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Abstract

The aim of this paper is to show that machine
learning techniques can be used to derive a
classifying function for human brain signal
data measured by magnetoencephalography
(MEG), for the use in a brain computer in-
terface (BCI). This is especially helpful for
evaluating quickly whether a BCI approach
based on electroencephalography, on which
training may be slower due to lower signal-
to-noise ratio, is likely to succeed. We ap-
ply RCE and regularized SVMs to the exper-
imental data of ten healthy subjects perform-
ing a motor imagery task. Four subjects were
able to use a trained classifier to write a short
name. Further analysis gives evidence that
the proposed imagination task is suboptimal
for the possible extension to a multiclass in-
terface. To the best of our knowledge this
paper is the first working online MEG-based
BCI and is therefore a “proof of concept”.

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

1. Introduction

The goal of research into brain-computer interfaces
(BCIs) is to build communication and control systems
that a person can use to interact with the environment
without the need for muscular or peripheral neural ac-
tivity. The principal application of a BCI is as a form
of neural prosthesis for people suffering from severe
paralyzing conditions which can be caused by, for ex-
ample, Amyotrophic Lateral Sclerosis (ALS).
Currently the most successful approaches to patient
BCI are still those in which the user rather than the
computer has to do most of the learning, and this usu-
ally takes many weeks or months in practice. If ma-
chine learning (ML) algorithms can be integrated ef-
fectively into such systems, they offer the promise of
faster identification of the approach that is most suit-
able for a given patient. Thus ML has the potential
to reduce the training time for a patient from several
weeks or months to a few days or hours.

Most BCIs using ML techniques require a data col-
lection phase during which the subject repeatedly ex-
ecutes a training task which is reflected by brain sig-
nals at clearly separable locations. Algorithms like the
Support Vector Machine (SVM) or the Fisher Discrim-
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inant can be applied to derive a classifying function
from the collected training data. This function can be
used in online applications to identify different brain
states produced by the subject.
The majority of BCIs are based on extracranial EEG
recordings during motor imagery. We restrict our-
selves to mentioning just a few publications that use
imagined limb movements (Pfurtscheller. et al., 1998;
Ramoser et al., 2000; Wolpaw & McFarland, 1994;
Schröder et al., 2005).
Besides EEG other recording techniques have been
used for human BCIs. These BCIs take advantage
of, for example, an increased signal-to-noise ratio as in
electrocorticography (ECoG) (Leuthardt et al., 2004;
Graimann et al., 2004; Lal et al., 2005) or the high spa-
tial resolution of functional magnetic resonance imag-
ing (fMRI) (Mitchell et al., 2003; Weiskopf et al.,
2004). Furthermore extracellular invasive recordings
have been used in patients by the team of Philip
Kennedy in 1996 and recently by John Donoghue’s lab.

There exist only very few EEG based approaches that
work for completely paralyzed patients. One major
factor is the limited data quality of the EEG which
affects the learning ability of both the computer soft-
ware as well as the patient. Magnetoencephalogra-
phy (MEG) shows a much better signal quality than
EEG and therefore promises increased learning effects.
Since the brain signals exploited by MEG and EEG are
fundamentally the same, however, the user should find
it relatively easy to transfer from an MEG-BCI to a
more portable EEG based system at a later training
stage. For this to work, a ML technique has to be es-
tablished that is applicable for both types of data. A
promising candidate is the EEG-based BCI described
in (Lal et al., 2004) and (Lal et al., 2005) since it shows
convincing results. Furthermore, it is able, due to its
built-in feature selection procedure, to work with a low
number of recording channels which is important for
realtime scenarios (see Section 8).
In the present paper we transfer their approach to the
MEG domain, prove the feasibility of single-trial MEG
signal classification and evaluate its accuracy in a BCI
application. To the best of our knowledge this is the
first time that the MEG recording technique has been
used for feedback BCI systems.

