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Abstract—Brain–computer interface (BCI) systems must pro-
cess neural signals with consistent timing in order to support ad-
equate system performance. Thus, it is important to have the ca-
pability to determine whether a particular BCI configuration (i.e.,
hardware and software) provides adequate timing performance for
a particular experiment. This report presents a method of measur-
ing and quantifying different aspects of system timing in several
typical BCI experiments across a range of settings, and presents
comprehensive measures of expected overall system latency for
each experimental configuration.

Index Terms—Brain–computer interface (BCI), BCI2000, real
time, timing.

I. INTRODUCTION

FOR DECADES, experiments in cognitive research have
relied on computers for data collection and subject inter-

action. These experiments often depend on accurate timing of
events, e.g., to present stimuli or to measure a subject’s reaction
time [1], [2]. However, the most prevalent operating system on
computers today, Microsoft Windows, is not ideally suited to
support accurate timing [3]–[6]. Other operating systems, such
as Linux or Mac OS X, may provide more accurate control over
system timing [5], but they often lack the required software and
drivers for amplification and acquisition systems. As a result,
most experiments in cognitive research currently rely on exter-
nal hardware for precise event timing that is independent of the
operating system and computer configuration. A typical config-
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uration may consist of software that presents stimuli on a video
monitor time-locked to the refresh cycle of the screen. Timing
of stimulus presentation, as well as other external input, such
as key presses, could be encoded as digital signals that can be
digitized along with neural signals. While such technical ap-
proaches provide highly accurate timing, they are complicated
to set up and limited in the experimental complexity that they
can support. For example, an experiment that uses a portable lap-
top system may be unable to interface with the external timer,
and therefore, the stimulus timing could not be verified on this
system.

The study of brain–computer interfaces (BCIs) [7] is an
emerging area of research that shares many principles with
cognitive research. Similar to cognitive research, a subject is
presented with stimuli and the subject’s brain signal responses
to these stimuli are detected using different sensor methods,
such as electroencephalography (EEG) [8], electrocorticogra-
phy (ECoG) [9], [10], or single-neuron recordings [11]. How-
ever, an additional requirement of BCIs is that the stimuli are
continuously changing, based on measurements derived from
current and previous neural signals, such that the user can learn
to control the output using only voluntarily modulated brain ac-
tivity. Thus, a BCI system must control or detect event timing,
such as when the stimulus is updated and the user responds.
Additionally, it must also ensure that the system is capable of
performing online signal processing and classification, so that
task-related changes in the brain signal are properly detected and
results are submitted to the output device (e.g., a video screen or
other external device, such as a robotic arm) with minimal delay.
While such a system could, in principle, be implemented using
the technical approaches described earlier (i.e., hardware-based
timing/triggers, or real-time capable operating systems), its im-
plementation would be complex, and hence, time-consuming.
Furthermore, it would usually also be very specific to the partic-
ular characteristics of individual experiments. This is a problem,
because the current early stage of development in BCI research
implies that many factors of BCI systems, such as the utilized
brain signals, signal processing algorithms, or feedback modal-
ities, need to be evaluated to optimize BCI performance [12].

Fortunately, the demands in timing precision in BCI research
are typically somewhat more relaxed compared to other exper-
iments in cognitive research. For example, accurate measure-
ment of the amplitude of the mu rhythm, i.e., an oscillation
around 8–12 Hz over sensorimotor cortex that is modulated by
movements, will not be substantially affected by small delays
(e.g., 10 ms) in either the amplitude measurement, stimulus pre-
sentation, or the resulting feedback update. As an example for
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Fig. 1. System timing diagram showing the time line of events in a typical
BCI experiment. t0 is chosen as the time at which the neural data is available
to the BCI for processing and marks the onset of a block of data.

the more time-critical nature of traditional psychophysiological
experiments, amplitude measurements of auditory brainstem
evoked potentials (whose time course is very short), critically
depend on a highly accurate relationship between stimulus pre-
sentation and brain signals. In summary, the circumstances and
requirements of BCI research described earlier suggest that it is
both desirable and practical to design a software-based general-
purpose BCI system that can be used to implement a range of
BCI designs [12]–[15].

