
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 199.184.22.55

This content was downloaded on 25/06/2015 at 14:57

Please note that terms and conditions apply.

A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based

brain–computer interface

View the table of contents for this issue, or go to the journal homepage for more

2010 J. Neural Eng. 7 016003

(http://iopscience.iop.org/1741-2552/7/1/016003)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1741-2552/7/1
http://iopscience.iop.org/1741-2552
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 7 (2010) 016003 (9pp) doi:10.1088/1741-2560/7/1/016003

A comparison of regression techniques for
a two-dimensional sensorimotor
rhythm-based brain–computer interface
Joan Fruitet1, Dennis J McFarland2 and Jonathan R Wolpaw2

1 Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France
2 Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health and
State University of New York, Albany, NY 12201, USA

E-mail: joan.fruitet@gmail.com

Received 19 May 2009
Accepted for publication 16 December 2009
Published 14 January 2010
Online at stacks.iop.org/JNE/7/016003

Abstract
People can learn to control electroencephalogram (EEG) features consisting of
sensorimotor-rhythm amplitudes and use this control to move a cursor in one, two or three
dimensions to a target on a video screen. This study evaluated several possible alternative
models for translating these EEG features into two-dimensional cursor movement by building
an offline simulation using data collected during online performance. In offline comparisons,
support-vector regression (SVM) with a radial basis kernel produced somewhat better
performance than simple multiple regression, the LASSO or a linear SVM. These results
indicate that proper choice of a translation algorithm is an important factor in optimizing
brain–computer interface (BCI) performance, and provide new insight into algorithm choice
for multidimensional movement control.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many people with severe motor disabilities require alternative
methods for communication and control. Numerous studies
over the past two decades have shown that scalp-recorded EEG
activity can be the basis for non-muscular communication and
control systems, commonly called brain–computer interfaces
(BCIs) (Birbaumer et al 1999, Farwell and Donchin 1988,
Pfurtscheller et al 1993, Wolpaw et al 1991). EEG-based
communication systems measure specific features of EEG
activity and use the results as control signals. Some BCI
systems use features that are potentials evoked by stereotyped
stimuli (Farwell and Donchin 1988). Others use EEG
components in the frequency domain that are spontaneous
in the sense that they are not dependent on specific sensory
events (e.g. Wolpaw and McFarland (2004)).

Effective BCI operations depend on use of appropriate
methods for recording brain signals, extracting features
from these signals and translating these features into device
commands (Wolpaw et al 2002). The feature translation

algorithm is extremely important, and has been the subject of
numerous studies and data competitions (e.g. Blankertz et al
(2006), see McFarland et al (2006a) for a review). An effective
translation algorithm weights relevant features in proportion to
the information they contain about the user’s desired outcome.
Many kinds of algorithms, linear as well as nonlinear, are
possible (e.g. Muller et al (2003)).

With the Wadsworth sensorimotor rhythm (SMR)-based
BCI system, users learn over a series of training sessions to
use SMR amplitudes in mu (8–13 Hz) and/or beta (18–27 Hz)
frequency bands recorded over left and/or right sensorimotor
cortex to move a cursor in one, two or three dimensions (see
McFarland et al (2006) for full system description). At present,
the translation algorithm used for online control is a simple
linear multiple regression.

This study compares the present translation algorithm
to several promising alternatives in terms of performance in
two-dimensional SMR-based cursor control. The algorithms
were compared through offline analyses of data recorded
while subjects controlled the cursor with the standard

1741-2560/10/016003+09$30.00 1 © 2010 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1741-2560/7/1/016003
mailto:joan.fruitet@gmail.com
http://stacks.iop.org/JNE/7/016003

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

algorithm. This is the first formal comparison of alternative
translation algorithms in regard to two-dimensional control.
Multidimensional control presents unique challenges, such as
the need for independence among the signals that control the
separate dimensions (e.g. Wolpaw and McFarland (2004)).

2. Methods

2.1. Data collection and preprocessing

2.1.1. BCI users. The BCI users were eight adults (five
men and three women, ages 20–39). Six had no disabilities,
while two had spinal cord injuries (at C6 and T7) and were
confined to wheelchairs. All gave informed consent for the
study, which had been reviewed and approved by the New
York State Department of Health Institutional Review Board.
After an initial evaluation defined the frequencies and scalp
locations of each person’s spontaneous mu and beta rhythm
(i.e. sensorimotor-rhythm (SMR)) activity, he or she learned
EEG-based cursor control over several months (two to three
24 min sessions/week). The standard online protocol, which
has been described in the previous publications (McFarland
et al 1997a, Schalk et al 2004, Wolpaw and McFarland 2004),
is summarized here.

2.1.2. Standard online protocol. The user sat in a reclining
chair facing a 51 cm video screen 3 m away, and was asked
to remain motionless during performance. Scalp electrodes
recorded 64 channels of EEG (Sharbrough et al 1991), each
referenced to an electrode on the right ear (amplification
20 000, bandpass 0.1–60 Hz and sampling rate 160 Hz).

A daily session consisted of eight 3 min runs separated
by 1 min breaks, and each run had 20–30 trials. Each
trial consisted of a 1 s period from target appearance to the
beginning of cursor movement, a period of cursor movement
of 15 s maximum, a 1.5 s post-movement reward period and
a 1 s inter-trial interval. Users participated in two to three
sessions/week at a rate of one session every 2–3 days. The
last seven sessions for each user were used for this offline
analysis. The total number of available trials ranged between
1022 and 1579.

