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Abstract 14  
 15  
A central goal of neuroscience is to determine how the brain’s relatively static anatomy can support 16  
dynamic cortical function, i.e., cortical function that varies according to task demands.  In pursuit of 17  
this goal, scientists have produced a large number of experimental results and established influential 18  
conceptual frameworks, in particular communication-through-coherence (CTC) and gating-by-19  
inhibition (GBI), but these data and frameworks have not provided a parsimonious view of the 20  
principles that underlie cortical function.  Here I synthesize these existing experimental results and 21  
the CTC and GBI frameworks, and propose the function-through-biased-oscillations (FBO) 22  
hypothesis as a model to understand dynamic cortical function.  The FBO hypothesis suggests that 23  
oscillatory voltage amplitude is the principal measurement that directly reflects cortical excitability, 24  
that asymmetries in voltage amplitude explain a range of brain signal phenomena, and that predictive 25  
variations in such asymmetric oscillations provide a simple and general model for information 26  
routing that can help to explain dynamic cortical function. 27  
 28  
1.   Introduction 29  

Humans are able to rapidly adapt their behavior based on different task demands.  While research 30  
over the past decades has shown that the structure of the brain is plastic, such as that shown in rapid 31  
changes in dendritic boutons during learning (Moser et al., 1994; Piccioli et al., 2014), the long time 32  
scale, typically minutes, for such plastic changes in anatomy cannot readily explain changes in 33  
function on the time scale of seconds.  In pursuit of the search for potential mechanisms that can 34  
support this dynamic nature of the brain, studies have produced a large number of experimental 35  
results and two influential conceptual frameworks.   36  

These studies occur at different levels of inquiry that span the microscopic domain (i.e., single-37  
neuron neurophysiology) and the macroscopic domain (e.g., electroencephalography (EEG) or 38  
behavioral state).  Single-neuron neurophysiology studies often directly relate different physiological 39  
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processes.  For example, many studies showed that cortical neurons preferentially fire during the 40  
trough of neuronal oscillations in different frequency bands, such as the theta (4-8 Hz) or alpha (8-12 41  
Hz) bands (Bragin et al., 1995, Buzsaki et al., 2004, Fell et al., 2011, Haegens et al., 2011, Harris et 42  
al., 2003, Huxter et al., 2003, Jacobs et al., 2007, Klausberger et al., 2004, Lee et al., 2005, Lorincz et 43  
al., 2009, Siapas et al., 2005).  This demonstrates that oscillatory activity can dynamically modulate 44  
the excitability of local neuronal populations, which appears to be important for explaining dynamic 45  
brain function. 46  

Other microscopic or macroscopic studies cannot or do not make explicit statements about 47  
particular physiological processes.  Rather, they apply mathematical procedures to particular brain 48  
signal measurements and report the observed relationship of the resulting brain signal features with a 49  
particular behavioral or other measurement.  For example, in numerous studies scientists applied 50  
specific mathematical techniques (such as the Hilbert transform) to the (usually bandpass-filtered) 51  
time-varying brain signal voltage measurements to calculate time-varying estimates of the power or 52  
phase of oscillatory activity in a particular frequency band.  An increasing number of reports have 53  
shown that such power or phase measurements can be related to cortical excitability (e.g., Sauseng et 54  
al., 2009 or Canolty et al., 2006, respectively).  The results for oscillatory phase in these studies 55  
suggest that cortical processing is more likely to occur during a specific phase (usually the trough) of 56  
the underlying oscillations (i.e., phase-amplitude coupling (PAC)).  While important problems with 57  
present PAC signal analysis approaches and their resulting physiological interpretation have been 58  
recognized (Aru et al., 2014), the results of these studies do echo the results of the basic 59  
neurophysiology studies described above.  At the same time, this seemingly direct link to underlying 60  
physiological processes does not exist for (the purely mathematical construct of) oscillatory power. 61  
In other words, it is unclear how oscillatory power may mechanistically alter cortical excitability. 62  
Furthermore, it is unclear why cortical excitability appears to be related to two mathematically 63  
completely independent measurements (power and phase) of oscillatory activity. 64  