Any BCI system implements a closed-loop system that in-
volves the user and an output device. It is typically comprised
of an amplification and digitization system that records neural
signals, a data acquisition system (i.e., a computer that acquires
the neural signals from the amplification and digitization sys-
tem), a signal processing stage that extracts signal features and
translates them into output control signals, and the application
output (such as a display on a video monitor, sound through
speakers, or other neuroprosthetic device). The effectiveness of
a BCI, and the ability of users to learn how to use it, depends
on the ability of the system to acquire and process signals,
and to present stimuli, in real time, and on providing the user
with consistent feedback with low latency and minimal jitter.
Because these timing characteristics necessarily vary with dif-
ferent hardware, processing demands, and outputs, a process
is required that comprehensively characterizes a particular BCI
implementation. However, no previous effort has described such
a procedure.

In this paper, we describe a procedure to quantify BCI system
latencies at each step in the processing chain. This process al-
lows determination of whether or not the timing characteristics
of a particular BCI implementation (i.e., hardware and software)
can support the requirements of a particular set of BCI exper-
iments. The procedure is applicable to any BCI system, and is
demonstrated for the BCI2000 system [12] and a MATLAB-
based BCI implementation. The analysis program and instruc-
tions for using any BCI system are included with the BCI2000
distribution, which is freely available on www.bci2000.org.

II. METHODS

The time line of events in a typical online, closed-loop BCI
experiment is shown in Fig. 1. Neural data are acquired in sample
blocks; the number of samples in a block is dependent on the

sampling rate, e.g., a 30-ms block of data sampled at 1000 Hz
contains 30 samples per channel. In Fig. 1, during the period
from t−2 to t−1 , the BCI system waits for the AD converter
(ADC) buffer to fill with the required number of samples for
block N . At t−1 , the ADC buffer is filled with data, and the
computer begins reading the data and storing it in memory
on the computer for processing. At the same time during the
data transfer, the ADC is already recording samples in the next
block of data block N + 1. The period from t−1 to t0 is the
time required to transmit all of the data from the ADC to the
computer’s memory.

At t0 , the BCI system begins processing data to extract rel-
evant signal features and to generate control signals based on
the brain activity in block N . Processing continues until t1 , at
which point the control signal is ready, and the output command
is issued, e.g., to update the monitor, present a sound, or control
a device. However, due to latencies in the operating system and
the device itself, this stimulus will not be presented immedi-
ately. This results in an output delay, which is defined as the
time between t1 (i.e., the time at which the output command
is issued) and t2 (i.e., the time at which the output device ac-
tually implements this command). Once the output command
is issued in software at t1 , the BCI immediately begins to wait
for the next block of data. Block N + 1 is ready at t3 , and is
read into the computer at t4 (i.e., for block N + 1, t3 and t4 are
equivalent to t−1 and t0 relative to block N ). For the purposes
of this study, the term “real time” is used somewhat loosely,
indicating only that the BCI system is able to process an entire
block of data and update the output device before the next sam-
ple block is ready for processing. However, the degree to which
the BCI system can be considered real time is dependent on
many factors, including the operating system, computer hard-
ware specifications, and output device hardware. Furthermore,
even if the mean overall processing and output time is less than
the sample block size, large variability in this timing can signifi-
cantly affect BCI performance, and must therefore be accounted
for.

In summary, each of the BCI processing stages described ear-
lier has an associated latency, which corresponds to the time
required to complete a specific task. The duration of these la-
tencies will change depending on the computer hardware and
the task configuration. The latencies are defined further in the
following section.

A. Latency Definitions

1) ADC Latency: The ADC latency is the delay between
the time that the final sample in a sample block is digitized
to when the sample block has been acquired by the software
and is available to the software for processing. Depending on
configuration, this latency may comprise physical signal delay
in the amplifier, digitization, transmission from the ADC to
the PC, and processing time inside a hardware driver. Because
data are transmitted in blocks of one or more of samples, that
minimum delay occurs for the last sample of a data block, which
unlike its preceding samples in the same block, will spend only
a minimum time in hardware and software buffers. Using the
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times defined in Fig. 1

ADC latency = LA = t0 − t−1 . (1)

For ADCs connected via bandwidth-limited serial interfaces,
transmission latency may have a measurable impact on ADC la-
tency. When using universal serial bus (USB) 2.0 or peripheral
component interconnect (PCI) card connections, transmission
latency may generally be neglected, as illustrated by the follow-
ing example. If we assume acquisition of 16 channels of 32-bit
(4 B) data and transmission of blocks of eight samples, each
block corresponds to 512 Bs of data. At USB 2.0 speed (i.e., a
maximum transmission rate of 60 MB/s), these data should take
approximately 8.5 µs to transfer, which is less than the duration
of a single sample. However, if the configuration is changed to
64 channels of 100 ms duration sampled at 4800 Hz, equal to
122 880 Bs, this translates to a transmission time of approxi-
mately 2 ms, assuming that transmission starts instantaneously
and without interruption. Because this is on the time scale of
events during the BCI task, it may be important to account for
this latency.

