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Abstract
Brain–computer interfaces (BCIs) enable users to control devices with
electroencephalographic (EEG) activity from the scalp or with single-neuron activity from
within the brain. Both methods have disadvantages: EEG has limited resolution and requires
extensive training, while single-neuron recording entails significant clinical risks and has
limited stability. We demonstrate here for the first time that electrocorticographic (ECoG)
activity recorded from the surface of the brain can enable users to control a one-dimensional
computer cursor rapidly and accurately. We first identified ECoG signals that were associated
with different types of motor and speech imagery. Over brief training periods of 3–24 min,
four patients then used these signals to master closed-loop control and to achieve success rates
of 74–100% in a one-dimensional binary task. In additional open-loop experiments, we found
that ECoG signals at frequencies up to 180 Hz encoded substantial information about the
direction of two-dimensional joystick movements. Our results suggest that an ECoG-based
BCI could provide for people with severe motor disabilities a non-muscular communication
and control option that is more powerful than EEG-based BCIs and is potentially more stable
and less traumatic than BCIs that use electrodes penetrating the brain.

M This article features online multimedia enhancements

1. Introduction

Brain–computer interfaces (BCIs) convert brain signals into
outputs that communicate a user’s intent [1]. Because this
new communication channel does not depend on peripheral
nerves and muscles, it can be used by people with severe
motor disabilities. BCIs can allow patients who are totally
paralyzed (or ‘locked in’) by amyotrophic lateral sclerosis
(ALS), brainstem stroke or other neuromuscular diseases
to express their wishes to the outside world. However,
practical applications of BCI technology to the needs of people

∗ The authors declare that they have no competing financial interests.

with severe disabilities are impeded by the limitations and
requirements of current BCI methodologies.

BCIs can use non-invasive or invasive methods. Non-
invasive BCIs use electroencephalographic activity (EEG)
[2–7] recorded from the scalp. They are convenient, safe and
inexpensive, but they have relatively low spatial resolution
[8, 9], are susceptible to artifacts such as electromyographic
(EMG) signals, and often require extensive user training.
Invasive BCIs use single-neuron activity recorded within the
brain [10–13]. While they have higher spatial resolution
and might provide control signals with many degrees of
freedom, BCIs that depend on electrodes within cortex face
substantial problems in achieving and maintaining stable
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Table 1. Clinical profiles. All patients were literate and functionally independent. During the period in which ECoG data were collected,
patient A was acutely impaired (e.g., in speech fluency, attention and response times) by slow post-operative recovery. None of the patients
had a traumatic or structural lesion that was responsible for their seizures (i.e., all had idiopathic epilepsy).

Patient Age Sex Cognitive/motor capacity Seizure type Seizure focus

A 28 M Moderately impaired GTC Frontal lobe
B 23 M Normal range CP Left middle TL
C 35 F Normal range CP Left inferior and mesial TL
D 33 M Mildly impaired CP & GTC Left middle and posterior TL

Abbreviations: M, male; F, female; GTC, secondarily generalized tonic -clonic; CP, complex
partial; TL, temporal lobe.

long-term recordings. The small, high-impedance recording
sites make penetrating electrodes susceptible to signal
degradation due to encapsulation [14]. Also, small
displacements of the tiny penetrating electrodes can move the
recording sites away from the cortical layers that contain the
large easily recorded neurons, such as pyramidal neurons in
layer 5 of motor cortex. These issues are crucial obstacles that
currently prohibit their clinical use in humans.

An intermediate BCI methodology, using
electrocorticographic activity (ECoG) recorded from the
cortical surface, could be a powerful and practical alternative
to these extremes. ECoG has higher spatial resolution than
EEG (i.e., tenths of millimeters versus centimeters [8]),
broader bandwidth (i.e., 0–200 Hz versus 0–40 Hz), higher
amplitude (i.e., 50–100 µV maximum versus 10–20 µV),
and far less vulnerability to artifacts such as EMG [8, 9, 15].
At the same time, because ECoG is recorded by subdural
electrode arrays and thus does not require electrodes that
penetrate into cortex, it is likely to have greater long-term
stability and might also be safer than single-neuron recording
[16, 17].