The paper is structured as follows: after a short intro-
duction to the MEG-technology we present the exper-
imental setup and data preprocessing. Section 5 in-
troduces the feature selection and classification meth-
ods applied to the recorded data. Offline-results are
reported in Section 6. Section 7 discusses a possible
multi-class extension. How subjects used an online
BCI to write a short name is described in Section 8.

cue

+ + relaxation

classification

t [s]876543210

Figure 1. Overview of the trial structure during the data
collection phase. The time interval used for classifier train-
ing started 0.5 seconds after the cue had ended. Relaxation
intervals of randomized duration separated the trials. Dur-
ing the intervals marked with a “+”, the fixation cross was
visible.

2. Magnetoencephalography (MEG)

Magnetoencephalography (MEG) is a non-invasive
measurement of the magnetic fields caused by electri-
cal current dipoles that are generated by neural activ-
ity. Due to the orientation of magnetic sensors (coils)
and the folding of the cortex surface, MEG primarily
is sensitive for currents of tangential orientation gen-
erated in sulci, while EEG signals are based on both,
tangential currents in the sulci and radial currents in
the gyri.
Magnetic fields suffer far less than electric fields from
the spatial blurring effect of the skull and intracerebral
fluid. As a result MEG signals show a higher signal-
to-noise ratio and are much more localized.
An important characteristic of brain signals is the so
called mu-rhythm (µ-rhythm), which is found at fre-
quencies of approximately 8-12Hz and 18-22Hz above
the sensorimotor cortex. It was shown that measure-
ments of this rhythm are similar for recordings of the
human EEG and MEG (Tiihoonen et al., 1989). The
intensity of the mu-rhythm is closely related to imag-
ined as well as executed movements. Spectral proper-
ties of MEG recordings during executed thumb move-
ments were studied by Salmelin and Hari (1994) and
by Georgopoulos et al. (2004). The authors report
that it is possible to reconstruct trajectories drawn
by subjects using a joystick from the MEG measure-
ments recorded in parallel to the movement execution.
First work on the properties of mu-rhythm during at-
tempted finger movements in tetraplegic persons was
presented by (Kauhanen et al., 2004).

3. Experimental Setup

Ten healthy subjects participated in the experiment.
Their MEG signals were recorded at 625Hz sampling
rate from 150 channels located over the scalp. The
subjects were seated relaxed in front of a projection
screen. The subjects’ heads were fixed to avoid move-
ments. During the data collection phase of the exper-
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Figure 2. The left plot shows the 20-fold cross validation
error of seven different AR model orders for the ten sub-
jects. The estimates were based on data from all 150 chan-
nels. The right plot contains the averaged errors of the AR
model orders along with standard errors.

iment the subjects were instructed to imagine move-
ments of their tongue or left little finger. The choice
of these two imaginations was motivated by the rela-
tively great distance of the respective cortical areas on
the motor cortex.

A trial began with a small fixation cross displayed at
the center of the screen. One second later the ran-
domly chosen task cue (either an image of a tongue
or of a left little finger) was displayed for half a sec-
ond (see Figure 1). The fixation cross appeared again
at second 1.5 marking the classification interval and
disappeared at second 5.0 marking the relaxation in-
terval of two to four seconds duration (randomized).
The subjects were asked to imagine movements during
the classification interval (depicted in Figure 1). Each
subject performed four blocks, each containing fifty
trials with randomly selected cues. After each block
the subjects could take a pause of approximately 5min
duration to relax.

4. Data Preprocessing

From every trial we extracted second 2 to second 5.
We thus obtained 1875 samples for each of the 150
MEG channels. To remove linear trends the least-
square linear approximation was determined and sub-
tracted from the original time series1 before a forward-
backward autoregressive model of order 2 was fitted
to every detrended signal. Autoregressive (AR) mod-
els (Haykin, 1996) are able to describe detrended time

1If movement imagery paradigms are used, linear trends
are unlikely to be useful for classification. However, for
other BCI paradigms (e.g. those using slow cortical poten-
tials) they may contain class-specific information.