2) Processing Latency: The processing latency is defined
as the total time required for the data to be processed, which
generally includes extracting task-related information from the
neural signals, translating the features into control signals, and
finally using these control signals to send an update command
to the application or device. From Fig. 1

Processing latency = LSP = t1 − t0 . (2)

The processing latency depends on the algorithmic complex-
ity and on CPU speed. For example, the signal processing al-
gorithm for a cursor movement task might calculate the power
spectral density for every block of data, whereas a process-
ing algorithm that extracts an evoked potential might average
stimulus-triggered responses on one or more channels. The com-
putational complexity of these two different types of processing
may be very different. Thus, the requirements of experiment that
is performed will likely dictate the minimum system configu-
ration possible. In either case, it is clear that the system must
be capable of processing data faster than the duration of the
sample block. Otherwise, the performance of the BCI system
will degrade or fail.

3) Output Latency: The output latency is defined as the delay
from the time that the output command is issued to the time that
the output device implements this command, i.e., the time from
calling a software function to present a stimulus on a screen to
the time that the stimulus actually appears on the screen. Because
it is possible to have any number of output modalities, including
video, sound, or mechanical, the output latency depends on the
specific modality. From Fig. 1

Output latency = LO = t2 − t1 . (3)

The output latency can be determined by several contributing
factors. For the most common output, a video screen, these
factors include the graphics card, the number of monitors used,
the resolution, the refresh rate, and even the type of monitor,
i.e., CRT or liquid crystal display (LCD).

4) System Latency and System Jitter: The system latency is
defined as the minimum time interval between a change in ADC

input, and causally related change in the application output. This
is the time from t−1 to t2 , and is calculated as the sum of the
other three latencies

System latency = (t0 − t−1) + (t1 − t0) + (t2 − t1)

System latency = t2 − t−1 . (4)

The system latency jitter is the standard deviation of the sys-
tem latencies in a given test, and provides a measure of the
variability in overall system timing.

5) Block Duration and Block Jitter: The block duration is
the time interval between successive blocks of data that have
been transmitted to the computer

Block duration = t4 − t0 . (5)

Ideally, the block duration should be identical to the sample
block size; however, inconsistencies in operating system timing
may interrupt and delay data acquisition, causing the time pe-
riod between data blocks to be different than the actual block
size, introducing a timing jitter. The block jitter is the standard
deviation of (5) for all block durations in a single test.

The block duration is the primary indicator of the system’s
ability to perform online signal processing in a BCI experiment.
It is important to realize that the block duration is measured from
the perspective of the software, and is not the same as the block
size. That is, the block duration will never typically be less than
the block size (i.e., the length of a block of data acquired from
the ADC), but it can be longer than the block size if the system
latency is longer than the block size. If the block duration is
longer than the block size, this indicates that the time required
to process a block of data is longer than the block itself, i.e., the
system is still processing block N when block N + 1 is ready
to be transferred and processed. In this case, the options are to
modify the task configuration, use a more powerful system, or
optimize processing algorithms to increase performance.

These timing characteristics apply to any BCI system, i.e.,
all systems that record and process neural data and generate a
device command will have some latency between a volitional
change in the neural state and corresponding change in the
device state, regardless of the source of neural data (e.g., EEG,
ECoG, or spikes) and the output device (e.g., a robotic arm, com-
puter cursor, or spelling application). Next, we will describe the
requirements for measuring these latencies in any BCI system.

B. Requirements for Measuring Latencies

Accurate measurement of system latencies requires methods
for determining the precise timing of the events in Fig. 1. This
section describes a series of methods for measuring these laten-
cies without the use of an external event timer, using only the
ADC and software time stamps.