This study set out to explore the potential value for BCI
applications of ECoG activity recorded over sensorimotor
cortex in humans. We studied four patients in whom
subdural electrode arrays were implanted for 3–8 days in
preparation for surgery to remove an epileptic focus (see
table 1 for clinical profiles). All four provided informed
consent for the study, which had been reviewed and approved
by the Washington University School of Medicine Institutional
Review Board. The experimental approach was developed
based on current understanding of sensorimotor rhythms and
on the methodology of current EEG-based BCIs that use these
rhythms [18] (see [1] for review). Sensorimotor rhythms
comprise µ (8–12 Hz), β (18–26 Hz) and γ (>30 Hz)
oscillations [6, 19–22]. They are thought to be produced
by thalamocortical circuits and they change in amplitude
in association with actual or imagined movements [22–26].
BCIs based on EEG oscillations have focused exclusively on
µ and β rhythms because γ rhythms are inconspicuous at
the scalp [27]. In contrast, γ rhythms as well as µ and β

rhythms are prominent in ECoG [22–26]. This paper is the
first report of a study that applies ECoG activity to online
operation of a BCI system. We identified the locations and
frequency bands of ECoG sensorimotor rhythms associated
with specific movements or speech, or with imagery of those
actions, and then determined whether people could learn to

use these rhythms to control a cursor on a computer screen
(see section 4 for additional details).

The principal results show that people can quickly learn
to use the ECoG activity associated with imagery to control
a cursor. Furthermore, additional data show that γ rhythms
that are prominent in ECoG, but not in scalp EEG, are highly
correlated with the direction of joystick movements in two
dimensions. These results indicate that an ECoG-based BCI
could provide control that is more precise and more quickly
acquired than that provided by EEG-based BCIs, and at the
same time may have signal stability advantages over BCIs that
use microelectrodes implanted in cortex. Thus, BCI methods
based on ECoG might prove to be of substantial value and
thereby considerably extend and facilitate the application of
BCI technology to the communication and control needs of
people with severe motor disabilities.

2. Results

2.1. ECoG control of one-dimensional cursor movement

To select the sensorimotor rhythms to be used for online
cursor control, we recorded ECoG from 32 electrodes over
the left frontal-parietal-temporal cortex (see example in
figure 1) while each patient performed each of six tasks: three
motor actions (i.e., opening and closing right or left hand,
protruding the tongue, saying the word ‘move’) and imagining
each of these actions. For each electrode location, we derived
by autoregressive spectral analysis [28] the voltage spectra
from 0 to 200 Hz for each task and for the between-task
inactive period. We compared each task to the inactive period
and calculated the r2 of the corresponding spectra (i.e., the
proportion of the signal variance that was accounted for by
the task) [29]. As expected [23], each task in each patient was
typically associated with decreased µ and β rhythm amplitudes
and increased γ rhythm amplitude at several locations over pre-
frontal, pre-motor, sensorimotor and/or speech areas [30, 31].
The spatial and spectral foci of task-related ECoG activity,
as revealed in the r2 analysis, were usually similar for action
and for imagination of the same action (e.g., saying the word
‘move’ and imagining saying the word ‘move’) [32].

For each patient, we selected one or two electrodes and
up to four µ, β and/or γ frequency bands that showed the
highest correlations with one of the three actions or imagery
tasks described above (i.e., the ECoG features that had the
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Figure 1. Examples of electrode placement and ECoG signals. (a) Intra-operative placement of a 64-electrode subdural array.
Inter-electrode spacing was 1 cm and electrode diameter was 2 mm; Ant: anterior. (b) Post-operative lateral skull radiograph showing grid
placement. (c) Raw ECoG signals from patient C during control of cursor movement. Black and red traces are from one of the electrodes
that controlled cursor movement and are examples for the patient resting and imagining saying the word ‘move’, respectively. (d) Spectra
for the corresponding conditions for the final run of online performance. Imagery is associated with decrease in µ (8–12 Hz) and β
(18–26 Hz) frequency bands.

Table 2. Actions and imagined actions, electrode locations and ECoG frequency bands used for ECoG control of one-dimensional cursor
movement, and final accuracies of that control. Brodman’s areas were calculated using skull radiographs and a Talairach atlas [48].

