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We present a graphical model framework for decoding in the visual ERP-
based speller system. The proposed framework allows researchers to
build generative models from which the decoding rules are obtained in
a straightforward manner. We suggest two models for generating brain
signals conditioned on the stimulus events. Both models incorporate let-
ter frequency information but assume different dependencies between
brain signals and stimulus events. For both models, we derive decod-
ing rules and perform a discriminative training. We show on real visual
speller data how decoding performance improves by incorporating letter
frequency information and using a more realistic graphical model for the
dependencies between the brain signals and the stimulus events. Fur-
thermore, we discuss how the standard approach to decoding can be seen
as a special case of the graphical model framework. The letter also gives
more insight into the discriminative approach for decoding in the visual
speller system.
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1 Introduction

The Farwell and Donchin speller (Farwell & Donchin, 1988) is a brain-
computer interface that enables users to spell words by focusing their at-
tention on letters in a letter grid displayed on a computer screen. The user’s
is electroencephalogram (EEG) is recorded while a sequence of controlled
stimulus events over time takes place on the letters. A stimulus event in
the standard visual speller is a short increase of the brightness (“flash”) of a
specific group of letters on the screen. The pattern of flashes of the letter that
the user is focusing on evokes a characteristic EEG signal that is correlated
with the sequence of flashes of that letter over time. A computer program
analyzes the recorded EEG signal, inferring the letter on which the user is
focusing. This decoding is not a trivial task since the signal-to-noise ratio of
the relevant EEG signals is poor.

Increasing the communication rate of the speller can be achieved in two
ways: by decreasing the time interval between stimulus events or reducing
the number of stimulus events necessary for inferring the user-selected
letter. The latter can be achieved by optimizing the design of the sequence
of stimulus events. In the standard design, each stimulus event involves
the flashing of letters in a particular row or column of the letter grid. Other
designs exist that in theory would need fewer stimulus events per commu-
nicated letter for a given decoding accuracy than the standard design. We
say that these designs have good error-correction capabilities. A new design
for the visual speller with good error correction capabilities was studied by
Hill, Farquhar, Martens, Biessman, and Schölkopf (2009). Surprisingly, the
study revealed that these error-correcting designs in practice perform worse
than the standard design in the visual speller. This finding was explained
by the fact that the new design increases the number of flashes per com-
municated letter, leading to a reduction of the signal-to-noise ratio of the
EEG due to refractory effects (Martens, Hill, Farquhar, & Schölkopf, 2009).

It seems that the stimulus design in the visual speller involves a trade-off
between error-correcting capabilities and the amount of refractory effect.
One possible solution to this is to reduce the refractory effects, for example,
by using a more salient stimulus type (Hill et al., 2009; Martens et al.,
2009). However, it is not clear whether this is an effective solution for all
subjects, including patient users with a reduced attention span. Also, if
the time interval between subsequent stimulus events were decreased, the
refractory effects might become more pronounced again.

In this letter, we evaluate an alternative solution by explicitly taking
into account the possibility of refractory effects in the decoding of visual
speller data. For this purpose, we introduce the use of graphical models as
a framework for the decoding process in the speller system.

We begin in section 2.1 by introducing some terminology in the speller
system and discuss standard decoding. We then propose in section 2.1
two graphical models, which represent the generation of brain signals in
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Figure 1: Schematic of the visual speller system showing the encoding, modu-
lation, and decoding units. For the encoding unit, the letter grid is shown during
a stimulus event on {A,C,H,J,M,Q,U,X,Z,2,5,7,9}. The corresponding column in
the codebook is indicated by the arrow. Since the letters {A,C,G} take part in
this stimulus event, their entries for the given stimulus event are 1.

response to the stimulus events, and in section 2.3, we derive the decoding
rules based on these graphical models. The first graphical model (which
is related to the standard way of decoding visual speller data) does not
take into account refractory effects, whereas the second model does. We
show how prior knowledge, like letter frequency information, can be easily
incorporated in the decoding. We discuss in sections 2.4 and 2.5 subtleties
in the training that can be understood more easily in the graphical model
framework. We demonstrate in section 2.5 that the commonly used decod-
ing approach may give a maximum a posteriori solution under a number
of conditions. Finally, in section 3, we test if an error-correction design
outperforms the standard design on real speller data using the proposed
decoding.

2 Methods

2.1 Encoding and Decoding in the Visual Speller System. The letter
grid in the visual speller may contain numbers, punctuation characters, and
other symbols. For simplicity, we will refer to the items in the grid as letters.
We distinguish three units in the speller system: encoding, modulation, and
decoding (see Figure 1). The encoding describes how each letter is encoded
as a sequence of stimulus events over time. In the modulation process,
the stimulus events on the user-selected letter are translated into attention-
modulated brain signals. The decoding consists of inferring which letter
was selected based on the measured brain signals.

While designing a good encoding for the speller, it is helpful to write
down these stimulus events per letter as code words. These are bit strings
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of length N for which each entry corresponds to a stimulus event. An
entry has the value 1 if the letter participates in the stimulus event and
value 0 otherwise. The codebook weight refers to the number of 1’s in the
code word. The Hamming distance between two binary code words of
equal length is the number of positions for which the two code words have
different values (Hamming, 1950). The collection of code words for all the
letters in the letter grid will be referred to as the codebook. Each column
in this codebook represents a stimulus event at a given point in time (see
Figure 1).