1) ADC Latency: To measure the ADC latency, it is nec-
essary to record the times immediately preceding the data read
operation (i.e., t−1 in Fig. 1) and immediately following the read
(i.e., t0 in Fig. 1). However, t−1 is defined as the beginning of
data block N + 1, corresponding to sample 0 in block N + 1,
and therefore, does not need an associated time stamp.
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If the ADC system contains one or more digital output chan-
nels that can be controlled by software, then it is possible to
use that digital output channel as an event marker that can be
recorded on an input channel. Otherwise, an alternative means
of sending an event marker to the amplifier, and that can be con-
trolled from software, is required. This could be accomplished
with a separate digital-to-analog convertor (DAC) board (e.g.,
from National Instruments), or any other controllable output
device. To do so, the digital output (whether on the amplifier
hardware or an external DAC) must be set high (or pulsed) at
t0 in Fig. 1, when the data transfer is complete. This pulse is
then recorded back into the ADC, either as an analog channel or
on a separate digital input channel. Since the first sample of the
next block (N + 1) of data stored in the ADC coincides with the
start of the data transfer of block N (i.e., when the last sample
has been acquired), the time of the rising edge of the recorded
digital channel in block N + 1 (measured from the start of the
block) corresponds to the end of the data transfer for block N .

The time resolution available with this method is dependent
on the sampling rate. For example, for a sampling rate of 512 Hz,
the time resolution is approximately 1.95 ms, whereas for a
sampling rate of 4.8 kHz, it is approximately 0.21 ms. Therefore,
a measured ADC latency of 0 ms does not imply that there was
an instantaneous data transfer from the ADC to the PC, but
rather that the transfer latency was less than the resolution of a
single sample at a particular sampling rate.

2) Processing Latency: The processing latency typically
constitutes the largest overall latency, and will scale with the
amount of data processed. In order to measure the processing
latency, one could employ a method similar to that for measuring
the ADC latency, i.e., pulsing a digital channel at appropriate
events. However, this method may not be optimal for two rea-
sons. First, many ADCs have at most one digital output channel;
as described, this digital channel is already being used to mea-
sure the ADC latency, and using a single digital channel for
more than one event would complicate the analysis. The sec-
ond and more technically problematic reason is that some BCI
systems use a modular system specification in which the data
acquisition module runs in an entirely separate program from
the processing module. In such cases, the processing module
does not have access to ADC functionality to control the digital
channels, and therefore, cannot use the digital output as an event
timer.

Therefore, our procedure uses software timing functions to
record time stamps at the beginning and end of signal processing.
In this case, the processing latencies are much higher (possibly
tens of milliseconds) than the ADC latencies, and time resolu-
tion on the scale of 1 ms is appropriate to measure the processing
latency. Furthermore, since our procedure measures the timing
of many trials, the mean and standard deviation of the processing
latency provide an accurate measure of the processing time.

The specific timing function used will depend on
the operating system and the programming language
used for the BCI. For Microsoft Windows-based BCIs
using C++, the QueryPerformanceCounter and
QueryPerformanceFrequency functions provide accu-
rate timing and were used in this study. On systems with mul-

tiple cores, these functions can be buggy if called from multi-
ple threads; therefore, all of the timing for a single application
should be handled within a single thread, as is the case with
BCI2000.

It is important to note that these values must be saved for
offline analysis following the experiment. The time stamps can
either be stored directly in the BCI data file along with the EEG
data and other event markers, or in a separate log file containing
only the time stamps.

3) Output Latency: It is impossible to use software timing to
measure the output latency, since a physical change in the output
device occurs externally from the software and PC. That is, there
is some delay between issuing a command to change the output,
and when a measurable change in the output device actually
occurs, and this delay cannot be known within the program.
Therefore, a stimulus detection system is required to measure
outputs and generate an event signal that can be recorded.

The most common BCI outputs are visual (i.e., video on a
computer monitor) and auditory (i.e., sound output through a
speaker or headphones). In order to detect visual changes, a pho-
todiode can be placed on the monitor to detect display changes
related to the experiment; to detect auditory changes, a micro-
phone or direct output from the sound card can be used. These
sensors interface with a stimulus detection system, which can
be adjusted for the particular intensity levels of each individ-
ual stimulus, and should generate a signal when the stimulus is
detected. For example, when the optical level surpasses some
user-set threshold, the detection system might output a digi-
tal pulse. This pulse would be recorded as an analog channel
on the ADC, thus providing an accurate event marker for any
stimulus with a time resolution equal to the sampling rate. Any
such device with this functionality could be purchased (e.g.,
the g.TRIGbox from g.tec, or the StimTracker from Cedrus), or
could be built using a relatively simple circuit.