Patient Action or imagined action Brodman’s area Frequency band (Hz) Amplitude Final accuracy

A Opening and closing right hand 2 10.5–18.5 Decrease 74%
2 48.5–54.5 Increase
3 30.5–34.5 Increase
3 48.5–50.5 Increase

B Imagining opening and closing right hand 3 30.5–32.5 Decrease 83%

C Imagining saying ‘move’ 9, 44 20.5–22.5 Decrease 97%

D Saying ‘move’ 6, 45 12.5–14.5 Decrease 93%
6, 45 26.5–28.5 Decrease
6, 45 34.5–36.5 Decrease

Imagining saying ‘move’ 6, 45 12.5–14.5 Decrease 97%
6, 45 26.5–28.5 Decrease
6, 45 34.5–36.5 Decrease

Protruding the tongue 45 12.5–14.5 Decrease 100%
Imagining protruding the tongue 45 12.5–14.5 Decrease 84%

highest values of r2). Patients then used the amplitudes of
these features to control cursor movement in an online BCI
protocol in which the objective was to move the cursor up
or down to a target located in the upper or lower half of the
screen. For example, patient B imagined right hand movement
to move the cursor up, and rested to move it down (see online
supplementary movie 1 at stacks.iop.org/JNE/1/63). The
accuracy expected if patients lacked any ECoG control
was 50%.

Patients completed one to eight 3 min runs separated by
1 min breaks. Each run comprised 33 individual trials
(5.5 s per trial). Over these short training periods (3–24 min),
all four patients achieved significant control of the cursor
(74–100% final accuracy). Table 2 summarizes all results and
figures 2 and 3 show analyses for the subset of results in which
patients used imagined actions to control the system. We focus
on imagined actions (rather than real actions) because they
are most relevant to BCI use by people who are paralyzed.
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Figure 2. ECoG control of vertical cursor movement using imagination of specific motor or speech actions to move the cursor up and rest to
move it down. The electrodes used for online control are circled and the spectral correlations of their ECoG activity with target location
(i.e., top or bottom of screen) are shown. Grids for patients B, C and D are green, blue and red, respectively. The particular imagery tasks
used are indicated. The substantial levels of control achieved with different types of imagery are evident. (The dashed lines indicate
significance at the p = 0.01 level.) Correlations were calculated for the final two runs of online performance. Two different locations are
shown for patients C and D: the solid and dotted r2 spectra correspond to the sites indicated by the solid and dotted line locators,
respectively. Grid locations were determined using stereotactic coordinates derived from a lateral skull radiograph and subsequently mapped
to a standardized brain with a Talairach transformation (http://ric.uthscsa.edu/projects/talairachdaemon.html). The three-dimensional brain
model was derived from MRI data [49].

Figure 2 illustrates for the final runs the strong correlation
between the goal (i.e., moving the cursor up or moving it
down) and the ECoG activity that controlled cursor movement.
Figure 3 shows the rapid improvements in accuracy over the
brief periods of study.

2.2. ECoG correlation with direction of two-dimensional
joystick movement

In addition to the online BCI operation described above, ECoG
was recorded while each patient used a joystick to move a
cursor from the center of a computer screen to a target at one
of 4 or 8 locations spaced around the periphery of the screen.
For each electrode, we compared the 0–200 Hz ECoG spectra
for joystick movement and for rest. All four patients showed
at one or more electrodes significant spectral changes (i.e.,
r2 > 0.1) between these conditions. We also compared the
spectra for different directions of movement (e.g., right versus
left). In patients B and D, we found µ, β and/or γ frequency

bands at specific electrodes that were strongly correlated with
movement direction. (Patient A had great difficulty executing
the joystick task due to acute (i.e., post-operative) and chronic
cognitive impairment. In patient C, the electrode grid was
placed very low (see figure 2) so that it barely touched the
lateral edge of the hand area.) Figures 4(a)–(c) illustrate with
data from patient D the ECoG correlations with movement
direction. It displays the correlations both immediately before
movement (i.e., the movement preparation period) and during
movement.

In further offline analyses of the joystick data from
patients B and D, we used the ECoG features (i.e., amplitudes
in specific frequency bands at specific electrodes) that had
the highest correlations with movement direction as the input
features to a neural network with no hidden layer and two
linear output neurons. The network was trained to predict the
vertical and horizontal directions of joystick movement. (One
output neuron predicted horizontal direction and the other one
vertical direction.) As shown in table 3 and figure 4(d),
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Figure 3. Learning curves for ECoG control of vertical cursor
movement using motor imagery to move up and rest to move down
(see text). (Accuracy in the absence of control would be 50%.)
Patient B ( ) imagined opening and closing the right hand,
patients C ( ) and D ( ) imagined saying the word ‘move’, and
patient D ( ) imagined protruding the tongue. In each case, the
rapid acquisition of control is evident and statistically significant by
X2 contingency test ( p < 0.05, <0.005, <0.005 and <0.001,
respectively). (Note: patient A, who was cognitively impaired by a
slow post-operative recovery, only used actual movement in
closed-loop control; thus, this figure does not include data for this
patient.)

the predictions were highly correlated with the actual
movement directions and generally showed substantial
generalization to other data sets.

