platt and Glimcher, 1999). Neither a study working
with a low-frequency centroparietal signal similar to that used in our
study (O'Connell et al., 2012) has found a pre-movement grading of
the signal due to decision-related response parameters. It is possible
that the additional signal processing step used in the study of Wyart
et al. (2012)—the subtraction of the signal of one hemisphere from the
signal over the other hemisphere—can explain the discrepancy between
the studies. Another and perhaps more likely possibility is that the dis-
crepancy is due to the different way of reporting a decision (left versus
right hand inWyart et al., 2012, a handversus nohand (eye) response in
our study; see a paragraph dedicated to this issue below in the
Discussion section).

A recent study (O'Connell et al., 2012) in part investigated the beta
band responses (a portion of the wider low-frequency range used in
our study) in a detection task. The study found a significant modulation
of the beta activity over centroparietal regions by the reaction time
(their Fig. 1C middle; see also the same effect in Tzagarakis et al.,
2010), the variable regressed out as a confounding variable in our
study. Notably, the signal in the detection task of O'Connell et al.
(2012) is notmodulated by the properties of the stimulus (stimulus con-
trast, their Fig. 2C top). In contrast, in our task, low-frequency rhythms
over centroparietal regions are prominently modulated by a decision
variable, even when the reaction time is accounted for. The difference
in the results may reflect the difference in the tasks (e.g., a delay-
period task here, a reaction-time task in O'Connell et al., 2012).

A previous study (Donner et al., 2009) reports a low-frequency sig-
nal recorded over centroparietal regions that builds up gradually to in-
dicate a subject's choice of a hand movement. This effect has been
proposed to reflect the suppression of intrinsic oscillatory activity during
motor preparation (Crone et al., 1998a; Donner et al., 2009; Pfurtscheller
and Lopes da Silva, 1999). We found that in addition to this effect, the
low-frequency signal is strongly modulated by a cognitive, perceptual
decision variable, and encodes with a short latency the polarity of each
quantum of the sensory evidence. This suggests that the low-frequency
signal reflects a juxtaposition of movement-related, planning processes
and cognitive, decision-related processes. The decision-related modula-
tion reported in our study is prominent, prompting a thorough investiga-
tion of the mechanism that gives rise to the low-frequency signal
reported in this and previous studies (Donner et al., 2009; Neuper
et al., 2006; Pfurtscheller and Lopes da Silva, 1999). In this regard, it
has been proposed that cortical signals in the low-frequency range
reflect cortico–striato–thalamo–cortical interactions (Lopes da Silva,
1991; Steriade and Llinás, 1988). In particular, it has been found that
the magnitude of desynchronization of low-frequency cortical signals
is a robust correlate of cellular excitability in thalamo–cortical circuits
(Pfurtscheller et al., 1996; Steriade and Llinás, 1988). Moreover, it has
been proposed that the thalamo–cortical interaction acts as a cognitive
gate that gives rise to a desiredmovement and inhibits othermovement
alternatives (Leblois et al., 2006; Lopes da Silva, 1991; Mink, 1996). At
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the circuit level (Jensen et al., 2005), increased neural synchrony in the
low-frequency range has been associated with increased inhibition of
neural circuitry and decreased synchrony (i.e., asynchrony) with disin-
hibition of neural circuitry. This model fits the neural effect observed in
our and previous studies (Donner et al., 2009; Neuper et al., 2006;
Pfurtscheller and Lopes da Silva, 1999), in which centroparietal activity
becomes increasingly desynchronized the closer a subject approaches
an act. At the same time, while our data are consistent with the body
of literature on the functional significance of low-frequency oscillations,
the specific origin and mechanism of the decision-related signal identi-
fied in this study remains to be explored. Although it would be possible
to sample the centroparietal signal at higher spatial density, inferring
the spatial origin from EEG signals is a complex and indirect process
of unclear reliability. Furthermore, EEG does not readily provide access
to signals at higher frequencies, in particular signals in the gamma band
(N40 Hz; Donner et al., 2009), which likely index activation of local
populations of neurons rather than interactions between subcortical
and cortical structures. Thus, to fully elucidate the mechanism underly-
ing the prominent decision-related signal identified in this study, future
studies could record field potentials in human or non-human primates,
which provide ready access to both the low-frequency and the high-
frequency ranges of neural activity, and can also accurately locate the
origin of the signal source.