4) Block Duration and Jitter: Using the methods described
earlier, two possible methods exist for measuring the block du-
ration and jitter. The first one uses the software time stamps
recorded at the onset of signal processing (i.e., at t0). The block
duration is simply the time difference between the time stamps
for consecutive data blocks, i.e., t4 − t0 . Alternatively, the signal
recorded from the digital output to determine the ADC latency
can be used in a similar manner. The rising edge of this signal
also corresponds with t0 , t4 , etc., and therefore, the difference
in times between consecutive rising edges will equal the block
duration. If the software timer is accurate, then the measured
block duration measured using software time stamps should be
the same as the hardware method.

5) System Latency: Finally, the overall system latency is de-
termined as a combination of the ADC, processing, and output
latencies. Therefore, the system latency measurement will be
comprised of a combination of hardware and software event
time stamps as described earlier.

C. Hardware

This section describes two specific BCI implementations that
we used for the tests presented later in this paper. The first
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Fig. 2. Components of the validation system. (A) Computer running the BCI.
(B) Stimulus detection trigger box. (C) ADC, with digital output (Do) and
digital input (Di) ports. (D) Monitor and optical detector. (E) Audio output from
computer. (F) and (G) outputs from trigger box to amp. (H) Amp digital output
to analog channel input. (I) Amp digital output to digital input.

implementation was created using the BCI2000 system and the
second implementation was created using a MATLAB-based
BCI that implemented a simple mu-rhythm cursor movement
task. Fig. 2 provides a reference hardware system; the compo-
nents of this system will be described in subsequent sections.

1) Test Computers: We evaluated four different computer
systems. These included two desktop computers and two lap-
tops. The specifications for these computers are given in Table I.

Each computer ran Microsoft Windows XP with Service Pack
3; the MacBook Pro, and Mac Pro each ran Windows natively,
and not in a virtual environment, such as VMWare or Parallels.
Additionally, all tests were repeated on the Mac Pro with Mi-
crosoft Vista Enterprise Edition to compare performance across
operating systems with identical components. In both operating
systems, visual effects (e.g., Aero in Vista) were disabled to
improve performance. Because drivers for the used ADC sys-
tems were only available for Windows, we did not test any other
operating system.

2) Monitors: The method of generating the displayed image
used by CRT screens is very different from that used in LCD
displays. Therefore, to determine the effect that the monitor type
has on display timing, all BCI2000-based tests were performed
on both a CRT and LCD display. The CRT monitor resolution
was set to 800× 600 pixels, at a refresh rate of 100 Hz. The LCD
resolution was set to 1024 × 768 pixels at a refresh rate of 60
Hz. The advertised typical response time for the LCD monitor
was 16 ms, signifying the mean amount of time required for
the digital image to be processed by monitor and for the liquid
crystals to change states and let light pass through. CRT monitors
have no such delay; instead, CRT monitors update the display
by scanning a beam of electrons over a phosphorous-coated
screen; when the beam hits the phosphorus, the screen fluoresces
immediately. The beam scans the screen in rows, starting at the

top-left of the screen, and ending at the bottom-right. Thus,
the refresh rate of a CRT refers to the number of full scans
completed in one second. In summary, the output latency for a
CRT monitor will vary by a time that is inversely proportional
to the screen’s refresh rate.

3) Detection of Auditory/Visual Stimuli: We used a stimulus
detection device, the g.TRIGbox from g.tec (Guger Technolo-
gies, Graz, Austria), to detect visual and auditory stimuli. To
detect visual stimuli, an optical sensor was attached to the pre-
sentation monitor over the area in which the stimuli appeared.
To detect auditory stimuli, we connected the audio output of
the PC to the g.TRIGbox. Each input on the g.TRIGbox has a
corresponding output, so that up to four stimuli can be detected
simultaneously, each with an independent threshold setting. The
threshold levels were manually adjusted for each stimulus, such
that a stimulus (i.e., change in video luminescence or audio
level) that exceeded the threshold was detected. When this oc-
curred, the g.TRIGbox output a pulse on the corresponding
output channel, which in turn was recorded by the ADC on an
analog EEG channel.