The relationship of different brain signal features with each other and with cortical excitability is 65  
even less clear for other types of brain signal features.  For example, for the past several decades, 66  
scientists have studied different types of evoked responses (ERPs) such as the P300 (Chapman et al., 67  
1964), or different types of slow task-related activity (Bereitschaftspotential (BP, Kornhuber et al., 68  
1965), contingent negative variation (CNV, Walter et al., 1964), or slow cortical potentials (SCPs; 69  
Birbaumer et al., 1990, He et al., 2009)).  These electrophysiological signals often receive different 70  
names that may depend not only on the filtering technique (e.g., spectral analysis vs. signal 71  
averaging), but also on the specific area of study.  For example, scientists who study the neural basis 72  
of movements may call a slowly developing negative potential preceding movements a 73  
Bereitschaftspotential (BP, Kornhuber et al., 1965); scientists who study consciousness may call a 74  
similar phenomenon a slow cortical potential (SCP, He et al., 2009); and scientists who study 75  
response anticipation may call it contingent negative variation (CNV, Walter et al., 1964).  These 76  
differing naming conventions persist even though these observations share some apparent similarities 77  
(in that they are usually reflected in negative voltage shifts), and even though there are observations 78  
that link them to other (e.g., frequency-based) phenomena (He et al., 2009, Shibasaki et al., 1978).  79  
Similar comments about naming convention could also be made about the large number of different 80  
evoked responses (ERPs) that result from actual or anticipated sensory stimulation (e.g., the P3a and 81  
P3b (Polich, 2007)).  Finally, recent advances in the local field potential (LFP) and ECoG literature 82  
have revealed a number of additional brain signal features that express the relationship between the 83  
phases or amplitudes of oscillatory activity at single or across multiple sites (e.g., phase-phase or 84  
amplitude-amplitude coupling (Buzsaki et al., 2012, Siegel et al., 2012)).  The functional relevance 85  
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and generating mechanism for these phenomena are currently still largely unclear. 86  

Nevertheless, there have been some proposals for mechanisms that could explain different types 87  
of brain signal features.  For example, scientists have tried to explain the generation of evoked 88  
responses by phase resetting (Fell et al., 2004, Hanslmayr et al., 2007, Makeig et al., 2002, Sayers et 89  
al., 1974), additions to ongoing oscillations (Makinen et al., 2005, Mazaheri et al., 2006, Shah et al., 90  
2004), or non-zero baselines (Mazaheri et al., 2008, Nikulin et al., 2007).   91  

Despite these present difficulties in understanding how the brain may support dynamic function of 92  
individual neuronal populations, scientists have proposed two influential conceptual frameworks to 93  
begin to explain rapid variations in behavior across neuronal populations.  The first proposal is the 94  
communication-through coherence (CTC) hypothesis put forth by Pascal Fries (Fries, 2005).  The 95  
CTC hypothesis is concerned with the mechanism by which the brain may modulate the functional 96  
relationship between one sending and one receiving neuronal population.  Specifically, CTC’s 97  
principal thesis is that function may emerge from anatomy through the brain's ability to optimize 98  
information transfer by synchronizing the timing of oscillatory activity at the sending and receiving 99  
sites.  This hypothesis rests fundamentally on the physiological concept of variable cortical 100  
excitability, i.e., neuronal firing occurs preferentially at the trough of oscillatory activity (Haegens et 101  
al., 2011, Klimesch et al., 2007, Lorincz et al., 2009).  CTC has received support from modeling 102  
studies (Akam et al., 2010, Akam et al., 2012) and experimental results (Roberts et al., 2013, 103  
Saalmann et al., 2012).  In sum, CTC is fundamentally based on oscillatory phase: it explains 104  
variable function of a sending and a receiving neuronal population primarily through the degree of 105  
phase synchrony of modulatory oscillatory activity at those populations.   106  

The second proposal is the gating-by-inhibition hypothesis that was formally articulated by Jensen 107  
and Mazaheri (Jensen et al., 2010).  This hypothesis is based on a long history of research by a 108  
number of scientists, including Pfurtscheller, Klimesch, Jensen and others.  In contrast to the CTC 109  
hypothesis, gating-by-inhibition is fundamentally based on oscillatory power:  it suggests that 110  
neuronal populations that are not related to the task are functionally inhibited by increased oscillatory 111  
power in specific frequency bands, such as the alpha (8-12 Hz) band.  How this concept, which is 112  
based on oscillatory power, may be related to the CTC hypothesis, which is based on oscillatory 113  
phase, is uncertain. 114  

In summary, while existing theories have made important progress, our understanding how the 115  
microscopic concept of cortical excitability relates to different types of macroscopic brain signal 116  
measurements and in turn to organized behavior still appears to be incomplete.  Furthermore, it is 117  
currently unclear how oscillatory power and phase may interrelate with each other, and if and how 118  
the conceptual frameworks proposed by Fries and Jensen can be reconciled.  Primarily because of 119  
these important issues, different neural or behavioral domains are usually described by independent 120  
sets of relatively narrow scientific explanations, which tends to force scientists in a particular 121  
discipline to stay within and to conform to the corresponding set of explanations.  This situation 122  
presents a roadblock to an improved understanding of the function of the brain. 123  