The standard encoding is one in which the stimulus events take place
on rows and columns of letters (Farwell & Donchin, 1988). We will refer to
this codebook as the row-column codebook (RC). The minimum Hamming
distance d is the smallest Hamming distance between any two code words
in the codebook and is related to how many misclassified code word entries
can be corrected. An RC code of length 24 has d = 4. In contrast, a Hadamard
code HAD of length 24 (Levenshtein, 1964) has d = 12 and is therefore
expected to exhibit superior error-correction properties.

The commonly used decoding in the visual P300 speller consists of
feeding a segment of EEG after each stimulus event to a classifier (Kaper,
Meinicke, Grossekathoefer, Lingner, & Ritter, 2004; Krusienski et al., 2006).
A target event is a stimulus event occurring on the letter that the user se-
lected, and the evoked brain signal is a target response. Similarly, a nontarget
event is a stimulus event occurring on other letters, and the evoked brain sig-
nal is a nontarget response. This classifier is trained on target and nontarget
responses from all bits in a training set and assigns a classifier output
value larger than some threshold for a target response and smaller than
the threshold for a nontarget response. It is common practice to infer the
letter corresponding to the row and column with the largest sum of clas-
sifier outputs for all stimulus events (Kaper et al., 2004; Krusienski et al.,
2006; Rakotomamonjy & Guigue, 2008; Guger et al., 2009), or, equivalently,
the letter for which the inner product of its code word c with the vector of
classifier outputs k = [k1 k2 . . . kN] is largest—that is, the letter for which
the code word satisfies

ĉ = argmax
c∈C

〈c, k〉, (2.1)

where C denotes the codebook.

2.2 Graphical Models. Graphical models are useful tools to model the
(conditional) independencies between random variables. In this letter, we
focus on a subset of graphical models called directed acyclic graphs (DAGs).
A DAG consists of a set of nodes V and a set of directed edges E between the
nodes. Each node i ∈ V in the graph represents a random variable Xi , and
missing edges between the nodes represent conditional independencies.
The graph is assumed to be acyclic, that is, there are no directed paths
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Figure 2: Candidate graphical models G1 and G2 for the modulation process in
the visual speller system.

i1 → i2 → · · · → ik , where i1 = ik . Each node i has a set of parent nodes πi ,
which can be the empty set.

We denote the joint probability of a set of n random variables {X1, X2, . . . ,

Xn} by p(x) = p(x1, x2, . . . , xn)
�=P(X1 = x1, X2 = x2, . . . , Xn = xn). For

DAGs, the joint probability factors into the probabilities p(xi | πi ) of the
variables conditioned on its parents (Koller & Friedman, 2009):

p(x) =
∏
i∈V

p(xi | πi ). (2.2)

For instance, consider graph G1 depicted in Figure 2. The graph is a
DAG with variables t, c j , and b j , j ∈ {1, 2, . . . , N}, which are spread over
three layers. We can think of this graph as a generative model describing
the modulation process in the visual speller system. The variable t ∈ T
represents a letter from the alphabet T that consists of all the items in
the letter grid. Variable c j represents an entry from the code word that
corresponds to the letter t, which is selected by the user and can take a
value from the set {0, 1}, whereas b j represents an EEG segment in which
we expect to capture the response to a stimulus event c j . This observed
brain signal is a multidimensional and continuous-valued variable.

The directed edges between the letter t and the code word entries c j

represent direct influences. In fact, each letter is associated with a unique
bit string such that all code word entries are determined if the letter is
fixed, and vice versa. The directed edges between the code word entries
c j and the brain signals b j also denote direct influences, although their
relationship is not deterministic. For example, when a code word entry is set
to 0, the corresponding brain response may be of small duration and small
amplitude. When a code word entry is 1, the corresponding brain response
may be of longer duration and larger amplitude such as a P300 event-
related potential response. In practice, b j also consist of non-task-related
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signals such as background EEG signals, measurement noise, and artifacts.
The amplitude of the signal that represents the task-related brain response
is small compared to the total observed brain signal, which makes the
decoding a nontrivial task.

Figure 2 shows an additional graph, G2, which models the modulation
process in a slightly more complex way. Although the variables in G1 and G2

are the same, there is a different dependency among the variables. InG2 there
are edges between brain signals b j at time point j and code word entries
at a previous stimulus event c j−1, which are absent in G1. These slanted
edges aim at modeling refractory and overlap effects: Martens et al. (2009)
have shown that the shape of the brain response depends on the target- to
target interval (TTI) value and therefore on preceding codebook entries. In
particular, if a preceding target code word entry c j−1 was a 1 (target stimulus
event), the brain may not be able to produce the same response if the current
code word entry c j is again a 1. In addition, the brain response to a target
event overlaps with the brain response to the subsequent stimulus event. We
may extend this dependency further to higher orders by adding more edges,
such that b j depends not only on c j and c j−1 but also on c j−2, and so on.

The graphs convey the following conditional independencies:

G1 : b j ⊥⊥ t, c j−1, c j−2, . . . , b j−1, b j−2, . . . | c j , (2.3)

G2 : b j ⊥⊥ t, c j−2, c j−3, . . . , b j−1, b j−2, . . . | c j−1, c j . (2.4)

In words, this means the following.
� In G1, if the value of the code word entry c j at time point j is given, the

probability distribution of the observed brain signals b j at time point
j is determined. Moreover, if c j is given, the probability distribution
of b j does not depend on the letter t, previous code word entries
(c j−1, . . . , c1), or previous brain signals (b j−1, . . . , b j ).