Algorithm 1 Error Estimation using a double CV-
scheme
Require: preprocessed MEG data of one subject
1: for (cntMainFolds = 1 to 50) do
2: split data randomly: 80% training set, 20% test set
3: with training set do:
4: 20-fold CV: find good ridge r
5: rank channels using r
6: 20-fold CV: estimate the number b of good

channels using r (Fig. 3 and 4)
7: reduce data to best b channels
8: 20-fold CV: find good ridge r red on reduced data
9: train SVM S on reduced data using ridge r red

10: reduce test set to best b channels
11: test S on the reduced test set
12: save error and number of good channels b
13: end for

Output: mean error + variance, average number of good

channels

series in a condensed form and capture their spectral
characteristics.
The choice of this model order was based on an analy-
sis of model orders 2 to 10. For each model order, the
classification error on the data from all 150 channels
was estimated with 20-fold cross validation. Figure 2
shows the errors estimated for the ten subjects and for
different model orders. For nine subjects model order
2 yielded the lowest error. The data of one subject
resulted in minimal errors using model order 4. Model
order 2 was used for all subjects to represent uniformly
the data during further processing steps.
To represent one trial, a vector of length 150 ∗ 2 was
composed that contained the concatenated AR coef-
ficients of all channels. The label corresponding to
such a vector was defined to be −1 if the imagina-
tion task was left little finger movement and +1 if it
was an imagined tongue movement. For every sub-
ject A,B,...,J we used 200 training points (x, y) ∈
R150·2 × {−1, 1} for further analysis.

5. Feature Selection and Classification

The motivation for feature selection in BCI research is
twofold. The calculation of online feedback is quite
time consuming since it involves preprocessing and
classification of the data. Being able to work with a
subset of the data is therefore favorable. Furthermore,
identifying relevant recording positions may help in
understanding the underlying cognitive processes.
Recursive Feature Elimination (RFE) (Guyon et al.,
2003) is an iterative greedy backward embedded fea-
ture selection method. It is based on the training of
several SVMs and exploits their margin characteris-
tics to determine good features. In this paper we use
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Figure 3. This plot describes the process of calculating an
estimate of the expected risk when only using the best N
ranked channels for classification. First the data is split
into 20 train/test folds. The channels are ranked on each
training set using Recursive Channel Elimination, a classi-
fier is trained using the best N features only and tested on
the corresponding test set. The 20 test errors are averaged.
Please note that the set of channels used by the different
classifiers might vary (figure from (Lal et al., 2004)).

Recursive Channel Elimination (RCE), an adaptation
of RFE for the special case of EEG data (Lal et al.,
2004). The pseudo-code of Algorithm 1 contains an
overview of the data analysis.
We analyzed the data of the subjects separately. In
step 2 of Algorithm 1 the data is randomly split into
a training set which contains 80% of the data and a
test set which contains the remaining 20%. Through-
out the paper we use linear SVMs which are regular-
ized using a ridge on the (linear) kernel matrix. Note
that this is equivalent to a C-SVM formulation with
quadratic slack variables (Cortes & Vapnik, 1995). On
the basis of the training data the ridge which leads to
the smallest CV-error is selected (see step 3 of Algo-
rithm 1). This ridge is then used by the RCE proce-
dure which produces a ranking of the MEG channels
(see step 5).
The question arises, how many of the best ranked
channels should be used as an input to a classifier.
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Figure 4. The graph shows the cross validation error es-
timates plotted against the number N of the best ranked
channels. The error estimate of ,e.g., N = 8 was calculated
based on the data from channels ranked 1th to 8th (and
not only from the single channel at rank 8). Bars denote
the standard errors. In this example, a combination of the
18 best ranked channels yielded the lowest average error.
We are interested in the minimal number of channels such
that if one further channel is dropped the resulting error
rate will be significantly higher than the minimal error.
We estimate this subset of channels by finding the smallest
number of ranked channels such that the resulting error
rate still lies within the two standard errors (α) or one
standard error interval (β) of the minimal error. In case of
(β) the 11 best ranked channels would be selected.