Here I provide a conceptual framework of cortical function that may help to resolve these 124  
important problems by synthesizing existing experimental results and theoretical models into two 125  
general principles.  The first principle of this framework suggests that cortical excitability of a 126  
neuronal population is indexed most directly by the voltage amplitude of oscillatory activity.  This 127  
leads to the notion that the established findings of the relationship of oscillatory power or phase with 128  
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cortical excitability are essentially indirect by-products of asymmetrically distributed peak/trough 129  
amplitudes (i.e., biased oscillations), and that such biased oscillations may underlie a range of other 130  
brain signal phenomena.  The second principle embeds biased oscillations in a predictive context, 131  
applies the result to populations of neurons, and thereby reconciles and extends the CTC and gating-132  
by-inhibition hypotheses.  I will refer to the framework that encompasses these two principles as the 133  
function-through-biased-oscillations (FBO) hypothesis throughout this paper. 134  

2.   The FBO Hypothesis 135  

2.1.   The First Principle: Biased Oscillations Link Cortical Excitability to a Range of Brain 136  
Signal Phenomena 137  

The first principle of the FBO hypothesis begins with the proposal that 138  
the instantaneous voltage amplitude of oscillations, rather than 139  
oscillatory power or phase, is the principal measurement that directly 140  
reflects cortical excitability.  Specifically, I suggest that, for the 141  
exemplary oscillation shown with the blue trace in Fig. 1, the y axis 142  
simultaneously represents cortical excitability as well as oscillatory 143  
voltage.  (This exemplary oscillatory activity is shown to be 144  
sinusoidal, but in reality may take on different shapes.) 145  

Experimental evidence supports this proposed link between changes in 146  
instantaneous voltage and cortical excitability.  For example, Fig. 2 147  
shows recordings from cat motor cortex about 0.2 mm below the 148  
cortical surface.  Spontaneous firings of motor action potentials are 149  
clearly visible.  Stimulation of the nucleus ventralis lateralis (i.e., the 150  
thalamic nucleus projecting to that area of cortex), but not stimulation 151  
of a nearby cortical site, changes the voltage potential and temporarily 152  
suspends action potential firing.  In other words, thalamocortical 153  
volleys appear to shift the cortical voltage 154  
potential away from its baseline1 so as to 155  
hyperpolarize cortical populations and 156  
thereby inhibit their firing.  Similar effects 157  
have been found in the visual cortex (Tasaki 158  
et al., 1954, Von Baumgarten et al., 1952) 159  
and somatosensory cortex (Li et al., 1956). 160  
Thus, rhythmically occurring volleys (such 161  
as those produced by oscillatory activity) 162  
would periodically inhibit a particular 163  
neuronal population in the cortex.  This 164  
resulting interpretation of the functional role 165  
of oscillatory activity is consistent with an 166  
emerging view on this topic (Klimesch et al., 167  
2007, Mathewson et al., 2011).  168  

It is important to recognize that, in the 169  
example in Fig. 1 that features a constant and 170  

                                                                                                                          
1  It  is  important  to  recognize  that  the  polarity  of  these  voltage  changes  depends  on  the  recording  configuration,  and  
thus  may  be  positive  or  negative.  

  

Fig. 1.  Oscillatory 
voltage amplitude is the 
principal measurement 
that controls cortical 
excitability. 

  

Fig. 2.  Recordings in motor cortex close to the 
cortical surface (black trace) in response to 
stimulation of the cortex (arrow marked by “C”) or 
the nucleus ventralis lateralis of the thalamus (arrow 
marked by “VL”).  VL stimulation, but not cortical 
stimulation, results in a change in voltage potential 
that temporarily suspends motor cortical neuronal 
firing.  (Modified from Li, 1956.) 
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high level of peak-to-peak amplitude, the concepts of oscillatory voltage amplitude and oscillatory 171  
phase are essentially interchangeable with respect to their relationship to cortical excitability:  172  
excitability is high during a certain phase of the oscillation (i.e., the trough), and excitability is high 173  
when the voltage amplitude is low. 174  

It is well known that an oscillation’s peak-to-peak amplitude (and hence, oscillatory power) is not 175  
constant but often changes with a task.  The next building block supporting the first principle of the 176  
FBO hypothesis is the suggestion that such task-related changes in peak-to-peak amplitude do not 177  
affect the peaks and troughs of the oscillation equally.  Let us consider the exemplary oscillatory 178  
signal in Fig. 3-A.  In this example, the blue trace gives the time course of oscillatory activity.  The 179  
peak-to-peak amplitude of this modulatory signal decreases with time (i.e., reduces oscillatory power 180  
with time), thereby indicating an overall trend toward increased cortical excitability.  As recognized 181  
in earlier observations (Mazaheri et al., 2008, Mazaheri et al., 2010, Nikulin et al., 2007) that were 182  
made in the context of explaining evoked responses, such changes in peak-to-peak amplitude might 183  
not affect the amplitude of the peaks and troughs of the oscillatory activity equally, but only affect 184  
the amplitude of the peaks2.  Indeed, Fig. 3-B (modified from Fig. 3a, Nikulin et al., 2007) 185  
demonstrates that the amplitude bias of an oscillation in the alpha band (y axis) is related to the 186  
power of the oscillation (x axis).  (The shaded area gives the 95% confidence interval.)  In summary, 187  
the second building block of the first principle of the FBO hypothesis suggests that the amplitude 188  
bias (dotted blue trace, which could be computed by averaging one cycle of the oscillation or by 189  
averaging many trials with random oscillatory phase) is related to oscillatory power.  190  