� In G2, if the value of the code word entry c j at time point j is given,
the probability of the observed brain signals b j at time point j is
still uncertain since the probability distribution of b j also depends on
c j−1. However, if c j−1 and c j are given, the probability distribution of
b j does not depend on t, earlier code word entries (c j−2, . . . , c1), or
earlier brain signals (b j−1, . . . , b1).

Consequently, we can express the joint probability as a factorization of
the variables conditioned on its parents:

G1 : p(t, c, b) = p(t)
N∏

j=1

p(c j | t)p(b j | c j ), (2.5)

G2 : p(t, c, b) = p(t)
N∏

j=1

p(c j | t)p(b j | c j−1, c j ), (2.6)
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where we set the fictional variable c0 in equation 2.6 to 0 with probability 1.
Later we will be interested in the joint probability p(c, b) of the code word
and the brain signals given by

G1 : p(c, b) = p(c)
N∏

j=1

p(b j | c j ), (2.7)

G2 : p(c, b) = p(c)
N∏

j=1

p(b j | c j−1, c j ), (2.8)

with p(c) = ∑
t p(t)

∏
j p(c j | t) expressing how the letter prior p(t) induces

a code word prior p(c). Note that the prior p(c) of a code word c is equal
to the letter prior p(t) of the letter corresponding to that code word (and
vanishes for nonvalid code words c 	∈ C).

2.3 Decoding Based on Graphical Models. One of the uses of graph-
ical models is to do inference. For this purpose, we want to compute the
posterior probability of one or more variables conditioned on some other
variables (Koller & Friedman, 2009). Maximum a posteriori decoding in the
context of the visual speller means that we infer the communicated letter by
selecting the letter with the largest posterior probability given the measured
brain signals:

t̂ = argmax
t∈T

p(t | b). (2.9)

By identifying letters in T with their corresponding code words in C , we
may equivalently select the code word with the largest probability given
the measured brain signals:

ĉ = argmax
c∈C

p(c | b). (2.10)

This is equivalent to selecting the code word with the largest joint probabil-
ity since p(c | b) = p(c, b)/p(b) and p(b) is independent of the code word:

ĉ = argmax
c∈C

p(c, b). (2.11)

The joint probability p(c, b) of the code word and the brain signals was
defined previously for G1 and G2 in equations 2.7 and 2.8, respectively.
Therefore, to perform the decoding according to equation 2.11, we need to
find the distribution of brain signals given the current, and possibly pre-
ceding, code word entries. This generative approach has been successfully
adopted for G1 in Martens and Leiva (2010). Another approach is to turn
around the conditional probabilities in the joint in equations 2.7 and 2.8
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by applying Bayes’ rule: p(x | y) = p(y | x)p(x)/p(y). The resulting expres-
sions for the joint probability can be inserted in equation 2.11 to obtain the
decoding rules for G1 and G2:

G1 : ĉ = argmax
c∈C

p(c)
N∏

j=1

p(c j | b j )
p(c j )

, (2.12)

G2 : ĉ = argmax
c∈C

p(c)
N∏

j=1

p(c j−1, c j | b j )
p(c j−1, c j )

, (2.13)

where the factor p(b j ) is independent of the code word and is therefore dis-
carded. Notice that by learning the conditional probabilities p(c j | b j ) and
p(c j−1, c j | b j ) in equations 2.12 and 2.13 from data, we perform a discrimi-
native training for a generative model.

2.4 Homogeneity Assumptions. We will assume homogeneity such
that inG1, the conditional distribution p(b j = β | c j = γ ) in equation 2.7 does
not depend on the bit j (for fixed β and γ ). This means that the brain signal b j

generated by a stimulus event defined by c j for bit j cannot be distinguished
from the brain signal generated by another stimulus event defined by ci at
bit i , if the two stimulus events have the same value c j = ci = γ . Similarly,
given G2, we assume that p(b j = β | c j = γ, c j−1 = γ ′) in equation 2.8 does
not depend on the bit j for a fixed β, γ , and γ ′.

It is important to note that the homogeneity assumption in G1 implies
a bit independence for the probability distribution p(b j | c j ) but not neces-
sarily for the conditional probability p(c j | b j ). Indeed, by using Bayes’ rule
on the homogeneity assumption p(b j = β | c j = γ ) = p(bi = β | ci = γ ), it
follows that the equation p(c j = γ | b j = β) = p(ci = γ | bi = β) holds only
if p(c j = γ ) = p(ci = γ ). These homogeneity assumptions are relevant for
the training phase, as will be explained in the next section.

2.5 Bit Dependencies. The per bit conditional probability factor p(c j =
γ | b j = β) in equation 2.12 may be estimated for each bit j individually
using the training examples corresponding to that code word entry c j .
However, we may want to accumulate the training examples of all bits
j ∈ {1, . . . , N} and estimate a conditional probability f (γ | β) on the com-
plete training set aggregated over all bits j in favor of a more accurate
estimation. Unfortunately, from section 2.4 we know that p(c j = γ | b j = β)
is bit dependent, and therefore f (γ | β) is in general not equal to p(c j =
γ | b j = β). Consequently, we may not simply substitute the per bit condi-
tional probability p(c j | b j ) by the global conditional probability f (c j | b j ) in
the decoding rule of equation 2.12.
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Fortunately, the homogeneity assumption offers a solution such that we
can use the learned global conditional probability f (γ | β) for decoding. The
global bit probability f (γ ) and the global joint probability f (β, γ ) are by
definition:

f (γ ) = 1
N

N∑
j=1

p(c j = γ ), (2.14)

f (β, γ ) = 1
N

N∑
j=1

p(b j = β, c j = γ ). (2.15)