To control each dimension of cursor movement (vertical or
horizontal), one EEG channel over the left sensorimotor cortex
(i.e. electrode locations C3 or CP3) and/or one channel over
the right sensorimotor cortex (i.e. C4 or CP4) were derived
from the digitized data according to a Laplacian transform
(McFarland et al 1997b). Every 50 ms, the most recent
400 ms segment from each channel was analyzed by a 16th-
order (McFarland and Wolpaw 2008) autoregressive model
using the Berg algorithm (Marple 1987) to determine the
amplitude (i.e. square root of power) in a 3 Hz wide mu or
beta frequency band, and the amplitudes of the one or two
channels were used in a linear equation that specified a cursor
movement in that dimension as described by Wolpaw and
McFarland (2004). Thus, the cursor moved 20 times/s in the
vertical and horizontal dimensions simultaneously. Complete
EEG and cursor movement data were stored for later offline
analyses.

2.1.3. Offline preprocessing and feature extraction. First,
because the 64 electrodes are digitized sequentially (the value
number n of the electrode number e is not recorded at the time
t0 + n

Sampling rate but t0 + n
Sampling rate + e−1

64×Sampling rate where t0
is the time when the recording starts) and further processing
compares the values at different electrodes that are assumed to
occur at the same time, the data were temporally aligned using
a cubic spline interpolation. A cubic spline is a piecewise
cubic polynomial which is twice continuously differentiable.
The interpolation of a data set {xi, yi}1�i�n of n points such
as xi < xi+1 with a cubic spline consists in finding a function
F that satisfies

F(x) =
⎧⎨
⎩

P1(x), x ∈ [x1, x2]
· · · where P1 . . . Pn−1 are cubic polynomial

Pn−1(x), x ∈ [xn−1, xn].

∀ 1 � i � n, F (xi) = yi

∀ 1 � i < n, P ′
i (xi+1) = P ′

i+1(xi+1),

P ′′
i (xi+1) = P ′′

i+1(xi+1)

P ′′
1 (x1) = P ′′

n−1(xn) = 0

Second, in accord with McFarland et al (1997), a large
Laplacian spatial filter was applied to enhance the signal to
noise ratio.

Third, a spectral analysis using a 16th-order
autoregressive model determined the power in the seventeen 3
Hz wide spectral bins centered at frequencies from 8 to 24 Hz.
The logarithms of these power values served as the features that
were translated into cursor movements. As in online cursor
control, the offline analysis used a 400 ms window that shifted
in 50 ms steps. Thus, the cursor movement was computed
20 times/s. To explore new control possibilities more fully,
these features were determined for ten electrodes located over
the sensorimotor cortex (FC3, C5, C3, C1, CP3, FC2, C2, C4,
C6 and CP4), not simply for the two electrodes (C3 and C4
for most users) that had actually been used for online control.

Thus, each 400 ms window of data was described by a
vector of features, the dimension of which was the number
of electrodes (10) times the number of frequency bins (17),
for a total of 170 features. This differs from the protocol
that had been used online, in which cursor movement in each
dimension was a linear function of only 1–4 features.

2.2. Two approaches to comparing the different translation
algorithms

2.2.1. Using the whole trial. The simplest approach to
offline analysis is to determine from the full data of each trial
the position of the target to which the user had to move the
cursor. For this approach, the features used by the translation
algorithm are the means of the feature values for all the
400 ms windows of each trial. The number of features used
to describe each trial is then equal to the number of electrodes
times the number of frequencies used (i.e. 170).

Although this determination of target position might be
addressed by a classification algorithm, we used instead a set
of regression algorithms for reasons detailed in McFarland
and Wolpaw (2005). (Briefly, regression is preferable
to classification because it is better suited to controlling

2

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

-1 0 1
-1

0

1

Relative coordinate of the target

O
ut

pu
t

2 (s)10

Figure 1. Left: EEG recorded from two electrodes during one trial. At zero time the target appears. One second later the cursor appears and
begins to move. One of the sliding windows is highlighted (in red). Center: hypothetical example showing the eight possible target
locations, and the target for the current trial (in green). The green (gray) curve represents the cursor movement generated by the offline
analysis up to (after) the time of the red window. The red sliding window must be used to move the red dot. Right: the sigmoid function. If
the target is far from the cursor, the exact relative position of the target does not mater, just the direction is important. This is why, for
example, the output for the relative coordinate of (0.5; 0.5) is very close to the one of (1; 1), meaning that in both cases the user should move
fast to the right and to the top.

continuous cursor movements in real time and it more readily
generalizes to novel target locations.)

The primary result of offline analysis, and the measure
used to compare alternative regression algorithms, was the
proportion of the variance in target position that was predicted
by the algorithm (i.e. r2).

2.2.2. Using the individual 400 ms windows. The whole-trial
approach to offline analysis is not readily transferable to actual
online use. During online cursor control, cursor movements
are made every 50 ms based on the most recent 400 ms window.
Thus, in order to obtain offline results from methods that
would be compatible with online use, we also compared the
alternative translation algorithms using the features extracted
from the individual 400 ms windows.

Another difference between online and whole-trial offline
analysis is the user’s ability to use visual feedback (i.e. cursor
position) to make corrective movements. For example, as
seen in figure 1, prior cursor movement positioned the cursor
so that to reach the target the user needed to move the cursor
up, even though the target was lower than the initial starting
point. To take account of such effects, the desired output for
the regression should not be the absolute coordinates of the
target, but rather the coordinates of the target relative to the
cursor position.