These two building blocks, i.e., instantaneous voltage amplitude of oscillations reflecting cortical 191  
excitability and the existence of a voltage bias, provide the basis for two insights that represent the 192  
main conceptual contribution of the first principle of the FBO hypothesis.   193  

                                                                                                                          
2  A  later  article  (Nikulin  et  al.,  2010)  came  to  a  somewhat  different  conclusion.    

  

Fig. 3.  A: The time-varying instantaneous voltage amplitude of oscillatory activity (solid blue 
trace) is not zero mean, but has a bias (dotted blue trace) whose amplitude varies with the amplitude 
of oscillatory power.  B: Experimental evidence supporting this proposed relationship. (Modified 
from (Nikulin et al., 2007).) 
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The first insight is that concept of variations in instantaneous voltage amplitude of biased 194  
oscillations provides a simpler, more complete, and more physiologically plausible model of cortical 195  
excitability than a model based on either oscillatory power or oscillatory phase.  It is simpler, because 196  
it depends on only one model-free measurement (the instantaneous voltage) rather than on two 197  
separate mathematically extracted transformations (power and phase) that depend on a specific model 198  
(e.g., a repeating sinusoid). 199  

This model is also more complete in describing cortical 200  
excitability than a model based on either oscillatory power 201  
or oscillatory phase.  This is apparent in the example in Fig. 202  
4.  In this example, oscillatory amplitude envelope (dotted 203  
black trace, calculated either by using the Hilbert transform 204  
or by taking the square root of low-pass filtered oscillatory 205  
power) decreases from left to right as the oscillation cycles 206  
between different phases of peaks and troughs.  Thus, by 207  
averaging many measurements, a study may well find a 208  
relationship between oscillatory amplitude/power envelope3 209  
and cortical excitability, or between oscillatory phase and 210  
cortical excitability, but neither relationship will be entirely 211  
correct.  Specifically, consider the left-most period of the 212  
oscillation in Fig. 4.  At time (A), oscillatory power 213  
accurately reflects cortical excitability:  power is high and 214  
cortical excitability is low.  However, at time (B), there is a 215  
big discrepancy between these measurements as power is 216  
still high but cortical excitability is high as well.  In 217  
contrast, for low values of oscillatory power (i.e., around 218  
the times indicated by (C)), oscillatory phase cycles 219  
between the peak and trough (which would suggest 220  
strongly varying cortical excitability), but cortical 221  
excitability is relatively constant and high.  In contrast, the 222  
instantaneous voltage amplitude (that includes the voltage bias) always accurately reflects cortical 223  
excitability. 224  

Finally, this model is also more physiologically plausible. As indicated above, several studies have 225  
found an inhibitory effect of voltage shifts produced by subcortical volleys on firing of cortical 226  
populations (Li, 1956, Li et al., 1956, Tasaki et al., 1954, Von Baumgarten et al., 1952). However, 227  
such physiological interpretations cannot readily be made for the (purely mathematical concepts of) 228  
oscillatory phase or oscillatory power.   229  

The presence of the voltage bias also has important implications for the generating principles of a 230  
variety of macroscopic brain signal features.  This possibility has been discussed in the specific 231  
context of evoked responses in previous work (Mazaheri et al., 2008, Nikulin et al., 2007).  The 232  
second insight is that these implications may be broader than previously discussed.  In this context, 233  
let us consider the example given in Fig. 5.  The blue trace in panel A illustrates the time course of 234  
the raw (i.e., biased) voltage of an exemplary 10-Hz (i.e., alpha band) modulatory signal in a single 235  
trial.  Similar to Fig. 3A, this exemplary modulatory signal reduces the voltage of its peak over about 236  
1.5 seconds, thereby indicating time-varying but still progressively increasing cortical excitability.  In 237  
                                                                                                                          
3  The  amplitude  envelope  of  an  oscillation  is  the  square  root  of  the  power  envelope.    While  they  are  different  
mathematically,  for  the  purposes  of  the  arguments  presented  here,  they  can  be  used  interchangeably.  