These joystick results, combined with the finding that
both real and imagined motor actions show strong ECoG
correlations, suggest that people could use ECoG activity
recorded from a few properly selected sites for rapid and
accurate multi-dimensional control of cursor movement.

3. Discussion

This study demonstrates for the first time rapid learning
during closed-loop real-time control of cursor movements
using ECoG activity associated with motor or speech imagery

Table 3. Neural-network prediction of the direction of joystick movement from ECoG activity. Patients moved a cursor towards a target at
one of 4 or 8 locations (i.e., center-out task). The amplitudes in 10 Hz bands at 3 or 4 electrode locations were the input features to a neural
network (see text) that attempted to predict the vertical and horizontal directions of joystick movement. Columns A, B and C show the high
correlations between actual horizontal and vertical movements and the neural-network predictions of these movements. (In the case of 8
targets, these calculations were done for the subset of 4 targets that were the same as the targets in the 4-target task.) In A, the network was
trained on the whole data set and gave predictions for the same data set. In B, the network was trained on the first half of the data and gave
predictions for the second half. In C, the network was trained on the even trials and gave predictions for the odd trials. The network
predictions obtained from one data set generally show substantial generalization to another data set. (The last column shows the values of r2

that are significant at the 0.01 level.)

A B C Significance level

Subject No of trials Frequencies (Hz) No of locations r2(x) r2(y) r2(x) r2(y) r2(x) r2(y) (r2 for p < 0.01)

B (4 targets) 326 40–110 3 0.47 0.45 0.02 0.14 0.13 0.11 0.05
D (4 targets) 556 40–100 4 0.61 0.57 0.45 0.45 0.54 0.49 0.03
D (8 targets) 924 70–160 4 0.65 0.26 0.50 0.06 0.59 0.10 0.035

(figure 3). Using signal analysis and cursor control methods
that were developed in BCI studies employing scalp-recorded
EEG activity [33–36], this study found that ECoG-based
control develops more quickly than EEG-based control
[37, 38], and is likely to be substantially more effective in
providing communication and control to people with severe
motor disabilities.

Offline analysis of ECoG data recorded during a two-
dimensional (2D) center-out joystick task showed substantial
directional information (figure 4). Since Fetz and Finocchio’s
1971 study showed that a motor cortical neuron can be
used to control movement in a single dimension, researchers
have strived to expand this to multiple dimensions [39]. In
1986, Georgopoulos and colleagues identified an accurate
representation of three-dimensional arm movements in motor
cortex, and proposed an effective decoding algorithm for
predicting arm movements from a population of motor
cortical neurons [11]. Due to technological limitations
preventing real-time recording and analysis of data from
many individual cortical neurons simultaneously, it was not
until 2002 that Schwartz and colleagues became the first to
obtain three-dimensional closed-loop, real-time control of a
cursor in a monkey [13]. In 1994, Wolpaw and McFarland
demonstrated significant two-dimensional control with scalp-
recorded EEG signals in human subjects [37], and in current
work they are achieving EEG-based two-dimensional control
comparable to that reported in monkey single-neuron studies
[38]. This EEG-based control relies on substantial training
to establish two independent control signals (i.e., for vertical
and horizontal movements, respectively) that are not evident
prior to training. The two-dimensional joystick task used in
the present study was similar to a wide variety of planar hand
movements typically coordinated by the brain, and analysis
revealed directionally specific ECoG activity at frequencies
well above those usually discernible in scalp-recorded EEG.
In combination with the finding that ECoG correlations with
motor imagery and with actual movement are similar to each
other, the joystick data suggest that ECoG activity comparable
to that normally associated with behaviors such as joystick
control could support more natural BCI operation that requires
less training and achieves superior control.