To make our model realistic, we introduced a delay to take
into account the time the user needs to perceive the feedback
and correct his trajectory. This is why the relative coordinate
of the target was computed as the coordinates of the target
minus the coordinate of the cursor a short time (i.e. the delay)
before the start of the sliding window.

Unfortunately, it is not possible to directly extract the
position of the target from a single window of data since the
quality of the EEG signal and the precision of the extracted
features are not sufficient to locate the target with only 400 ms
of signal. On the other hand, a single window should have
more information than just the direction of the target. That
is, when the cursor is far from the target the user may try to
move faster, so that each window may also contain information
about the distance between the cursor and the target. This
is why a sigmoid function (figure 1(c)) is used to take into

account the distance of the target while limiting extreme cursor
movements.

This individual windows approach consists in deducting
from each 400 ms window of the signal the relative
direction/position of the target. The performances of the
different regression methods are then evaluated in terms of
the person’s r2.

2.2.3. Evaluating the performance of the translation
algorithms. Estimating the performance of a method is an
important issue in machine learning (Kohavi 1995). The
simplest technique, sometimes called holdout or test sample
estimation (Lachenbruch and Mickey 1968), consists in
partitioning the data (i.e. the vectors of features of all the trials
when using the whole-trial method and of all the windows
when using the single-window method) into two subsets: a
training set that is used to train the method and a testing set
that is used to evaluate its performances. To obtain unbiased
results, the data used for testing must be different from the data
used for training; otherwise, we would evaluate the capacity of
the method to ‘remember’ the data and not how it will be able
to generalize what it learnt to a new sample. This technique
reaches its limits when the total amount of data is limited,
which is the case here. Indeed, if there are not enough training
data, the algorithm will not be able to learn what best predicts
the criterion variable and therefore will not generalize well to
new examples. On the other hand, if there are not enough
testing data, the results may not be reliable.

More complex techniques, like the bootstrap (Efron and
Tibshirani 1993) or the cross validation (Mosier 1951, Stone
1974, Kohavi 1995), were developed to obtain more precise
evaluations of the performances. The n-fold cross validation
technique consists in splitting the data into n parts (instead of
two for the holdout), each of which will be used alternatively to
train or to test the algorithm (figure 2). The final performance
is the mean of the performances on the n different testing
sets.

In our case the data are already split into seven parts
(the seven last sessions recorded during seven different days).
Using a sevenfold cross validation enables us to obtain results
compatible with the online experiment. The methods are
trained on six sessions and are tested on a different session

3

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

Figure 2. Holdout: one data set is used for training (gray) and the
other for testing (red). Cross validation: the data are split into n
parts. A total of n analyses are performed. Each part is used as the
testing set (red) for one analysis while the n−1 other parts are used
as the training set (gray). To adjust the parameters, a second level of
cross validation is made; before each of the n analyses, n−1
analyses are made (training sets are in gray and testing sets in blue).
To obtain an unbiased result, the testing data set of the first level of
cross validation (red) is not used during the second level of cross
validation (white).

that was recorded during a different day. In this way we can
test the robustness of the methods, meaning that the signal
characteristics may change from the training and testing data
sets due to slight changes of the electrodes position or of the
different moods of the user.

Some of the methods have parameters that need to be
adjusted (like the C of SVR or the width σ of the RBF kernel).
To obtain unbiased results, the parameters are set by doing
a sixfold cross validation on each of the training sets of the
sevenfold cross validation (figure 2). To optimize the results,
the features are normalized (for every trial, each feature is
normalized according to the mean and standard deviation of its
values over the training trials only; in this way it is compatible
with online analysis).

In order to evaluate the use of doing cross validation a
three-way split analysis was also performed, using the first four
sessions for training, session five for selecting the parameters
and the last two sessions to evaluate the performances. The
three-way split analysis resulted in a lower performance on the
test set of about 15% of r2.

2.2.4. Quantifying the differences between methods. During
online experiments the performances of the users can be
measured by the percentage of hit targets. Although this
could be done for the offline analysis, it would be biased
for two reasons. First during online analysis the users correct
their trajectories according to the feedback and those same
corrections are used during offline analysis even if they are not
appropriate. Secondly, during the online experiment there is
only one target present on the screen for each trial, though the
only way to fail a trial is if the user cannot reach this target
within 20 s. (The online experiment was designed to teach
the users how to move the cursor and not to evaluate their
performances. That is why only one target was present at the
same time.)

Because we are evaluating regression techniques, a natural
measurement of the performances is the correlation of the
output of the regression with the objective (i.e. the position of
the target for the global approach or the relative direction of
the target for each sliding window).

Unfortunately, it is not possible to directly translate r2 into
performance accuracy. The only thing that can be said is that
the closer it is to 1, the more the user would have been moving
toward the target if he had used this method.

Another issue is that the results vary a lot across users
and vary depending on which series are used for training and
testing, though the benefit from using a particular method for
the regression can be hidden by the natural variation of the
results. A solution is to measure the performance of each
method as the ratio of its results (given as the person’s r2) over
the results of a method of reference.

The objective is then to compute the increase (in percent)
of the results by using a particular method compared to a
method of reference, namely multiple linear regression, as
well as a confidence interval of this increase.