  

Fig. 4.  Traditional interpretations of 
the relationship between oscillatory 
power and phase with cortical 
excitability do not fully capture the 
realities of biased oscillations.  E.g.,   
oscillatory power is high but cortical 
excitability is high as well (B); 
oscillatory phase cycles between peaks 
and troughs, but cortical excitability is 
always high (C). 
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other words, the instantaneous voltage amplitude of this exemplary blue trace is the result of a 10-Hz 238  
oscillation, a slow decrease in peak-to-peak amplitude, and a concomitant decrease in voltage bias.  239  
As will become important later, this slow decrease may suggest the physiologically independent 240  
presence of a very slow oscillation in a frequency analysis.   241  

There are several ways to extract oscillatory measurements from brain signals (bandpass-filtering, 242  
Hilbert transform, etc.).  The red trace illustrates the result from subjecting the blue trace to a 243  
bandpass filtering operation between 8-12 Hz.  Because the bandpass filtering operation removes 244  
frequencies lower than 8 Hz, it removes the oscillation’s voltage bias:  notice how the voltage bias 245  
(that is readily visible in the blue trace) disappears in the red trace after the bandpass filtering 246  
operation.  In other words, the red trace is now centered around zero mean (dashed black line 247  

indicating zero voltage).  The black solid trace illustrates the instantaneous power (i.e., squared 248  
amplitude) of the bandpass-filtered signal. 249  

The blue, red, and black traces in Panel B show the average of many trials of the corresponding 250  
oscillatory signal traces shown in Panel A with random phase.  The blue average trace highlights a 251  
trend toward increasing excitability (i.e., decreasing voltage amplitude), similar to what is usually 252  
seen in the Bereitschaftspotential, slow cortical potential, or contingent negative variation.  The red 253  
average trace does not show any variations over time. The black average trace highlights the 254  
reductions in oscillatory power typically seen prior to volitional task engagement.  Notice the 255  
somewhat smoother appearance of the black trace compared to the blue trace, which results from the 256  
timing uncertainty introduced by the bandpass filtering operation.  In summary, the concept of biased 257  
oscillations can explain the relationship between the negative voltage shifts and the decrease in 258  
oscillatory power that are often observed in relationship to particular tasks (such as movements).  259  

The literature provides some clues that are consistent with aspects of this hypothesis. One such 260  
piece of evidence is shown in Panel C (modified from Shibasaki et al., 1978).  The blue trace 261  
illustrates the average voltage of EEG recordings prior to movement (indicated with an arrow).  The 262  
negative deflection prior to movement onset is readily apparent, and is similar to that in the blue trace 263  
in Panel B.  The yellow trace illustrates the average voltage of EEG recordings after a lesion to the 264  
nucleus ventralis intermedius (VIM), i.e., the thalamic nucleus that projects to motor cortex.  The 265  
yellow trace does not feature the negative deflection prior to movement, but does exhibit an increased 266  
evoked response following the movement.  In other words, with an intact VIM, we see the typical 267  
Bereitschaftspotential prior to movement.  After the VIM has been lesioned, no such negative voltage 268  
shift occurs, quite possibly because thalamic lesions often diminish alpha oscillations (Hughes et al., 269  

Fig. 5.  The bias in oscillations can explain different macroscopic observations. 
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2005).  In summary, the second insight of the first principle of the FBO hypothesis is that the 270  
amplitude bias in oscillatory activity may explain aspects of the slow time-varying brain signal 271  
phenomena that usually precede behaviors. 272  

When integrated with other well-known observations, the same concept may also provide a 273  
convenient explanation for evoked responses (ERPs) that follow motor movements or sensory 274  
stimulation.  Specifically, it is well known that the brain can modulate not only the peak-to-peak 275  
amplitude but also the instantaneous phase of ongoing low-frequency oscillations.  This phenomenon 276  
is termed phase resetting and has previously been suggested to be a contributing factor to ERP 277  
generation (Fell et al., 2004, Hanslmayr et al., 2007, Makeig et al., 2002, Sauseng et al., 2007, Sayers 278  
et al., 1974).  However, in addition to phase resetting, it is also well known that different task-related 279  
areas in the brain are modulated by different oscillations at similar or different frequencies (Jacobs et 280  
al., 2007), and that motor movements or sensory stimulation may result in modulation of oscillatory 281  
power (Pfurtscheller et al., 1979, Potes et al., 2014, respectively).  All of these known effects will 282  
contribute to a time-varying bias in average voltage, and thereby must all provide an important 283  
contribution to the generation of ERPs. 284  

Finally, biased oscillations may also explain some of the more recent observations reported in the 285  
literature, including particular reports of PAC, phase-phase coupling, or amplitude-amplitude 286  
coupling (Siegel et al., 2012).  As an example, for the representative data shown in Fig. 5A, analyses 287  
may identify PAC between the 10-Hz alpha oscillation and the <1 Hz activity change.  (See Aru et 288  
al., 2014, for a more comprehensive discussion of issues with current analyses or their interpretation.) 289  