4) ADC: We tested two different ADC systems. The first
system consisted of two g.tec g.USBamp devices. Each device
is capable of recording 16 channels and two digital channels
at up to 38.4 kHz per channel. The analog inputs can record
voltages in a range of ±250 mV. These voltages are amplified
with a dc amplifier system and subsequently digitized with 24-
bit resolution. The resulting digitized samples are transfered to
a PC using a USB 2.0 connection. In our evaluations, we tested
sampling rates up to 4.8 kHz (a sampling rate that is much higher
than those typically used in EEG/ECoG recordings). No digital
filtering was performed on the data prior to transmission to the
PC.

The second system was the g.tec g.MOBIlab+ ampli-
fier/digitizer. This device can record eight analog EEG chan-
nels and eight digital channels, sampled at 256 Hz per channel.
The digitized samples are transferred to the PC via a RS232
serial interface or over a Bluetooth wireless connection. For
this study, we used the RS232 serial interface. Initial tests with
the Bluetooth connection revealed increased latency jitter over
the serial interface, and an ADC latency of about 40 ms. Ac-
cording to the manufacturer, this latency is related to digital
output buffering of the Bluetooth transmission, and not an input
amplifier/digitizer delay. In the case of this particular amplifier
and transmission protocol, an alternative means of generating
an event pulse would be required.

5) Software: We evaluated the timing of two different BCI
software packages. The first package consisted of the current
version of BCI2000 v2.0. (no modifications were done to the
software for our testing purposes. All programs were compiled
with the Borland 2007 C++ compiler with all speed optimiza-
tions enabled.) The second package was an in-house MATLAB
program that implemented a mu-rhythm cursor movement task.
These MATLAB-based tests were executed on MATLAB 2009a
for Windows.

Data collected from these two BCI packages were analyzed
using a stand-alone analysis program that implemented the pro-
cedure described in this paper. This program is parameterized
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TABLE I
LIST OF COMPUTERS TESTED

TABLE II
TASK PARAMETERS, THEIR TESTED VALUES, AND DESCRIPTIONS

using a a text file that describes how to analyze each test, e.g.,
which data channels contain ADC data, visual stimuli, and audi-
tory stimuli. The software uses the BCI2000 binary data format,
which contains the EEG data channels, task-related event in-
formation, and experimental configuration information, such as
the sampling rate. In addition, we wrote a MATLAB script that
converts MATLAB-based data into that data format. By mod-
ifying this script, data collected using any BCI system can be
analyzed using our analysis program, provided that a minimum
set of data specifications are met and saved. This validation and
certification tool set is freely available as part of the BCI2000
distribution. Using this tool set, researchers can verify that any
BCI system supports the timing requirements of their particular
experiment, regardless of the specific system implementation,
including hardware, operating system, or BCI software.

D. Task Configurations

As described, we tested two BCI software packages: BCI2000
and a MATLAB-based BCI. Using BCI2000, we tested several
different common BCI tasks with different configurations. With
the MATLAB-based BCI, a simple cursor movement task was
written and tested in several different configurations.

It is important to emphasize that the MATLAB-based imple-
mentation was not primarily intended to serve as a comparison
to the BCI2000-based implementation. Instead, we used the
MATLAB-based BCI to demonstrate that the procedure devel-
oped in this paper can be applied to any BCI platform, irre-
spective of the operating system, and not just BCI2000; the
data from the MATLAB BCI is saved in the MATLAB *.dat
format, and is formatted and accessed completely differently
than BCI2000 data. Furthermore, because the timing of some
aspects of the MATLAB-based implementation were subopti-
mal, we demonstrate the potential utility of the techniques in
this paper, as they highlighted these aspects of the MATLAB-
based implementation that had unacceptably long latencies. It
is quite possible that the timing of these aspects could be fur-
ther improved (e.g., [16] and [17]), particularly when advanced
MATLAB techniques using Java, Simulink, or the Real-Time
Toolbox are employed.