First, for each of the n parts of the n-fold cross validation
and each user, we compute the logarithm of the ratio of the
result (in terms of r2) of the two methods. The mean and
standard deviation are then calculated and used to compute
the confidence interval of the logarithm of the ratio according
to [

r̄ − tm−1
1−α

2

S√
m

, r̄ +
tm−1
1−α

2

S√
m

]
,

where r̄ and S are the mean and standard deviation of the
logarithm of the ratio of the results, m equals n times the
number of users, 1−α is the confidence level and t kγ is
the quantile of order γ of the Student law with k degrees
of freedom.

The increase can be computed by the following equation:

incr = 100 × (er̄ − 1),

which is also applied to the boundaries of the previous interval
to compute the final confidence interval. The use of the
logarithm and then the exponential is necessary because we are
using ratios and not differences—for the mean it is equivalent
to computing the geometric mean.

2.3. The different regression techniques

Three different regression techniques are compared. The first
technique is ‘multiple linear regression’. It is closest to the
technique that was actually used online, and thus is the one to
which the other techniques are compared.

The second technique is the ‘LASSO regression’
(Tibshirani 1996), which adds a penalty to the multiple linear
regression to make it generalize better. More precisely,
LASSO regression consists in minimizing the square of the
l2 norm of the difference between the goal and output, and an
l1 penalty. It can be written as

min
β

‖Y − Xβ‖2
2 + λ

p∑
i=1

|βi |,

where Y ∈ R
n is the desired output, X ∈ R

n×p is the features
matrix and β ∈ R

p is a parameter vector.
The third technique is the application of support vector

machines (Vapnik 1995, 1998a, 1998b) to regression, also
called SVR (Smola 1996). It is used with two different kernels:
a linear kernel and a radial basis function kernel:

k(x, y) = e
−‖x−y‖2

2σ2 .

4

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

2.4. Feature selection

2.4.1. Critical issues. In one sense the higher the dimension
of the feature space (i.e. the more electrodes and frequencies
used) the more information on each trial or each sliding
window is available, and so the more accurate the cursor
control can be. Unfortunately, not all features contain useful
information and instead may add mostly noise. This is why
using more features can appear to increase the information, but
actually decreases the information to noise ratio. When too
many features are used, every sample (trial or sliding window)
of the training data set can be predicted from noise alone.
The performances will then be close to perfect on the training
set and catastrophic on the testing one. The solution to this
problem is to try to select the features that will add useful
information without causing a decrease in global performance.

Two different approaches to features selection can be
found in the machine learning literature: the so-called filter
and wrapper methods (Blum and Langley 1997). The filter
methods consist in eliminating the irrelevant features (or
selecting the useful ones) before the use of the learning
algorithm. In contrast, the wrapper methods test the learning
algorithm with different subsets of features to try to select
the optimal subset. The wrapper approach can provide
better feature selection (Kohavi and John 1995), but generally
implies a higher computational cost than filter methods due to
the multiple trainings of the learning algorithm with different
feature subsets.

The time needed to train the SVR (especially with the
RBF kernel when using large amount of features) being too
long to use the wrapper method, we will focus on the filter
approach and propose a fast and efficient way to select the
features.

The filter methods can be subdivided into two categories.
First, the methods that evaluate the use of each feature
separately. The usefulness of a feature can be measured by
its correlation with the desired output (here the optimal cursor
movement) or by its mutual information, to take into account
nonlinearity (McFarland et al 2006a). Secondly, the methods
that evaluate in one comprehensive analysis the usefulness of
all the features. For example, if the features are normalized,
the coefficients of a regression that incorporates all the features
as independent variables indicate the usefulness of each feature
(e.g. the LASSO method is often used this way to select
features (Tibshirani 1996)).

The major drawback of most of the methods of the first
category is that they do not take into account the redundancy
of the information. For example, if two features contain
very similar information, they will certainly be selected
together, although only one may be useful, the other could
just add more noise. This is particularly true in our case,
where features extracted from neighbor electrodes and/or at
close frequencies, will contain similar information and highly
correlated noise. To deal with this issue it is possible to
recursively select the features that add the most information to
the group of features already selected. We can then order the
features in a way that takes into account the redundancies of
the information, and uses only those features that add useful
information.

Table 1. Feature ordering algorithm. best feature(A, B) is a
function that gives the index of the column of A that contains the
most information about B. A ,j represents the j th column of A seen
as a vector of R

m, 〈X|Y 〉 = XT · Y is the Euclidian scalar product
and ‖X‖ = √〈X|X〉 is its associated norm.

Feature ordering algorithm

(1) for i = 1..n
(2) ind = best feature(A, B)
(3) features order(i) ← ind
(4) for j = 1..n

(5) A ,j ← A ,j − 〈A ,j |A ,ind〉
‖A ,ind‖2 A ,ind

end
end

This is a greedy algorithm (i.e. it makes locally optimal
choice at each stage with the hope of finding the global
optimum) that is not necessarily optimal, since it is not certain
that the subset of the features selected is the one that contains
the most information. Nevertheless, determining the best
subset would be extremely time consuming, and this algorithm
should provide a good approximation to the optimum
solution.

2.4.2. The feature selection algorithm. Let A ∈ R
m×l

be the matrix representing the training data, where l =
nElec × nfrequencies is the dimension of the features space (or
the number of features) and m is the number of data points
(in our case the total number of sliding windows for all the
trials). Ai,j is then the value of the j th feature for the ith sliding
window.