In summary, the first principle of the FBO hypothesis suggests that the instantaneous voltage 290  
amplitude of biased oscillations is the principal measurement that controls cortical excitability, and 291  
that it can help to explain a variety of macroscopic brain signal phenomena. 292  

  293  
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2.2.   The Second Principle: A General Framework for Dynamic Cortical Function 295  

The second principle synthesizes and extends the concepts provided in the CTC hypothesis and the 296  
gating-by-inhibition framework by embedding the concept of biased oscillations into a predictive 297  
context.  The result provides a simple and general model for routing of information flow that can 298  
explain dynamic cortical function. 299  

Similar to the proposal that biased oscillatory voltage amplitude provide a unifying foundation for 300  
explaining experimental results for oscillatory power and phase, control of local cortical excitability 301  
with biased oscillations can also provide a unifying foundation for synthesizing CTC and gating-by-302  
inhibition.  The proposal is that rather than controlling the phase relationship of oscillations across 303  
task-related populations (as proposed by CTC) or oscillatory power of neuronal populations (as 304  
proposed by gating-by-inhibition), the brain engages in dynamic task-related processing by 305  
controlling the instantaneous voltage amplitude of biased oscillations to predictively inhibit task-306  
unrelated populations or inhibit populations at task-unrelated times.  307  

To illustrate this concept, let us consider the exemplary network of neuronal populations that is 308  
shown in Fig. 6-A.  In this figure, eight distinct neuronal populations are labeled with A-H.  309  
Anatomical connections between these populations are depicted with arrows.  Arrows that do or do 310  
not carry action potential volleys are shown in black or yellow, respectively.  Populations that receive 311  
excitatory or inhibitory modulation (i.e., low or high average peak-to-peak voltage amplitude, 312  
respectively) are shown in orange or yellow, respectively.  In this example, population A, which does 313  
not receive inhibitory modulation (e.g., from subcortical structures such as a particular thalamic 314  
nucleus), receives an action potential volley and sends out volleys to all populations it is connected to 315  
(B, C, and D), presumably through cortico-cortical projections.  Because B and D receive inhibitory 316  
modulation, they are not excited by the incoming volleys they receive from A;  thus, they do not send 317  
out volleys to connected populations.  In this example, excitatory input to population A will result in 318  

  

Fig. 6.  Biased oscillations regulate information flow in the cortex. 
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activation of, and communication between, populations C and G.  This concept synthesizes the CTC 319  
and gating-by-inhibition hypotheses:  because biased oscillatory voltage amplitude can define higher 320  
excitability either by decreasing peak-to-peak amplitude or by being in its trough, it can describe a 321  
situation in which a sending and a receiving neuronal population communicate either by 322  
synchronizing their phases (as would be suggested by CTC) or by decreasing the peak-to-peak 323  
amplitude of the receiving population (as would be suggested by gating-by-inhibition).   324  

The second principle anchors the dynamics of biased oscillations in a predictive process.  325  
Dynamic information routing may require separate mechanisms for task-related engagement that can 326  
or cannot be predicted based on prior evidence.  There are obvious situations in which our 327  
interactions with our environment can be predicted in advance.  For example, we may be provided 328  
with accumulating perceptual evidence that will lead to a motor action.  In this situation, the brain 329  
has the opportunity to optimize excitability of its neuronal populations (e.g., increase excitability of 330  
the motor system) so as to optimize performance.  Indeed, many studies (Bertelson et al., 1960) have 331  
documented increased behavioral performance resulting from prior evidence.  According to the first 332  
principle of the FBO hypothesis, the brain may readily achieve this purpose by reducing the peak-to-333  
peak amplitude of biased oscillations associated with neuronal populations that are related to the 334  
anticipated task, and by increasing it for all other populations.  There is plenty of experimental 335  
evidence to support this concept (e.g., Bidet-Caulet et al., 2012).  Fig. 6-B (modified from Kubanek 336  
et al., 2013) illustrates the relative power (i.e., a function of peak-to-peak amplitude) of an oscillatory 337  
signal recorded over sensorimotor cortex in a perceptual decision task, in which subjects were asked 338  
to push a button depending on the amount of evidence given by auditory clicks.  The power of the 339  
modulatory signal is progressively reduced for trials of “high” evidence compared to for trials of 340  
“low” perceptual evidence.  Thus, this mechanism progressively increases cortical excitability in 341  
motor cortex, and clearly demonstrates that cortical excitability of local neuronal populations 342  
depends not only on present but also on past events. 343  