The superiority of ECoG over EEG in reflecting
movement direction results in large part from its greater
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Figure 4. ECoG correlations with joystick movement direction before and during movement for patient D. At −400 ms the target appeared,
and at 0 ms the cursor appeared and began to move controlled by the joystick. The patient’s task was to move the cursor to a target at one of
4 or 8 locations (i.e., center-out task). (Figures (a)–(c) are based on the 8-location data set and are calculated for the left-most and right-most
target; (d) is based on the 4-location data set.) (a) Left and center panels: time courses for left and right movements, respectively, of the
amplitudes from 0–200 Hz of the difference between two adjacent electrodes. Right panel: the absolute value of the difference between left
and right time courses. Movement direction is reflected in ECoG across a wide frequency range, including frequencies far above the EEG
frequency range. In general, amplitudes at frequencies below and above 50 Hz change in opposite directions. (b) The correlation between
the signal shown in (a) and movement direction over the period of movement execution. Correlation is much higher at higher frequencies
not discernible in scalp EEG. (c) Correlation (for a single electrode location versus the remote reference electrode) with movement direction
for the 400 ms prior to cursor movement. µ rhythm activity predicts movement direction. (In (b) and (c), and indicate negative
correlation and positive correlation, respectively, with the amplitude of left movement minus right movement; and dashed lines indicate the
value of r2 that is significant at the 0.01 level.) (d) Average final cursor positions ( ) predicted by a neural network from ECoG activity are
close to the actual average final cursor positions ( ) (see text). (Error bars indicate the standard error of the mean.)

frequency range. As figure 4 illustrates, the ECoG frequencies
that best reflected the movement direction were in the high γ

range (i.e., 40–180 Hz), well above the frequency range (up
to 40–50 Hz) readily discernible in the scalp-recorded EEG.
ECoG’s superior frequency range is attributable to two factors.
First, the capacitance of cell membranes of the overlying tissue
combined with their intrinsic electrical resistance constitutes a
low-pass (RC) filter that largely eliminates higher frequencies
from the EEG [27]. Second, higher frequencies tend to be
produced by smaller cortical assemblies [40]. Thus, they are
more prominent at electrodes that are closer to cortex than
EEG electrodes and thereby achieve higher spatial resolution
[8, 9].

ECoG directional representation is likely to be further
improved by using a grid with closer electrode spacing.
The 1 cm inter-electrode distance in the grids used here is
significantly larger than the suggested optimum ECoG spatial
sampling resolution of 1.25 mm [8]. Indeed, we often observed
correlations limited to one or two recording sites. Thus,
recording with higher spatial resolution might substantially
improve ECoG-based BCI operation and facilitate control of
multi-dimensional movements.

Although the origin and nature of ECoG/EEG electrical
oscillations are not fully understood, our results are, in general,
consistent with the conventional overlapping homunculus

model of cortical functional anatomy. The frequency changes
elicited with various actual and imagined motor actions are
consistent with previous evidence that during sensorimotor
function (including speech), µ and β rhythm amplitudes
tend to decrease while γ rhythm amplitudes tend to increase
[23, 41–44].

In summary, ECoG is likely to be an excellent BCI
modality because it has higher spatial resolution, better signal-
to-noise ratio, wider frequency range and lesser training
requirements than scalp-recorded EEG, and at the same
time may have greater long-term stability of signal quality
over intracortical recording. By demonstrating the first use
of ECoG for online operation of a BCI system and by
showing its correlations with multi-dimensional movements,
our results support these expectations. Further development
of ECoG-based BCI methodology could greatly increase the
power and practicality of BCI applications that can serve
the communication and control needs of people with motor
disabilities.

4. Methods

4.1. Subjects and experimental paradigms

The subjects in this study were four patients with intractable
epilepsy who underwent temporary placement of intracranial
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electrode arrays to localize seizure foci prior to surgical
resection. They included three men (patients A, B and D) and
one woman (patient C) (see table 1 for additional information.)
All gave informed consent. The study was approved by the
Human Studies Committee of Washington University Medical
Center. Prior to this study, these patients had not been trained
on a BCI system.

Each patient had a 48- or 64-electrode grid placed over
the left frontal-parietal-temporal region including parts of
sensorimotor cortex. These grids consisted of electrodes
with a diameter of 2 mm and an inter-electrode distance of
1 cm (see figure 1). Grid placements and duration of ECoG
monitoring were based solely on the requirements of the
clinical evaluation, without any consideration of this study.
Following placement of the subdural grid, each patient had
post-operative anterior–posterior and lateral radiographs to
verify its location.