Let B ∈ R
m×2 be the matrix of the desired output. The two

dimensions of the matrix represent the horizontal and vertical
control command for every sliding window.

The algorithm is described in table 1. The first step
is to select the feature that contains the most information
about the desired output. In our case, it is evaluated by the
correlation of the feature with the output. The second step
consists in removing from the other features the information
that is contained in the feature that has just been selected. If
we consider the features as vectors in the Euclidian space
R

m, this step is exactly the orthogonal projection of the
remaining features in the direction of the previously selected
feature. The algorithm will continue by selecting the next
feature according to the first step and so on. More precisely,
the algorithm saves the result of the first evaluation of
the usefulness of the features and selects the new features
according to the new evaluation (meaning after the multiple
projections) and the original evaluation. This guarantees
that it selects only features that originally contained unique
information.

Once the features have been ordered, the p first ones will
be used for the regression (where p is a parameter that has
been adjusted by cross validation).

2.4.3. Improving the RBF kernel. The feature selection
algorithm does not take into account the fact that the first
selected feature is generally more important than the feature

5

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

number p. In the case of the SVR with the RBF kernel, we
can define a norm that takes into account this difference in
importance between the features by adding a weight to each
component. If x is the j th data point (x = A−,j), xi being the
value of the ith feature for the j th data point (xi = Ai,j), we
define the norm of x by

‖x‖2
w = 1∑n

i=1 wi

n∑
i=1

wix
2
i

with w ∈]0, 1]n and ∀ i < j, wi � wj .

The modified kernel is now

k(x, y) = e
−‖x−y‖2

w

2σ2 .

The vector of weights is defined by

wi = β

β + iα − 1
,

where α and β are the parameters that have to be adjusted. To
decrease the time necessary for the training of the SVR, it is
possible to set the weights wi to 0 when i > p. This leads to
the use of only the p first features, but is a good approximation
when wp is small.

3. Results

3.1. Comparison of regression techniques when using the
whole trial

Figure 3 shows that the linear techniques (multiple regression,
LASSO regression and SVR with a linear kernel) give very
similar results on the test data set. The test data set results are
improved by the SVR technique with a radial basic function
kernel, particularly when more data are used for training. The
results on the test set for the SVR with the RBF kernel are much
lower than the ones on the training set, reflecting most likely
an over-fitting issue. This can be solved by a better features
selection, which is done by modifying the RBF kernel (see
section 2.4.3 and results in figure 6).

However, those results have to be interpreted with caution.
First, in order to obtain results from the training data sets of
different size (in percent of the total data), trials from the same
session were split between the training and testing data sets,
and so, the result of figure 3 may be biased. In the remainder
of the paper all the results will be obtained with a training data
set of 85% of the total data corresponding to a sevenfold cross
validation (this way session will not be split between training
and testing data sets).

Secondly, figure 3 was obtained with the global trial
approach. One could make the hypothesis that even if the
translation of each sliding window to the cursor movement
is a linear process, the translation of the global trial into the
position of the target could be nonlinear, which would explain
the better result of the SVR with the RBF kernel.

Therefore, the next section will be dedicated to adjust and
validate the model used for the sliding window approach and
section 3.3 will focus on a deeper comparison of the SVR with
a RBF kernel to multiple linear regression.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

r²

training set size (in % of total data)

Regression
LASSO
SVR linear
SVR rbf

Figure 3. Results on the training (dashed lines) and testing (full
lines) data sets in terms of the square of Pearson’s correlation
coefficient as a function of the size of the training data set for the
four different methods.

3.2. Using the multiple linear regression technique to
compare the influence of different parameters when working
with sliding windows

To do a realistic offline analysis using sliding windows, a
model of the interaction between the user and the BCI had to
be built. Before using this model to compare feature translation
algorithms it has to be validated. This model is mostly based on
the assumption that the users take into account the position of
the cursor and aim toward the target rather than just focusing
on the target. One way of validating this assumption is to
calculate the influence of using the cursor position (which is
done in the next section) as well as the benefit of using the
sigmoid function.

To be as close as possible to online analysis, the multiple
linear regression technique was used, with only two electrodes
and no features selection.

3.2.1. Influence of the delay used for the sliding windows
method. A very long delay (e.g. Inf in figure 4) represents
the case in which the cursor’s prior movement is not taken into
account (i.e. the infinite delay means that the position stays at
the starting point). For all the users, except two, taking into
account the cursor position increases the correlation between
the output and the target direction (figure 4 and table 2). This
increase is maximal for a specific delay, which varies across
the users. These results confirm our hypothesis that the users
take into account the position of the cursor.

3.2.2. Using the sigmoid function to compute the relative
position of the target. The effects on performance from using
the sigmoid function are shown in table 3.

3.2.3. Comparison of interpolation techniques. Figure 5
shows the influence of the interpolation method on the results
of the multiple linear regression when working with sliding

6

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

Table 2. Increase of the results on the testing data set (in percent of r2) by taking into account the cursor position compared to using only the
target position. The best delay is the delay for which the increase is maximum. The values in bold are significant (p < 0.05).