From this, it follows that f (β | γ ) = f (β, γ )/ f (γ ) can be expressed as

f (β | γ ) =
1
N

∑N
j=1 p(b j = β, c j = γ )

1
N

∑N
j=1 p(c j = γ )

, (2.16)

=
1
N

∑N
j=1 p(b j = β | c j = γ )p(c j = γ )

1
N

∑N
j=1 p(c j = γ )

, (2.17)

= p(b j = β | c j = γ ) 1
N

∑N
j=1 p(c j = γ )

1
N

∑N
j=1 p(c j = γ )

, (2.18)

= p(b j = β | c j = γ ). (2.19)

Due to the homogeneity assumption, the global probability distribution
f (β | γ ) is equal to the per bit probability distributions p(b j = β | c j = γ ).
Similarly, equality holds between f (β | γ, γ ′) and p(b j = β | c j = γ, c j−1 =
γ ′) under G2. We may therefore substitute p(b j | c j ) and p(b j | c j−1, c j ) in
equations 2.7 and 2.8 by f (b j | c j ) and f (b j | c j−1, c j ), respectively, and apply
Bayes’ rule to find the following decoding rules:

G1 : ĉ = argmax
c∈C

p(c)
N∏

j=1

f (c j | b j )
f (c j )

, (2.20)

G2 : ĉ = argmax
c∈C

p(c)
N∏

j=1

f (c j−1, c j | b j )
f (c j−1, c j )

, (2.21)

where f (b j ) = 1/N
∑N

j=1 p(b j ) is independent of the code word and has
been discarded.

Notice the similarity of these to equations 2.12 and 2.13. It turns out that
we can use the conditional probability f (c j | b j ) estimated from all the bits
in the training set if we divide by the global bias f (c j ) instead of p(c j ) for
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each bit j . This f (c j ) depends on only the value of c j and is therefore bit
independent in contrast to p(c j ). From now on, we refer to the factors f (c j )
in equation 2.20 and f (c j−1, c j ) in 2.21 as global bias correction factors. They
correct for the presence of bit dependencies of p(c j | b j ) and p(c j−1, c j | b j ).
A more rigorous derivation of the global bias correction factors can be found
in appendix C.

There are two special cases for which the product of the global bias
correction factors

∏N
j=1 f (c j ) in equation 2.20 is constant for all code words

and consequently negligible in the decoding: (1) all code words have the
same weight, and (2) each value of c j is equally probable in the training
set. However, this is not necessarily true for the product of the global bias
correction factors

∏N
j=1 f (c j−1, c j ) in equation 2.21.

Equation 2.20 also shows that the practice of balancing the number of
training examples for the two classes (as, e.g., in Kaper et al., 2004; Martens
et al., 2009) yields f (c j ) = 0.5. In that case, the global bias correction factor
becomes code word independent and can be neglected. But if the balancing
is done by throwing away examples of the abundant class, the resulting
reduction of the training set will lead to a less accurate estimation of the
conditional probability.

The standard decoding method for visual speller data as defined in equa-
tion 2.1 arises as a special case of G1 under the following three additional
assumptions: the classifier outputs can be transformed into probabilistic
quantities according to a logistic function, all letters in the letter grid are
equally likely, and all code words have the same weight (see appendix A).
If one uses a classifier that gives nonprobabilistic outputs, it is unclear how
to incorporate factors such as f (c j ), f (c j−1, c j ), and letter priors p(c) in the
decoding.

2.6 Training by Regularized Logistic Regression. We may learn the
conditional probabilities f (c j | b j ) in equation 2.20 and f (c j−1, c j | b j ) in
equation 2.21 by a logistic regression. A logistic regression models the pos-
terior probabilities of the classes by a generalized linear model while at
the same time ensuring that the probabilities sum to 1 and remain in [0, 1]
(Hastie, Tibshirani, & Friedman, 2001). The models are as follows:

f (c j | b j ) =
exp

(
wT

1,c j
b j + η1,c j

)∑
c j

exp
(
wT

1,c j
b j + η1,c j

) , (2.22)

f (c j−1, c j | b j ) =
exp

(
wT

2,c j−1,c j
b j + η2,c j−1,c j

)∑
c j−1,c j

exp
(
wT

2,c j−1,c j
b j + η2,c j−1,c j

) . (2.23)

The parameters w1,c j and η1,c j in the binary classification problem 2.22 and
w2,c j−1,c j and η2,c j−1,c j in the multiclass classification problem 2.23 can be
learned by maximum likelihood. A regularization term is added to the log
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likelihood to reduce the chance of overfitting (see appendix B for a more
detailed description).

2.7 Letter Prior. Suppose we have trained on a data set with a given
letter prior p(t), whereas the letters in the test set come from a different
distribution p′(t). This may happen if we let the subject do a copy-spelling
task for training with randomly drawn letters and then let the subject com-
municate proper sentences. Since we want to optimize the letter decoding
performance in the test set, we should simply replace p(c) in equations 2.20
and 2.21 by the code word prior p′(c) induced by the letter prior of the test
set p′(t).