To answer this question we restrict the training data
to the N ∈ {1, ..., 150} best ranked channels and es-
timate a generalization error of an SVM trained with
the reduced data using the cross validation technique
shown in Figure 3. Figure 4 contains a schematic plot
of these estimates (for N ∈ {1, ..., 25}). We select the
number b of best channels as the minimum number of
channels yielding an error estimate which deviates less
than

(α) two standard errors, or
(β) one standard error

from the minimal error estimate.
In step 7 the data of the b best ranked channels is
extracted. The ridge is optimized again and an SVM
using the best ridge is trained. Finally the SVM is
tested on the reduced test set. We repeat this proce-
dure fifty times to obtain stable results.

6. Results of Offline Analysis

The error rates obtained with Algorithm 1 on data
from ten subjects are summarized in Table 1. When
using all channels the cross-validation error ranges
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Table 1. Classification errors and standard deviations for
the ten subjects when using Algorithm 1. The rightmost
column contains CV-errors when using the data of all chan-
nels. The error rates obtained when using the subset of
channels suggested by the (α) or (β)-estimates (see Sec. 5)
are contained in the first two columns.

α-estimate β-estimate all channels

A 0.297 ± 0.076 0.285 ± 0.076 0.258 ± 0.076
B 0.327 ± 0.072 0.328 ± 0.072 0.287 ± 0.072
C 0.484 ± 0.076 0.473 ± 0.076 0.441 ± 0.076
D 0.098 ± 0.052 0.085 ± 0.052 0.080 ± 0.052
E 0.378 ± 0.071 0.395 ± 0.071 0.403 ± 0.071
F 0.230 ± 0.071 0.227 ± 0.071 0.239 ± 0.071
G 0.339 ± 0.076 0.310 ± 0.076 0.313 ± 0.076
H 0.237 ± 0.065 0.218 ± 0.065 0.193 ± 0.065
I 0.335 ± 0.070 0.333 ± 0.070 0.323 ± 0.070
J 0.460 ± 0.078 0.470 ± 0.078 0.456 ± 0.078

? 0.318 ± 0.113 0.312 ± 0.119 0.299 ± 0.116

from chance level (subjects C and J ) to 8% (subject
D ). When using the (α) or (β)-estimate to determine
a feature subset, the average (taken over the subjects)
error increases slightly from 29.9% to 31.8% (α) or
31.2% (β).
The number of channels was reduced significantly as
can be seen in Table 2. The β-estimate suggested on
average channel sets of size 16.6 and the α-estimate
suggested channel sets of size 7.1. Note that this is
less than 5% of the original 150 channels.
As an example of which channels are suggested by the
recursive channel elimination method, we plotted the
ten best ranked channels of subject H in Figure 5.
This subset of channels lies over or close to the motor
cortex and thus agrees well with the underlying cogni-
tive process.
It is very difficult to compare results from this study
with other studies since subject pools are usually very
small and experimental setups vary. However, (Lal
et al., 2004) conducted a comparable study using EEG-
instead of MEG-recordings. Their subjects were asked
to perform a left hand versus right hand movement
imagery task. The authors applied the same machine
learning algorithms. The average error rate using all
EEG-channel was 33, 75%. The average error rate re-
ported in the present MEG-paper is 29, 9%, which is
smaller although only half as many training points
were used. This finding supports the initial hypothesis
that compared to an EEG-based BCI learning might
be easier in an MEG-environment.

Table 2. This table summarizes the average sizes and stan-
dard deviations of subsets suggested by the (α) or (β)-
estimates (see Sec. 5) for the ten subjects.
On average the β method suggested subsets of size 16.6.
Using the α-estimate resulted on average in subsets of
size 7.1.

α-estimate β-estimate all channels

A 6.1 ± 3.7 13.5 ± 11.2 150
B 15.0 ± 21.7 33.3 ± 30.6 150
C 13.1 ± 17.2 30.9 ± 30.1 150
D 6.8 ± 3.6 15.7 ± 17.7 150
E 1.2 ± 0.8 5.4 ± 16.8 150
F 1.7 ± 1.0 4.1 ± 10.9 150
G 3.3 ± 2.5 8.5 ± 6.0 150
H 8.2 ± 5.0 21.0 ± 22.9 150
I 5.6 ± 9.6 12.5 ± 17.2 150
J 10.0 ± 15.4 21.3 ± 23.9 150

? 7.1 ± 4.6 16.6 ± 10.0 150

Figure 5. This figure contains the ten best ranked MEG
channels from subject H. They are located over or close to
the motor cortex.