Users A B C D E F G H Mean

Increase (%) 29 22 13 −5 18 6 17 6 12.8
Confidence interval at 95% 15; 46 7; 39 3; 24 −14; 6 8; 30 −18; 38 8; 26 −7; 21 7.7; 18.1
Best delay (s) 0.75 0.5 0.75 2 0.3 0.2 0.5 0.2 0.65

Table 3. Increase of the results on the testing data set (in percent of r2) by using the sigmoid function to compute the relative position of the
target. The values in bold are significant (p < 0.05). (The multiple linear regression technique was used with the sliding windows approach,
two electrodes and features selection.)

Users A B C D E F G H Mean

Increase (%) −1.53 8.22 1.5 −3.49 3.12 23.9 5.77 7.7 5.4
Confidence interval at 95% −3.8; 0.8 −0.4; 17 −3.3; 7.7 −2.2; 9.1 2.3; 4.6 −1.9; 56 2.7; 9.7 3.6; 11.9 4.1; 6.7

0 0.5 1 1.5 2 Inf
0.02

0.06

0.1

0.14

0.18

delay (s)

R
es

ul
t o

n
th

e
te

st
in

g
da

ta
 s

et
 (

r2)

Figure 4. Results on the testing data set (as r2) as a function of the
delay. Each user is represented by a different color. The two users
with spinal cord injuries are represented by dashed lines. The right
end of the curves is with an infinite delay (i.e. the previous cursor
movement is not taken into account, so that the desired output of the
regression is the absolute coordinate of the target and does not
depend on the cursor position). (The multiple linear regression
technique was used with the sliding windows approach, two
electrodes and features selection.)

windows. A cubic spline interpolation improves the results by
15% ([9.7% 20.3%] p < 0.05) compared to no interpolation.
This result underscores the importance of temporally aligning
the signal from the different electrodes. The cubic spline
interpolation also enhances the result by 3.6% ([0.9% 6.3%]
p < 0.05) compared to a linear interpolation that was used
during online analysis and by 2.5% ([0.1% 4.9%] p < 0.05)
compared to a cubic interpolation.

These results may be explained by the fact that the cubic
splines are twice continuously differentiable, which makes
them more adequate to model continuous phenomenon, such
as oscillatory rhythms, than piecewise affine functions (used in
linear interpolation) or piecewise cubic Hermite polynomials
(which are just once continuously differentiable).

Training data set Testing data set
0

0.01

0.02

0.03

0.04

0.05

0.06

r2

no interpolation
nearest neighbour
linear
spline
cubic

Figure 5. Average results in terms of r2 for eight users (with the
multiple linear regression technique, the sliding windows approach,
two electrodes and features selection), when no interpolation is used
(dark blue) and for four different interpolation methods. The error
bars represent the interval of confidence at 95% of the increase of
the results compared to no interpolation. Except for the nearest
neighbor, all the interpolation techniques significantly increase the
results.

3.3. Comparing multiple linear regression and SVR with a
RBF kernel, with and without features selection, when using
sliding windows

For each user, the seven sessions were used for a sevenfold
cross validation. The feature normalization and the adjustment
of the parameters (number of features to use for the multiple
regression; weights of the features, σ and C for the SVR) were
done on the training data sets only, by another level of cross
validation (figure 2).

Early results, like the global trial approach, have shown
that SVR with a linear kernel was not able to enhance the
performances compared to multiple linear regression. We
then focus on the comparison of SVR with a RBF kernel and
multiple linear regression as well as the impact of selecting
features.

7

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

Training data set Testing data set
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

r2

MLR, 2elec
MLR, 10elec
MLR, 10elec, f. selection
SVR RBF, 10elec
SVR RBF, 10elec, f. selection
SVR modified RBF, 10elec

Figure 6. Average results (as r2) for eight users, for multiple linear
regression (MLR) and SVR with a RBF kernel, when working on
sliding windows. Feature-unique weights for the RBF were
calculated by the feature selection algorithm. The error bars
represent the interval of confidence at 95% of the increase of the
results compared to MLR with ten electrodes and no features
selection. The stars show methods significantly different from ten
electrodes and no feature selection.

Figure 6 shows the average increase, for all users, of SVR
with RBF compared to using multiple linear regression with
ten electrodes. The relative increase of r2 resulting from using
SVR with the modified RBF kernel over the use of multiple
regression when using ten electrodes is 12.6% and is significant
([7.9%; 17.4%] p < 0.05). The relative increase of r2 reaches
24.2% ([15.8%; 33.7%] p < 0.05) when comparing SVR with
ten electrodes to multiple regression with the two electrodes
that are used during online analysis. The results for SVR with
the standard RBF kernel are not significantly different from
MLR with ten electrodes, which underlines the importance of
appropriate feature selection.

The important differences between the results on the
training sets and the testing sets mean generalization to new
examples is difficult and suggest, especially for the SVR, that
the use of additional training data could improve the result.

4. Discussion

4.1. Importance of the user correction

The user’s task was simply to move the cursor from the middle
of the screen to one of the targets, and so could in theory
be done without any feedback. Nevertheless, taking into
account the cursor position during offline analysis improves the
performance by about 13%. This fact suggests that the users
(or at least some of them) are using the feedback to control
the cursor trajectory in real time, meaning that they are able
to correct the cursor movement and not just aim at the target
during the whole trial. Moreover, the delay that represents
the user reaction time, about 600 ms, is very similar to the
reaction time when subjects perform a conventional motor
task. These results are in general agreement with studies
of manual reaction times (e.g. Albert et al (2007)) and our

previous study of a different mu-rhythm task (Friedrich et al
2009).