It is important to recognize that this optimization of brain function cannot readily be achieved by 344  
generating a desired phase relationship between neuronal populations:  in the predominant situation 345  
in which the timing of task execution is not precisely predictable (e.g., in the example above, it is not 346  
exactly clear when the movement will occur), a desired functional relationship between two cortical 347  
populations can only be achieved using phase synchrony if oscillations governing two different 348  
neuronal populations share the same frequency.  This is plausible for populations within a particular 349  
cortical system (e.g., the visual system), which may be subserved by the same subcortical nucleus.  350  
Indeed, existing experimental evidence for such phase synchrony across populations (Roberts et al., 351  
2013, Saalmann et al., 2012) was derived from data collected within the visual system.  At the same 352  
time, it is well known that oscillations in different systems can be produced by different sources, and 353  
often have different frequencies (Pineda, 2005).  E.g., the frequency of the sensorimotor mu rhythm 354  
has been reported to be significantly higher than that of the classical visual alpha rhythm (Storm van 355  
Leeuwen et al., 1976).  Thus, if the timing of task execution is not known ahead of time, it appears to 356  
be difficult if not impossible for the brain to predictively control information flow by achieving 357  
constant phase synchrony across such different systems.  This suggests that CTC cannot explain the 358  
regulation of information flow across wide areas of the brain in such situations. 359  

The situation is opposite if the brain has to process and react to a stimulus that cannot be 360  
anticipated, e.g., a loud noise while we are reading.  While it is well known that we can quickly react 361  
to such unexpected stimuli (Yantis et al., 1984), such rapid reactions cannot readily be explained by 362  
increased excitability that are due to reduction in oscillatory peak-to-peak amplitude, as highest 363  
excitability would not be achieved until the oscillation reaches its trough (i.e., up to tens of ms later).  364  
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Thus, reducing the peak-to-peak amplitude of a biased oscillation would not guarantee that the initial 365  
action potential volleys produced by the stimulus would hit excitable neuronal populations in the 366  
appropriate sensory regions, and consequently would reduce the ability of the brain to process this 367  
stimulus.  At the same time, it is well known that the brain has the ability to reset the phase of 368  
oscillatory activity (Brandt, 1997) in response to salient stimuli.  With phase-resetting of biased 369  
oscillations, the brain could produce oscillatory phase synchrony throughout the respective 370  
perceptual system.  Thus, it would guarantee that action potential volleys produced by such stimuli 371  
would be delivered to excitable neuronal populations throughout that system.  While there is 372  
evidence for cross-modal phase resetting (Thorne et al., 2011), the degree to which different systems 373  
are phase reset by an incoming stimulus may be a critical determinant of the limitations of human 374  
performance in sensori-motor behavior.  Such phase resetting may even cause subsequent reduction 375  
in peak-to-peak amplitude in this perceptual system.  Hence, in response to a sudden salient stimulus, 376  
the brain may update its ongoing predictions to incorporate the likely case that more salient stimuli 377  
will follow the first. 378  

Irrespective of whether an event can or cannot be predicted based on prior evidence, such 379  
configurations fundamentally requires the brain to make predictions:  in the decision-making 380  
example above, the brain must use current and past evidence to make a prediction of the optimal 381  
future state of cortical excitability.  In the example of a loud noise during reading, the brain must be 382  
able to evaluate the likelihood that a particular stimulus occurs given past evidence (e.g., we know 383  
that a loud stimulus in a library will produce a stronger cortical response than a loud stimulus in a 384  
predictive series of loud stimuli).  In other words, the brain must constantly use information from 385  
past events to predict the likelihood of a particular stimulus, and adjust cortical excitability as a 386  
function of this predicted likelihood.  This invokes an image in which the “excitability landscape” 387  
across the cortex serves to is constantly being updated using a predictive process. 388  

In summary, the second principle of the FBO hypothesis suggests that variable cortical function is 389  
implemented primarily by variable biased oscillations across different cortical populations, and 390  
proposes that the variability of the two main parameters of biased oscillations, i.e., oscillatory peak-391  
to-peak amplitude and phase, must be determined by a predictive process.  Thus, predictive biased 392  
oscillations can form the basis for a simple, general, and physiologically grounded model of variable 393  
cortical function. 394  

3.   Predictions 395  

The FBO hypothesis generates a number of testable predictions.  The first principle of the FBO 396  
hypothesis predicts:  1) that for most if not all locations in the cortex that are modulated by 397  
oscillatory activity, oscillatory activity has a voltage bias that is related to oscillatory power;  2) that 398  
the instantaneous voltage of biased oscillations is a better predictor of cortical excitability (e.g., as 399  
assessed by action potential firing probability or by the magnitude of broadband gamma amplitude4) 400  
than is oscillatory power or phase;  3) that amplitude variations in biased oscillatory signals can 401  
explain a fraction of the variance of slow time-domain signals (such as the BP), of evoked responses, 402  
and of more recent observations (in particular amplitude-amplitude coupling or PAC that involves 403  
frequencies < 4 Hz);  and 4) common evoked responses (ERPs) that are routinely detected in 404  
EEG/MEG may not be detectable in LFP or ECoG signals, because ERPs represent at least in part the 405  