7. Possible Multi-class Extensions

Motor action or motor imagery is associated with
decreasing spectral energy of the motor specific fre-
quency bands (mu-rhythm, Sec. 2). This decrease is
moderate on ipsilateral regions of the motor cortex
and stronger on contralateral regions. After the motor
action or imagination has ended, the motor rhythms
re-establish within a few seconds and the associated
frequency bands regain their previous intensity. The
question arises, to what extent the MEG measure-
ments captured the class-specific mu-rhythm changes
of both the imagined finger and the imagined tongue
movements. To answer this question we proceeded as
follows: we generated spectrograms of the raw MEG
signals in the time interval from second two through
second three and from 0 Hz to 100 Hz. We then es-
timated the predictive ability of every point in the
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Figure 6. For four MEG channels of subject H that are situated symmetrically over motor cortex areas spectrograms of
the time interval two to three seconds and 0 Hz to 100 Hz were generated. For every point of the time/frequency space,
a ROC-score is plotted in the four boxes of the top graphic. Red regions code for decreased mu-activity of cortex regions
that are involved in the planning of left little finger movements. Blue regions would be associated with brain regions
involved in the planning of tongue movements (please see text for an explanation). Since clearly clustered blue regions
cannot be found, we conclude that the MEG measurements did not capture possible decreases of mu-activity associated
with imagined tongue movements. In the lower part of the plot blue and red regions are clearly visible. These ROC-scores
were generated from data of subject H during a separate experiment using left hand versus right hand imagination.

.
time/frequency space of the spectrogram by calculat-
ing the area under its receiver-operating characteristic
curve (further called the ROC-score). The upper plot
of Figure 6 contains these ROC-scores of four selected
MEG channels of subject H. A bright color2 indicates
ROC-score values close to zero or close to one. For a
point in this plot this means that the specific frequency
at a particular time contains class specific information.
If the score is close to 0.5 it denotes that this feature
(taken by itself) does not carry useful information for
the classification task at hand3.
Increased ROC-scores (> 0.5 plotted in hot colors) can
technically be explained in two ways. The energy at
the particular time and frequency either
• increases in class +1 (tongue), or
• decreases in class −1 (left little finger).
In the same manner ROC-scores (< 0.5 plotted in cool
colors) can result from energy at a particular time and
frequency
• decreasing in class +1 (tongue), or
• increasing in class −1 (left little finger).
Since motor imagery is associated with decreased en-
ergy we expect that red colors appear at cortical re-
gions which are involved in the planning of finger
movements and blue regions at locations involved in
the planning of tongue movements.

2A color version of this paper is available online on the
ICML website.

3Note that this way of analyzing the data does not take
into account combination of features.

The two right boxes of the left plot of Figure 6 show
low ROC-scores for the mu-band over the right mo-
tor cortex throughout the full time interval. Following
the previous argument we conclude that the scores are
generated by the part of cortex involved in the plan-
ning of left finger movements. However neither of the
four ROC plots of the left plot shows clustered blue
regions. It seems that there was either no decrease in
mu-activity during the imagination phases of tongue
movement, or the MEG measurements did not cap-
ture possible decreases. This finding holds true for
all ten subjects. Most probably the classifiers (only)
have learned to detect whether a finger movement was
imagined or not.
For classification scenarios in two-class problems it is
sufficient to know under which conditions a training
point belongs to one particular class. When dealing
with more classes however, the class membership can
not be inferred from knowing that a point does not
belong to a particular class. The tongue versus finger
paradigm might therefore be suboptimal with regard
to a possible extension to a multi-class system.
A left hand versus right hand task seems to be bet-
ter suited for a multi-class extension. The right plot
of Figure 6 shows the ROC-scores of the same sub-
ject during a imagined left hand versus right hand task
(all other experimental parameters were the same as
in the finger versus tongue experiment). Here the de-
crease of the mu-activity was clearly captured by the
MEG recordings.
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target word