It is possible to look at this BCI as a way to select
among eight possible targets and so to compute the bit rate
transmission, which is often used as a measure of BCI
performance. But this view does not take into account the
main purpose of this BCI, namely, allowing the user to control
the cursor in real time. The results suggest that using this
BCI is similar to using a standard pointing device such as a
computer mouse.

One of the goals of this study was to develop a model
of online experiments to enable realistic offline analysis using
online recorded data. The benefits of taking into account
the cursor movement support our model. The next step to
validate our model will be to confirm with an online analysis
the prediction of our model (namely the advantage of SVR
with the modified RBF kernel over multiple linear regression).

4.2. Feature selection

As figure 6 shows, when the number of electrodes used
increased from 2 to 10, the results on the training data set were
greatly improved (+83% for MLR), whereas the results on the
testing data set just slightly improved (+10% for MLR). The
use of the feature selection algorithm prevents the over-fitting
issue. This results in a decrease in the training set but also
in an increase in the testing set. It is particularly true for the
SVR with RBF kernel: the modified RBF kernel, which uses
feature selection, decreases the results in the training data set
by 54% and improves the results in the testing data set by 9%
compared to SVR with RBF kernel and no feature selection.

It is also important to note that using the modified kernel
produced better results than just using a standard RBF kernel
on selected features. This justified ordering the features and
giving them different weights in contrast to using uniform
weighting of the subset of the features.

Another advantage of feature selection is that when fewer
features are used, the training and testing of the SVR is faster.
For example, computing the results in figure 6 took about twice
as much time when using all the features as when selecting the
features and using the modified RBF kernel with some weights
wi set to zero.

4.3. SVR with the modified RBF kernel versus multiple
regression

One important difference is that the training of the SVR,
especially when using a nonlinear kernel, is 10 to 100 times
slower than the training of the multiple linear regression.
Fortunately this is not a real issue for the online analysis.
Evaluation of the output for each sliding window can be done
in real time, and training the SVR takes about a minute and so
can be done between sessions.

It is important to note that this study consisted of offline
analysis of previously recorded data. The users were trained
on and used an online method (McFarland et al 2006b) that was
very close to multiple regression used here. For this reason, the
comparison of the multiple regression and the SVR with RBF
kernel might be biased. Moreover, to save some computation

8

J. Neural Eng. 7 (2010) 016003 J Fruitet et al

time, some parameters, like the time delay for the use of the
cursor positions, were optimized using the multiple regression
only. As a result, the benefit of using a SVR with a RBF
kernel during an online study may be even more than +12.6%
compared to multiple linear regression reported here.

Another way to increase the accuracy of this BCI was
explored in this study, namely increasing the number of
features by using the electrodes surrounding the two electrodes
used in the online study. This augmentation of the number
of features potentially created a problem of over-fitting,
in particular for the SVR with a RBF kernel, but it was
successfully solved by defining a new kernel using a RBF
kernel and a feature selection algorithm. The use of this
modified RBF kernel with ten electrodes resulted in an average
improvement of +24.2% compared to the multiple regression
using only two electrodes.

All the results of this study have been obtained with
an offline analysis and so will have to be confirmed by
online studies. It will also be interesting to investigate
the impact of these new techniques on the evolution of
the users’ performance. It is as yet unknown whether the
SVR will decrease the training time necessary to achieve
multidimensional cursor control, or whether it will improve
the accuracy of the control the user ultimately achieves.

Acknowledgments

This work was supported in part by grants from NIH (HD30146
(NCMRR, NICHD) and EB00856 (NIBIB & NINDS)) and the
James S McDonnell Foundation.

References

Albert N B, Weigelt M, Hazeltine E and Ivry R B 2007 Target
selection during bimanual reaching to direct cues is unaffected
by the perceptual similarity of targets J. Exp. Psychol. 33
1107–16

Birbaumer N, Ghanayim N, Hinterberger T, Iversen I,
Kotchoubey B, Kubler A, Perlmouter J, Taub E and Flor H
1999 A spelling device for the paralyzed Nature 398 297–8

Blankertz B, Muller K-R, Krusienski D J, Schalk G, Wolpaw J R,
Schlogl A, Pfurtscheller G, Millan J R, Schroder M
and Birbaumer N 2006 The BCI competition III: validating
alternative approaches to actual BCI problems IEEE Trans.
Neural Syst. Rehabil. Eng. 14 153–9

Blum A and Langley P 1997 Selection of relevant features and
examples in machine learning Artif. Intell. 97 245–71

Efron B and Tibshirani R 1993 An Introduction to the Bootstrap
(London: Chapman and Hall)

Farwell L A and Donchin E 1988 Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain
potentials Electroencephalogr. Clin. Neurophysiol.
70 510–23

Friedrich E V C, McFarland D J, Neuper C, Vaughan T M,
Brunner P and Wolpaw J R 2009 A scanning protocol for a
sensorimotor rhythm-bases brain–computer interface Biol.
Psychol. 80 169–75

Kohavi R 1995 A study of cross-validation and bootstrap for
accuracy estimation and model selection Proc. 14th Int. Joint
Conf. on Artificial Intelligence vol 2 pp 1137–43

Kohavi R and John G H 1995 Wrappers for feature subset selection
Artif. Intell. 97 273–324

Lachenbruch P A and Mickey M R 1968 Estimation of error rates in
discriminant analysis Technometrics 10 1–11

Marple S L 1987 Digital Spectral Analysis with Applications
(Englewood Cliffs, NJ: Prentice-Hall)