4.2. Data collection

Each patient sat in a hospital bed about 75 cm from a
video screen. In all experiments, we recorded ECoG from
32 electrodes (i.e., the upper part of the implanted grid) using
the general-purpose BCI system BCI2000 [43]. All electrodes
were referenced to an inactive electrode located over the
temporal lobe far from the electrodes, amplified, bandpass
filtered (0.1–220 Hz), digitized at 500 Hz, and stored. The
amount of data obtained varied from patient to patient, and
depended on the patient’s physical state and willingness to
continue.

Initial evaluations determined which ECoG features (i.e.,
amplitudes in particular frequency bands at particular electrode
locations) were correlated with a particular movement, speech
or motor imagery task. In each of eighteen 2 min runs, the
patient was asked to perform one of six tasks (i.e., three runs
for each task). The six tasks were as follows: open and close
the right or left hand, protrude the tongue, say the word ‘move’
and imagine performing each of these three actions. In each
run, the patient performed about 30 repetitions of the required
task in response to a visual cue that lasted 2–3 s (during this
interval, the patient repeated the task continuously), and rested
when the screen was blank for 1 s. In two additional runs,
patients were simply asked to rest with eyes open and closed,
respectively.

We then conducted closed-loop BCI experiments in which
the patient received online feedback that consisted of one-
dimensional cursor movement controlled by ECoG features
that had shown correlation with one of the six tasks. The
ECoG features were integrated over time to yield the current
cursor position (i.e., ECoG activity was treated as vertical
velocity information [18]). Data were collected from each
patient for one to eight 3 min runs, each comprised of 21–37
trials. The runs were separated by 1 min breaks. Each trial
began with the appearance of a target that occupied either the
top or bottom half of the right edge of the screen (randomly
chosen throughout the run). One second later, the cursor
appeared in the middle of the left edge of the screen and then
moved steadily across the screen over a fixed period of 2.1–
6.8 s with its vertical movement controlled continuously by

the patient’s ECoG features. The patient’s goal was to move
the cursor vertically so that it hit the appropriate (i.e., upper
or lower) half of the screen when it reached the right edge. At
0.5 s after the cursor reached the right edge of the screen, the
screen went blank, signaling the end of the trial. After a pause
of 1 s, the next trial started. Accuracy expected in the absence
of any control was 50%.

Finally, in three additional 3 min runs (about 50 trials
each), the patient used a joystick (with the hand contralateral
to the implanted electrode array) to move the cursor in two
dimensions from the center of the screen to a target at one
of four possible locations (i.e., a ‘center-out’ joystick task;
figure 4(d)). One patient completed an additional 13 joystick
runs with 8 target locations.

4.3. Identification of ECoG features to be used for online
cursor control

From spectral analysis of the data gathered from each of the
32 electrodes with each of the six tasks, we identified the
frequency bands in which amplitude was different between
the task and rest. For these analyses, the time-series ECoG
data were converted into the frequency domain using an
autoregressive model of order 18. We calculated spectral
amplitudes between 0 and 200 Hz in 2 Hz bins. Those
electrodes and frequency bins with the most significant task-
related amplitude changes (i.e., the highest values of r2) were
identified as features to be used to control cursor movement in
the subsequent online BCI experiments.

The same analysis methods were applied to the data
gathered during joystick movements in order to compare
right versus left movement, up versus down movement, and
movement versus rest.

4.4. ECoG control of vertical cursor movement online

The cursor moved vertically every 40 ms controlled by a
translation algorithm based on a weighted, linear summation
of the amplitudes in the identified frequency bands from the
identified electrodes for the previous 280 ms (as developed for
EEG-based control [18, 45, 46]). The weights were chosen so
that this translation algorithm moved the cursor up with task
execution (e.g., imagining tongue protrusion) and down with
rest. This relationship was explained to the patient prior to
these experiments.

4.5. Anatomical and functional mapping

Radiographs were used to identify the stereotactic coordinates
of each grid electrode [47], and cortical areas were defined
using Talairach’s Co-Planar Stereotaxic Atlas of the Human
Brain [48]. After the experiments described above, each
patient underwent stimulation mapping to identify motor and
speech cortices as part of his/her clinical care. In this
mapping, 1 ms 5–10 mA square current pulses were passed
through paired electrodes to induce sensation and/or evoke
motor responses (including speech arrest). The experimental
results described above were collated with these anatomical
and functional mapping data. The topographical correlations
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between electrical stimulation and movement or imagery were
not strong enough to support clear conclusions (see online
supplementary figure 1 at stacks.iop.org/JNE/1/63 for more
information).
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