3 Real Visual Speller Data

3.1 Setup. Eleven subjects performed a copy-spelling task with the vi-
sual speller system implemented in the BCPy2000 platform (http://www
.bci2000.org/wiki/index.php/Contributions:BCPy2000). The subject ob-
served a PC screen on which a 6 × 6 letter grid was displayed (as in Figure 1).
The task was to focus attention on a specified letter of the grid and passively
count the number of times a stimulus event occurred on that letter. All sub-
jects used the system with a standard letter intensification type of stimulus.
The time interval between the start of one stimulus event and the start of
the next event, the stimulus onset asynchrony (SOA), was set to 183 ms.
Each intensification lasted 100 ms and was followed by a no-intensification
period of 83 ms. We recorded a 16-channel common-average-reference EEG
sampled at 500 Hz using a QuickAmp system (BrainProducts GmbH). Each
subject spelled sentences from the book The Diving Bell and the Butterfly by
Bauby (1998) until the subject indicated that he or she was tired, result-
ing in 73 to 113 trials (letters spelled) per subject. Feedback was given to
the subjects after their spelling session. Two different codebooks of length
N = 72 were used: a standard row-column codebook (RC) and a Hadamard
codebook (HAD; see Figure 3). For the RC codebook, each stimulus event
occurred on 6 letters in the same row or column, whereas for the HAD code-
book, each stimulus event involved 13 to 20 letters spread over the grid.

The codebooks alternated per communicated letter. The HAD codebook
was created by selecting 36 code words of a Hadamard code of length 24,
permuting the columns to increase randomness of target events, concate-
nating code words three times, and assigning each resulting code word of
length 72 to a letter in the grid.1 The RC has a small minimum Hamming
distance of 12, and the HAD has a large minimum Hamming distance of 36.
The weight of the code words is 12 for the RC code and between 33 and 39

1For Hadamard codes, d = N/2, such that a Hadamard code of length N = 72 bits
would not have yielded a larger d than the proposed concatenated code.

http://www.bci2000.org/wiki/index.php/Contributions:BCPy2000
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Figure 3: The upper plots show examples of code books depicted as gray
(0 in code word) and black (1 in code word) pixels for the RC and the HAD
codebooks. In this RC codebook, the stimulus events on the rows and columns
are not mixed up; first all the rows take turns, then all the columns, and so
on. Both code books have 36 code words at length N = 72. The lower plots
show the percentage of stimulus events at a particular target-to-target (TTI) or
target-to-nontarget interval (TNI) value for both codebooks.

for the HAD codebook. The large percentage of 1’s in the HAD codebook
leads to small TTI values, whereas the small percentage of 1’s in the RC
codebook results in a widespread distribution of TTI values (see Figure 3).
We expect that the error-correcting capabilities of the HAD code book are
diminished by strong refractory effects due to the large number of small
TTI targets. Nevertheless, by applying the decoding method based on G2,
which models these refractory effects, the HAD codebook may outperform
the RC code.

3.2 Signal Analysis. The signal analysis was performed offline in Mat-
lab. The EEG was bandpass-filtered between 0.5 and 10 Hz with steep FIR
Bartlett-Hanning filters, and cut up in 600 ms EEG epochs synchronized by
the stimulus cues. These epochs were downsampled to 25 Hz. We trained
and decoded on the complete 72 bits code words. We performed the train-
ing on L = {5, 10, 20, 40} letters and tested the decoding performance on
the remaining letters. We applied an l-fold cross-validation on the training
set with the percentage of correctly inferred letters as a criterion to select
the optimal regularization parameter, using l = 10 folds if the number of
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Figure 4: Probability of characters in English. The SPACE character (represented
by ‘ ’) has the largest probability, about 20%.

training letters L was larger than 10, and l = L folds otherwise. After the
cross-validation, a logistic regression was trained on the complete training
set using the selected regularization parameter.

Decoding was done on the test set according to equations 2.20 and 2.21,
where the learned logistic regression parameters were applied to the data
in the test set according to equations 2.22 and 2.23. We set the letter pri-
ors based on English character frequencies in about 1415 works of fiction
(http://millikeys.sourceforge.net/freqanalysis.html; see Figure 4). We cal-
culated the decoding performance as the percentage of correctly inferred
letters in the test set.

4 Results

4.1 Effect of Global Bias Correction. We investigated the impact of
the global bias correction on the decoding performance (see section 2.5
for theoretical background). For this purpose, one subject used a different
Hadamard code, which we will refer to as HADspecial. This codebook
consists of just two code words with weights 39 and 3, respectively. The
resulting global bias corrections take on completely different values for the
two code words (see Figure 5). This particular data set contained 27 trials
in which one of these two code words was communicated by the subject.
To increase the test set size, we split each communicated code word up
into three code words of length N = 24, as if each code word had been
communicated three times.

We recalculated the prior probabilities of the two code words after setting
the probabilities of the other letters in Figure 4 to 0 giving p(E) = 0.34 and
p( ) = 0.66. We performed a decoding according to G1 as in equation 2.20. In
addition, we performed a naive decoding G1,no correction, which uses a logistic
regression trained on all bits but ignores the global bias correction factor in
the joint, that is, according to p(c)

∏
j f (c j | b j ), and another naive decoding

G1,wrong correction, which uses a logistic regression trained on all bits but uses
the wrong global bias correction factor, according to p(c)

∏
j f (c j | b j )/p(c j ).