spelled so far

EINAR

JOHN

JOH

finger choice tongue choice

Figure 7. Screenshot of the projection screen while a sub-
ject writes the word “JOHN” (shown at the upper left box).
The lower left box contains the letters “JOH” spelled so far.
About every seven seconds, the subject imagines a move-
ment to maneuver within the binary spelling tree. In the
present situation the next letter “N” to write is among the
letters of the right box. The subject can chose this box
by imagining tongue movements (indicated by the thumb-
nail pictures added underneath the speller as reminders).
In this case a subset of letters “EINAR” would appear
next. An imagined finger movement would communicate
that the intended letter is not among the displayed ones
and the empty left box would be chosen. In this case the
speller changes to the sibling branch and a different set of
letters will appear next. After a few iterations only one
letter remains. If it is chosen by the subject, the letter will
be appended to the word spelled so far.
The computer system decoding the imagined movements is
a combination of the feature selection technique recursive
channel elimination and linear SVMs.

8. Online Brain Computer Interface

During the part of the experiment described in the
previous sections, online feedback was not presented
to the subjects. In this section we describe how four
of the subjects used a trained SVM to write a short
name. This part of the experiment was carried out
directly after the first part. Since the subjects had to
wait while we analyzed their data we could not esti-
mate all parameters as described in the previous sec-
tion. Instead we used slightly suboptimal parameter
settings.
For every subject we used the 200 training points (Sec-
tion 3). The detrended data were preprocessed using
an AR model of order 6. Similar to Algorithm 1, we
selected a ridge, ranked the channels using RCE, re-
stricted the data set to the best 20 ranked channels,
selected a ridge again and trained an SVM on the re-
stricted data.
We asked the subjects to perform the same task as
before. After every trial that was classified correctly
by the SVM a “Smiley” was displayed. Depending on

their performance the subjects completed two to four
blocks of fifty trials.
The subjects B, D, F , H and I obtained an accuracy
higher than 70% in their last block. For these subjects
we combined the collected data of both experimental
parts and trained an SVM as described above. The
SVM was then used in the third part of the experi-
ment during which the subjects spelled a short name.
At the beginning of the spelling experiment the
spelling method displayed one half of the letters of the
alphabet (including some special characters). If the
letter to be spelled was among the displayed ones, the
subject had to imagine a tongue movement. To com-
municate that the letter was not displayed, the sub-
ject imagined a finger movement (see Figure 7). To
help the subjects concentrate on the imagination task,
the box of correct choice was highlighted (this spelling
variant is sometimes referred to as “copy spelling” and
useful for training subjects before proceeding to “free
spelling”). In the next step the selected subset of the
alphabet was split into two parts again, one of which
was displayed. On the last stage of this process the let-
ter had to be confirmed and was displayed on the left
part of the screen. The procedure started over again
to allow the selection of further letters.
The spelling algorithm allows deletion of already se-
lected letters. Furthermore the splitting algorithm was
optimized such that it reflects letter frequencies of the
language. For more details please refer to (Birbaumer
et al., 1999).
Four out of five subjects succeeded in spelling a short
name (4.25 letters on average). The fifth subject
aborted the experiment after successfully spelling the
first letter of a name.

9. Summary

We demonstrated how machine learning techniques
can be used to set up an online brain computer inter-
face on the basis of magnetoencephalographic (MEG)
recordings. We reported results of a tongue versus left
little finger imagined movement task from ten healthy
subjects. The classification performance ranged across
subjects from chance level up to 92%. We showed that
it is possible to reduce the number of used MEG chan-
nels to less than 5% of the original 150 channels with-
out significant loss of classification performance. The
proposed method worked well enough to allow four
subjects within only one session to write a short name
using imagined movements only.
Furthermore, we gave evidence that a left hand versus
right hand task might be better suited for future MEG
based brain computer interfaces.
Our results encourage the use of MEG-technology for
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screening as well as initial training with a later transfer
to a portable and EEG based brain computer interface.
Although the current design certainly has room for im-
provement, its main message is a prove of concept: to
our best knowledge this is the first demonstration of a
functioning MEG based brain computer interface.
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