McFarland D J, Anderson C W, Muller K R, Schlogl A
and Krusienski D J 2006a BCI meeting 2005—workshop on
BCI signal processing: feature extraction and translation IEEE
Trans. Neural Syst. Rehabil. Eng. 14 135–8

McFarland D J, Krusienski D J and Wolpaw J R 2006b
Brain–computer interface signal processing at the Wadsworth
Center: mu and sensorimotor beta rhythms Prog. Brain Res
159 411–9

McFarland D J, Lefkowicz T and Wolpaw J R 1997a Design and
operation of an EEG-based brain–computer interface (BCI)
with digital signal processing technology Behav. Res. Meth.
Instrum. Comput. 29 337–45

McFarland D J, McCane L M, David S V and Wolpaw J R 1997b
Spatial filter selection for EEG-based communication
Electroencephalogr. Clin. Neurophysiol. 103 386–94

McFarland D J and Wolpaw J R 2005 Sensorimotor rhythm-based
brain–computer interface (BCI): feature selection by regression
improves performance IEEE Trans. Neural Syst. Rehabil. Eng.
14 372–9

McFarland D J and Wolpaw J R 2008 Sensorimotor rhythm-based
brain–computer interface (BCI): model order selection for
autoregressive spectral analysis J. Neural Eng. 5 155–62

Mosier Cl 1951 Symposium: the need and means of
cross-validation: I. Problems and designs of cross-validation
Educ. Psychol. Meas. 11 5–11

Muller K R, Anderson C W and Birch G E 2003 Linear and
non-linear methods for brain–computer interfaces IEEE Trans.
Neural Syst. Rehabil. Eng. 11 165–9

Pfurtscheller G, Flotzinger D and Kalcher J 1993 Brain–computer
interface—a new communication device for handicapped
persons J. Microcomput. Appl. 16 293–9

Schalk G, McFarland D J, Hinterberger T, Birbaumer N and
Wolpaw J R 2004 BCI2000: a general-purpose brain–computer
interface (BCI) system IEEE Trans. Biomed. Eng.
51 1034–43

Sharbrough F, Chatrian C E, Lesser R P, Luders H, Nuwer M
and Picton T W 1991 American electroencephalographic
society guidelines for standard electrode position nomenclature
J. Clin. Neurophysiol. 8 200–2

Smola A J 1996 Regression estimation with support vector learning
machines Master’s thesis Technische Universität München

Stone M 1974 Cross-validatory choice and assessment of statistical
predictions J. R. Stat. Soc. B 36 111–47

Tibshirani R 1996 Regression shrinkage and selection via the Lasso
J. R. Stat. Soc. B 58 267–88

Vapnik V 1995 The Nature of Statistical Learning Theory (New
York: Springer)

Vapnik V 1998a Statistical Learning Theory (New York: Wiley)
Vapnik V 1998b The support vector method of function estimation

Nonlinear Modeling: Advanced Black-Box Techniques
ed J A K Suykens and J Vandewalle (Boston, MA: Kluwer)

Wolpaw J R, Birbaumer N, McFarland D J, Pfurtscheller G
and Vaughan T M 2002 Brain–computer interfaces for
communication and control Clin. Neurophysiol.
113 767–91

Wolpaw J R and McFarland D J 2004 Control of a two-dimensional
movement signal by a noninvasive brain–computer interface in
humans Proc. Natl Acad. Sci. 101 17849–54

Wolpaw J R, McFarland D J, Neat G W and Forneris C A 1991 An
EEG-based brain–computer interface for cursor control
Electroencephalogr. Clin. Neurophysiol. 78 252–9

9

http://dx.doi.org/10.1038/18581
http://dx.doi.org/10.1109/TNSRE.2006.875642
http://dx.doi.org/10.1016/S0004-3702(97)00063-5
http://dx.doi.org/10.1016/0013-4694(88)90149-6
http://dx.doi.org/10.1016/j.biopsycho.2008.08.004
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.2307/1266219
http://dx.doi.org/10.1109/TNSRE.2006.875637
http://dx.doi.org/10.1016/S0079-6123(06)59026-0
http://dx.doi.org/10.1016/S0013-4694(97)00022-2
http://dx.doi.org/10.1109/TNSRE.2005.848627
http://dx.doi.org/10.1088/1741-2560/5/2/006
http://dx.doi.org/10.1177/001316445101100101
http://dx.doi.org/10.1109/TNSRE.2003.814484
http://dx.doi.org/10.1006/jmca.1993.1030
http://dx.doi.org/10.1109/TBME.2004.827072
http://dx.doi.org/10.1016/S1388-2457(02)00057-3
http://dx.doi.org/10.1073/pnas.0403504101
http://dx.doi.org/10.1016/0013-4694(91)90040-B

	1. Introduction
	2. Methods
	2.1. Data collection and preprocessing
	2.2. Two approaches to comparing the different translation algorithms
	2.3. The different regression techniques
	2.4. Feature selection

	3. Results
	3.1. Comparison of regression techniques when using the whole trial
	3.2. Using the multiple linear regression technique to compare the influence of different parameters when working with sliding windows
	3.3. Comparing multiple linear regression and SVR with a RBF kernel, with and without features selection, when using sliding windows

	4. Discussion
	4.1. Importance of the user correction
	4.2. Feature selection
	4.3. SVR with the modified RBF kernel versus multiple regression

	Acknowledgments
	References