The decoding performance of G1,no correction and G1,wrong correction was lower
than the performance of G1, which used the correct global bias correc-
tion factor (see Figure 5). The difference in performance between G1 and
G1,no correction was significant at the 5% level (40 training letters, one-tailed

http://millikeys.sourceforge.net/freqanalysis.html
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Figure 5: Effect of the global bias correction on the decoding performance in G1

for the HADspecial codebook (upper plot). Priors of the letters p(t) as well as the
product of the global bias correction factors

∏N
j=1 f (c j ) (normalized by the cor-

rection value for E) are shown in the middle plots (global bias correction factors
f (0) = 0.8 and f (1) = 0.2). The lower plot shows the performance of the naive
decodings G1,no correction and G1,wrong correction, and the correct decoding according
to G1. Error bars denote 95% confidence intervals. The baseline shows the ex-
pected accuracy by always selecting the letter with the largest prior probability.
(For a color version of this figure see the supplemental material, available online
at http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00066.)

Fisher’s exact test, p = 0.003), whereas the decoding difference between G1

and G1,wrong correction was marginally significant (p = 0.06).

4.2 Effect of Letter Frequency Information. We investigated the in-
crease in decoding performance if letter frequency information is used. For

http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00066


174 S. Martens et al.

5 10 20 40
0

10

20

30

40

50

60

70

80

90

100

p
e

rf
o

rm
a

n
ce

 [
%

]

# training letters

RC

5 10 20 40
0

10

20

30

40

50

60

70

80

90

100

p
e

rf
o

rm
a

n
ce

 [
%

]

# training letters

HAD

G1,uniform prior

G1

baselinebaseline

Figure 6: Decoding performance of G1 on RC and HAD data using a uni-
form prior (light bars) and a realistic letter prior (dark bars). The bars are
the average decoding performances over nine subjects; error bars denote 95%
confidence intervals. The baseline shows the expected performance by al-
ways selecting the letter with the largest prior probability in Figure 4. (For
a color version of this figure see the supplemental material, available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00066.)

this purpose, we analyzed the visual speller data from the 10 subjects who
used the RC and HAD codebooks. One subject did not reach above-chance
performance and was left out of the analysis. We used equation 2.20 with
a realistic letter prior as in Figure 4 and also with a uniform letter prior,
referred to as G1,uniform prior.

Using realistic prior knowledge about the probability of the letters in-
creased the decoding performance (see Figure 6) up to 5%. The difference
in performance between G1 and G1,uniform prior was significant for the HAD
data (5 training letters, Pearson’s chi square test, p = 0.03) but not for the
RC data (p = 0.14).

4.3 G1 Versus G2. The two decoding methods from equations 2.20 and
2.21 were tested on visual speller data from the 10 subjects who used the RC
and HAD codebooks. One subject did not reach above-chance performance
and was left out of the analysis. For large training set sizes, graph G2 showed
on average the same decoding performance as graph G1 on the RC data
(see Figure 7), whereas G2 performed significantly better than G1 on the

http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00066
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Figure 7: Decoding performance of graph G1 (dark bars) versus G2 (light
bars) on RC and HAD data. The bars are the average letter accuracy per-
formance over nine subjects; error bars denote 95% confidence intervals.
The baseline shows the expected accuracy by always selecting the letter
with the largest realistic letter prior probability in Figure 4. (For a color
version of this figure see the supplimental material, available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO a 00066.)

HAD data (40 training letters, Pearson’s chi square test, p = 0.01). For small
training set sizes, G1 performed better than G2 on the RC data (p = 0.03) and
equally well on the HAD data.

4.4 Effect of Codebook. The decoding performance of the RC code-
book was superior over the HAD codebook, independent of the number of
training trials (see Figure 7). Using G2 for decoding instead of G1 improved
the performance of the HAD code, but not so much that it outperformed
the RC code.

5 Conclusion

The aim of this letter is to promote a flexible framework using graphical
models for maximum a posteriori decoding in the speller. The framework
can be seen as an upper level in the decoding process in which the researcher
picks or designs a realistic graphical model for the generation of brain
signals in response to stimulus events. We proposed two graphical models,

http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00066
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G1 and G2, each with different dependencies between the variables. We have
shown that the commonly used decoding approach can be seen as a special
case of the simple graphical model G1.

The lower level involves the training or learning on the selected graphical
model. We showed how to do this training discriminatively, and this prin-
ciple has been successfully applied in speech recognition (Kapadia, 1998)
and natural language processing (Collins, 2002). Although we applied a
regularized logistic regression classifier to perform the learning, one has
the freedom to use his or her favorite classifier as long as it gives quantities
that can be interpreted probabilistically. For example, a support vector ma-
chine classifier, whose outputs were squeezed through a logistic function,
resulted in a similar decoding performance as the logistic regression we
used.

The homogeneity assumption for the generation of the brain signals
allows us to perform the learning on the complete training data set instead
of bit-wise. This is common practice in the literature. One should, however,
be cautious if the conditional probability of a code word entry being 0 or
1 is bit dependent. Therefore, during decoding, a global bias correction
should be included that corrects for the global bias in the training data
set. The necessity of the global bias correction directly follows from the
homogeneity assumption. We showed that the global bias correction is
crucial if a codebook is used in which the code words have different weights
and the global probability of a bit being 1 is far from 0.5.

In both graphical models, letter frequency information is incorporated
by code word priors. The results demonstrate that adding letter frequency
information improves the decoding performance. A next step would be to
use letter priors conditioned on previously communicated letters.