We have shown that a low-frequency oscillatory signal recorded
over the centroparietal cortex in humans encodes a developing decision
variable. Future studies featuring high spatial resolution could investi-
gate whether the effect can be decomposed into possibly independent
features in particular frequency bands and in particular regions. Future
studies may further test whether signals of different kinds, e.g., cortical
potentials (O'Connell et al., 2012; Schurger et al., 2012), encode the dy-
namics of a developing decision variable in decision tasks.

An important attribute of our task is that subjects responded with
one hand. This is critical, as Fig. 9 (right) reveals that for button press
choices, decision evidence is represented not only over contralateral
centroparietal regions but also over regions ipsilateral to the responding
hand. In light of thisfinding, if subjects decided between a left-hand and
a right-hand button press (e.g., Donner et al., 2009; Wyart et al., 2012),
the signals underlying the decisionwhich hand to choosewould engage
both hemispheres. This could result in a poor specificity of the signal
informing a given choice, and, as a consequence, the prominent effect
of decision evidence shown in our study may not be detectable in such
tasks.

In our task, we did not test asymmetries in the engagement ofmotor
structures—subject always responded using the right hand or a saccade
to a left target. However, other studies (e.g., Donner et al., 2009) suggest
that the neural responses that encode the plan tomake amovementwith
a right versus a left hand are fairly counter-balanced (Fig. 2C in Donner
et al., 2009). The figure shows that when a right hand movement is
planned, the left hemisphere shows a low-frequency desynchronization;
whereas when a left hand movement is planned, it is the right hemi-
sphere that is desynchronized. Although (Donner et al., 2009) do not di-
rectly test the effect of a DV, our data (our Fig. 9, button presses) suggest
that the effect of the DV is also lateralized. The effect of the DV during
plans to make an eye movement also appears to be lateralized (our
Fig. 9, saccades), in particular over parietal–occipital regions. The study
by (Medendorp et al., 2007) suggests that had subjects in our study
planned an eye movement to a right target (instead of to a left target),
we would see a stronger activation of the hemisphere opposite to the
currently activated one. These findings suggest that our results may be
extensible to the case in which subjects are asked to respond with a re-
versed response contingency (button press with the left hand, saccade
to the right target).

Ourfindings contribute to the current debatewhether cognitive pro-
cesses function separately from or are closely tied to the function of
motor systems (Anderson, 2003; Brooks, 1991; Clark, 1999; Ghazanfar
and Turesson, 2008; Markman and Dietrich, 2000; Wilson, 2002). In

our task, subjects respond with one of two different movement
types—a button press or a saccade. This design allows us to test
whether thedecision-related signal recorded over the centroparietal cor-
tex is related to a generic cognitive process (Maunsell, 2004)—such as,
attention (Gottlieb, 2007; Peck et al., 2009), reward expectation (Kable
and Glimcher, 2009), motivation (Roesch and Olson, 2004), or task diffi-
culty (Chen et al., 2008)—or whether the signal is instead more closely
tied to a particular action. We found that the effect of decision evidence
is observed over centroparietal regions specifically for hand movement
choices (Fig. 2B); the effect is not present during trials that resulted
in a saccade. This result is further supported by a recent finding
(O'Connell et al., 2012) that shows amodulation of a low-frequency sig-
nal over the centroparietal cortex by RT specifically when subjects plan
a response using a handmovement. The effect is not observedwhen the
response is withheld. This suggests that the representation of decision
evidence in centroparietal regions reflects the degree of commitment
to select a somatomotor action or a degree of motor preparation
(Bestmann et al., 2008). These findings imply that decision-making
and action planning do not necessarily occur sequentially and within
functionally separate modules (Gottlieb, 2007; Schall, 2002; Tversky
and Kahneman, 1981); these two processes can be closely intertwined.

In summary, we found that a low-frequency electrophysiological sig-
nal recorded over the centroparietal cortex is strongly modulated by the
variable on which subjects based their decision to make a hand move-
ment. Thus, decision-related signals are represented within the same
somatomotor circuits that represent the command to make a hand
movement. This observation extends the analogous finding made in
monkey oculomotor circuits for eye movement choices to somatomotor
circuits of humans for hand movement choices. We further found that
the signal reported in our study shows a defining property of the
diffusion-to-bound class of models—the accumulation of evidence over
time. In addition, this signal seems to show a second defining property
of the diffusion-to-bound models—the integration to a bound—as the
signal reaches a common, evidence-independent level shortly before a
movement. A similar observation has recently been made by O'Connell
et al. (2012). This property should be tested in reaction-time tasks in
the future. The finding that a neural signal recorded in humans is modu-
lated by a cognitive, decision-related variable may open future door to
the investigation of the dynamics of decision-related processes associat-
ed with a behavioral response in humans.
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