                                                                                                                          
4 Broadband gamma amplitude is often computed by determining the analytic amplitude of ECoG/LFP signals in a high 
(e.g., 70-170 Hz) frequency band.  Broadband gamma activity has been suggested by an increasing number of studies to 
reflect the average firing rate of neuronal populations close to the electrode (Manning et al., 2009, Miller et al., 2009, Ray 
et al., 2011). 
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spatially superimposed time-domain voltage changes associated with a temporal sequence of 406  
oscillatory power adjustments that are the consequence of a stimulus.  407  

The second principle of the FBO predicts:  1) that variable routing of information flow through a 408  
physical network depends primarily on the cortical excitability (indexed by biased oscillations) of the 409  
receiving neuronal population;  2) that the peak-to-peak amplitude of a biased oscillation is produced 410  
by a prediction of the likelihood that the corresponding neuronal population is related to the task;  3) 411  
that the phase of a cortical oscillation is adjusted as a function of a prediction of the likelihood of a 412  
sensory stimulus;  4) that differential oscillatory activity should be present not only across different 413  
systems (e.g., visual vs. motor), but also within a particular system;  and 5) that task execution (rather 414  
than predictive network modulation) should always be accompanied by non-oscillatory broadband 415  
gamma activity. 416  

Testing these predictions requires careful consideration of several technical issues.  First, any 417  
particular cortical population may be under simultaneous and superimposing modulatory influence 418  
by different oscillations (e.g., Hughes et al., 2007, Jacobs et al., 2007).  Second, the raw voltage 419  
potential may be influenced by non-oscillatory activity (e.g., voltage shifts created by ionic currents).  420  
Third, voltage is not an absolute but a relative measurement.  Thus, an experimentally measured 421  
voltage bias may be of varying magnitude or even polarity depending on sensor modality and source 422  
of referencing.  Fourth, with present signal acquisition hardware, it is difficult to achieve similar 423  
signal-to-noise characteristics across all relevant signal frequencies (i.e., DC to high gamma).  Fifth, 424  
oscillatory modulation is likely to be spatially fine-grained, and hence may be subjected to spatial 425  
summation, which will impede its proper characterization using EEG or MEG.  Thus, testing these 426  
predictions may benefit greatly from, and will likely require, intracranial or intracortical recordings. 427  

4.   Further research 428  

The FBO hypothesis provides a proposal for two general mechanisms that can support dynamic 429  
cortical function.  Its main predictions listed above can now readily be tested in future experimental 430  
research.  In addition, there are several important questions that remain to be answered.   431  

1.   In line with previous findings, this paper suggests that there is an asymmetric distribution of peak 432  
and trough amplitudes.  The specific characteristics of this asymmetry are currently unclear.   433  

2.   Is cortical excitability influenced by factors other than instantaneous voltage? 434  
3.   Other than instantaneous cortical excitability, which factors (such as amplitude or temporal 435  

distribution) of input to a given region determine cortical excitation? 436  
4.   Why is cortical excitability established using repetitively pulsed inhibition (i.e., oscillatory 437  

activity) rather than using a continuous process?  I speculate that repetitive inhibition may be 438  
more metabolically efficient than continuous inhibition, and may be equally effective. 439  

5.   The second principle of the FBO hypothesis explains how the brain may predictively modulate 440  
cortical function.  It does not attempt to answer several important corresponding questions: 441  

a.   How does the brain generate predictive models of optimal cortical excitability?   442  
b.   How does the brain use sensory inputs resulting from particular behaviors to change the 443  

parameters of these predictive models to optimize future behaviors? 444  
c.   The predictive processes described in the FBO hypothesis essentially bias cortical 445  

processing towards those neural populations that are task-related.  It does not elucidate the 446  
nature of the cortical activations that actually execute the tasks (i.e., primarily detected 447  
using action potential firing rates or broadband gamma amplitude).  The relationship 448  
between these two processes is important, because they lead to different predictions about 449  
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measurements.  As an example, according to the FBO hypothesis, presentation of multiple 450  
sensory stimuli will lead to an increase in cortical excitability in the regions 451  
corresponding to the particular sensory domain.  Thus, subsequent stimuli should result in 452  
augmented cortical responses.  However, many experiments have shown that repeated 453  
stimulation can result in decreased responses, a phenomenon called repetition suppression 454  
(Baldeweg, 2006). This phenomenon may be explained by the concept of predictive 455  
coding (Clark, 2013, Friston, 2010), which postulates that coding of information in the 456  
brain at least in part represents the discrepancy between a prediction of a sensory stimulus 457  
and the actual stimulus.  In summary, these two concepts may lead to completely opposite 458  
experimental results.  Future research is necessary to establish the interplay between these 459  
two phenomena. 460  
 461  
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