GraphG2 models dependencies between brain signals and previous stim-
ulus events and therefore recognizes the presence of refractory effects of the
brain signals. The training and decoding involves the classification of pairs
of bits, a four–class problem. The results show that this graphical model
yields a better decoding performance on data sets in which the code words
are characterized by a large weight. For small training set sizes, however,
G2 suffers from a slower learning curve and performs worse than G1. This
is to be expected since G2 encodes a more general class of models than G1.
Therefore, there is a trade-off between model generality and learning speed
of the training procedure with respect to the number of data points.

We tested two codebooks: the standard row-column (RC) code and a
Hadamard (HAD) code. If the per bit classification accuracy were inde-
pendent of the codebook, the HAD codebook would be superior to the RC
codebook. However, refractory effects lead to lower per bit classification
accuracies in codebooks with a large weight such as the HAD codebook.
In our experiment, we used the HAD codebook and tried to make the de-
coding suffer less from refractory effects by using the more sophisticated
graphical model G2. The effort we made in modeling the refractory effects
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by G2 improved the performance of the HAD data significantly, but not
so much that the HAD outperformed the RC codebook. Our explanation
for this finding is that G2 cannot simply make up for the reduction in bi-
nary classification performance: it merely expresses uncertainty for the bits
with refractory effects, whereas G1 misclassifies these bits. The more real-
istic prior knowledge in the form of the English letter prior in Figure 4 is
apparently not strong enough to exploit this difference.

Future work consists of testing the HAD codebook with a more salient
stimulus type as in Martens et al. (2009) for which the refractory effects
are reduced. In this setting, the HAD codebook is expected to outperform
the RC codebook. A further increase in bit rate could then be achieved by
speeding up the presentation of stimulus events. At faster stimulus rates,
refractory effects are likely to occur even if salient stimulus types are used,
and the system would profit from a decoding that models these effects in
combination with stronger prior knowledge in the form of a letter prior
conditioned on previously communicated letters.

Appendix A: Relationship Between Standard Decoding
and MAP Decoding

Selecting the code word that maximizes 〈c, k〉 as in equation 2.1 is equivalent
to a MAP solution as in equation 2.20 under the following three conditions:

1. The classifier outputs k j can be transformed into probabilistic quan-
tities according to a logistic function. If f (c j = 1 | b j ) ∝ exp(k j )

exp(k j )+exp(−k j )
,

then c j k j ∝ c j log( f (c j =1 | b j )
1− f (c j =1 | b j )

).
We rewrite equation 2.1 as

ĉ = argmax
c∈C

∑
j

log(1 − f (c j = 1 | b j ))

+
∑

j

c j log
(

f (c j = 1 | b j )
1 − f (c j = 1 | b j )

)
, (A.1)

where the first term log(1 − f (c j = 1 | b j )) may be added since it is
independent of c j . Separating the cases c j = 0 and c j = 1 gives

ĉ = argmax
c∈C

∑
j

{
log(1 − f (c j = 1 | b j )) if c j = 0

log( f (c j = 1 | b j )) if c j = 1
. (A.2)

From this we see that

ĉ = argmax
c∈C

∑
j

log f (c j | b j ), (A.3)

= argmax
c∈C

∏
j

f (c j | b j ). (A.4)
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2. All letters in the letter grid are equally likely (i.e., the code word
prior is uniform). If the marginal probability of the code words p(c)
is constant, this factor can be ignored in equation 2.20.

3. All code words have the same weight. In that case, the global bias
factor f (c j ) in equation 2.20 can be ignored, and equation 2.27 is
equivalent to equation 2.20.

Appendix B: Fitting the Logistic Regression Parameters

Suppose we are given a training set of i.i.d. samples D = {(c(m), b(m))}M
m=1

drawn from a training distribution. The likelihood of the parameters in G1

is given by

G1 : f
(
D | w1,c j , η1,c j

) =
M∏

m=1

f
(
c(m), b(m)|w1,c j , η1,c j

)
, (B.1)

=
M∏

m=1

exp
(
wT

1,c(m)
j

b(m)+η1,c(m)
j

)
∑

c j
exp

(
wT

1,c j
b(m)+η1,c j

) M∏
m=1

p(b(m)). (B.2)

Instead of maximizing the likelihood, we minimize the following loss func-
tion L(w1,c j , η1,c j ), which includes a regularization term,

G1 : L
(
w1,c j , η1,c j

) =−
M∑

m=1

log

⎛⎝ exp
(
wT

1,c(m)
j

b(m) + η1,c(m)
j

)
∑

c j
exp

(
wT

1,c j
b(m) + η1,c j

)
⎞⎠

+R
∑

c j

‖w1,c j ‖2, (B.3)

with R the regularization parameter. Notice that the factor
∏M

m=1 p(b(m))
in the likelihood in equation B.2 may be neglected since the factor does
not depend on the parameters w1,c j and η1,c j . Alternatively, one can derive
equation B.3 as the MAP estimate of the parameters w1,c j and η1,c j if we as-
sume a gaussian prior over the weights w1,c j . To minimize the loss function,
we set its derivative with respect to w1,c j and η1,c j to zero. The resulting
equations can be solved using iteratively reweighted least squares (Hastie
et al., 2001). The derivations for G2 are calculated likewise.

Appendix C: Alternative Way of Training the Logistic
Regression Classifier

In this appendix, we show that the bit dependency of p(c j | b j ) can be dealt
with in two different ways and that these two approaches are asymptotically
equivalent. The derivation is presented only for G1, since for G2, it is similar.
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First, let φ : B → R
d be some feature function, mapping brain signals

into d-dimensional real vectors. We assume that for each bit j = 1, . . . , N,
the probability of the class c j given the brain signal b j is of the logistic
regression form

p(c j = γ | b j = β) = exp
(
wT

γ, jφ(β) + ηγ, j
)∑

� exp
(
wT

�, jφ(β) + η�, j
) , (C.1)

where wγ, j and ηγ, j are a d-dimensional weight vector and a bias parameter
that both depend on γ and on j . The conditional probability of the brain
signal given the class is therefore

p(b j = β | c j = γ ) = exp
(
wT

γ, jφ(β) + ηγ, j
)∑

� exp
(
wT

�, jφ(β) + η�, j
) p(b j = β)

p(c j = γ )
,

= ψ j (β) exp
(
wT

γ, jφ(β) + ηγ, j − ργ, j
)
, (C.2)

where we defined ργ, j := log p(c j = γ ) and separated off the following
factor,

ψ j (β) := p(b j = β)∑
� exp

(
wT

�, jφ(β) + η�, j
) , (C.3)

which does not depend on γ . This will turn out to be convenient later.
Now we employ the homogeneity assumption, which states that the

conditional probability in equation C.2 is independent of j . In other words,
for all j, i = 1, . . . , N, we have

∀β∀γ : ψ j (β) exp
(
wT

γ, jφ(β) + ηγ, j − ργ, j
)

= ψi (β) exp
(
wT

γ,iφ(β) + ηγ,i − ργ,i
)
. (C.4)

Since this holds for any γ , we can sum the equations over γ , which gives
for j, i = 1, . . . , N:

∀β : ψ j (β)
∑

�

exp
(
wT

�, jφ(β) + η�, j − ρ�, j
)

= ψi (β)
∑

�

exp
(
wT

�,iφ(β) + η�,i − ρ�,i
)
. (C.5)
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Now, forming the quotient of equations C.4 and C.5, the factors ψ j (β) and
ψi (β) drop out and we obtain

∀β∀γ :
exp

(
wT

γ, jφ(β) + ηγ, j − ργ, j
)∑

� exp
(
wT

�, jφ(β) + η�, j − ρ�, j
)

= exp
(
wT

γ,iφ(β) + ηγ,i − ργ,i
)∑

� exp
(
wT

�,iφ(β) + η�,i − ρ�,i
) , (C.6)

for all j, i = 1, . . . , N.
A solution to these equations is obtained by taking all N weight vectors

to be identical

wγ, j = wγ j = 1, . . . , N,

for some global weight vector wγ , and all N bias parameters to be related
by

ηγ, j = ηγ + ργ, j j = 1, . . . , N

for some global bias parameter ηγ . Thus, using the homogeneity assump-
tion, we can rewrite equation C.1 as

p(c j = γ | b j = β) = exp
(
wT

γ φ(β) + ηγ + ργ, j
)∑

� exp(wT
� φ(β) + η� + ρ�, j )

. (C.7)

The different conditional probabilities are now expressed in terms of the
global weight vector wγ and the global bias parameter ηγ , and the loga-
rithms of the prior class probabilities ργ, j . Note that the only dependence
on j is now via the offsets ργ, j . In other words, the homogeneity assumption
boils down to sharing parameters in combination with j-specific offsets for
the bias parameter.

The global weight vector and global bias parameters in equation C.7 can
be trained by using (regularized) maximum likelihood in a way very similar
to ordinary (regularized) logistic regression training, with the only differ-
ence that the bit-dependent offsets ργ, j (which are given at training time)
have to be taken into account. Although this is a possible approach, a dis-
advantage is that this particular training method has to be implemented—
most off-the-shelf methods do not support offsets in the bias parameter that
can differ for each training point.
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Alternatively, we may consider the mixture distribution obtained by
mixing the different bits j = 1, . . . , N together:

f (γ, β) := 1
N

N∑
j=1

p(c j = γ, b j = β)

= 1
N

N∑
j=1

p(c j = γ )p(b j = β | c j = γ )

= p(β | γ )
1
N

N∑
j=1

p(c j = γ )

= p(β | γ ) f (γ ). (C.8)

By rewriting equation C.2 in terms of the global parameters wγ and ηγ

introduced above, we can express the conditional distribution p(β | γ ) in
equation C.8 as follows:

p(β | γ ) = exp
(
wT

γ φ(β) + ηγ

)
ψ j (β),

with j arbitrary. Again, a logistic regression form appears for the conditional
distribution f (γ | β):

f (γ | β) = f (γ, β)∑
� f (�, β)

= exp
(
wT

γ φ(β) + ηγ + log f (γ )
)∑

� exp
(
wT

� φ(β) + η� + log f (�)
) .

This suggests an alternative way of learning the global weight vector wγ

and the global bias parameter ηγ : simply aggregate the training examples
corresponding to different bits j = 1, . . . , N together into one large pool,
and train a logistic regression classifier from the aggregated data. Asymp-
totically this will yield the same global weight vector as before, and the
resulting global bias parameter differs by only the logarithm of the global
bias correction factor f (γ ). Although the two different training methods
are asymptotically equivalent (where some care needs to be taken with the
regularization), the latter method is much easier to implement in practice,
as one can use an off-the-shelve logistic regression classifier.
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