1) BCI2000: The BCI2000 suite currently comes with three
main feedback paradigms: a cursor movement task, a P300
speller task, and a generic stimulus presentation task. The cursor

movement task can realize the movement of a cursor toward tar-
gets at programmable locations, similar to the classical “center-
out” tasks used in the neuroscience literature (e.g., [7], [9],
and [18]). The P300 speller task presents a matrix of characters
or icons. Rows and columns of this matrix are flashed rapidly and
randomly to elicit an evoked response (ERP) when the attended
element is flashed, thus allowing the user to “select” elements
from the matrix [19], [20]. Lastly, the stimulus presentation task
presents a programmable series of auditory and/or visual stimuli
to the user. This task can be used to elicit an ERP, such as the
P300 response. We used the test procedure described in this pa-
per to comprehensively test the protocols described earlier. We
did this by systematically changing their most critical variables
and determining the timing behavior of the resulting BCI system
configuration; the test variables are described in Table II.

We evaluated latencies for each of the sampling rates and
numbers of channels given in Table II, and for each of five
BCI2000 configurations. This resulted in a total of 100 differ-
ent tests. Specifically, for the cursor task, we compared two
configurations (2-D and 3-D video output) that rendered the
display differently. For the stimulus presentation task, we eval-
uated stimuli that gave video output, audio output, and combined
video and audio output. Finally, for the spelling task, we used
two configurations: one configuration displayed a 7 × 7 array of
characters, and the other displayed a single character. The five
configurations described earlier will, henceforth, be referred to
as: cursor task (3-D), cursor task (2-D), P3 speller (7× 7), P3
speller (1× 1), and stimulus presentation (which included both
auditory and visual stimuli). Thus, we evaluated a total of 100
BCI2000-based tests (i.e., five configurations, with four differ-
ent sampling rates, and five different numbers of channels) for
each computer. For any of these tests, if the average block du-
ration was greater than the sample block size for two or more
seconds (i.e., the computer could not keep up processing the
sampled data in any two seconds period), the test stopped auto-
matically and the next test began.

As shown in Fig. 3, the specific stimulus depended on the
BCI2000 feedback paradigm (i.e., cursor task, P3 speller task,
and stimulus presentation task). They were similar in that the
stimulus always appeared in the same location. For the cursor
task, a large white target appeared in the center of the screen, and
then disappeared, leaving a black background. For the P3 speller
task, a white letter or icon in the center of the screen was flashed
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Fig. 3. Depiction of experimental flow. The red circle shows the location of
the optical detector. For each test, a stimulus is presented at the same location
repeatedly; the detector is input to the g.TRIGbox. When the light intensity at
the location on the monitor (or audio volume for the audio-based tests) exceeded
a threshold during the task, the trigger box output a 5 V pulse that was recorded
by the data acquisition device.

on a black background. Similarly, for the stimulus presentation
task, a white icon appeared in the center of the black screen. In
the case that audio output was enabled, a short sound was played
simultaneously with the icon. The peak amplitude of this sound
stimulus occurred at 50 ms, but the input threshold was set to
0, so that any detectable sound stimulus would trigger an event.
The noise floor of the stimulus detector was below threshold,
and therefore, no false-positive events occurred. For all tasks,
the stimulus was presented for 100 ms, with a pause interval of
100 ms, and a total of 50 times. The test suite was designed, so
that once the visual and auditory detectors were setup correctly,
no interaction with the experimenter was required.

Data from the acquisition system were processed as described
next. First, the signals of each channel were referenced to a
common-average reference (CAR). This is a commonly used
spatial filter for EEG experiments in which the mean value of
every channel is subtracted from each channel of interest. This
procedure is implemented using matrix multiplication

C = B × A (6)

where A is the input signal with dimensions of N × S (N equals
the number of channels and S equals the number of samples), B
is the spatial filter and is represented as a N × N matrix, and the
output signal C with dimensions equal to the input signal. The
computational complexity of the implemented matrix–matrix
multiplication is O(N 3), indicating that the computational cost

of this procedure is proportional to the number of elements (e.g.,
input channel or sample) to the third power.

These spatially filtered signals were then further processed
depending on the specific task. The parameters for these proce-
dures were chosen as representative of commonly used values
during a typical experiment. For the cursor task, a power-spectral
estimate using an autoregressive model of the input data was cal-
culated for each channel. This was done using the autoregressive
spectral estimation built into BCI2000 [21], [22], and a model
order of 30 and window size of 500 ms. For the P300 spelling
and stimulus presentation tasks, the system collected a 500 ms
epoch of data after each stimulus presentation. Then, the system
calculated the average of all collected epochs, separately for
each stimulus and each channel. In a typical BCI experiment,
the average is only calculated after a certain number of epochs
are collected for each stimulus, e.g., 15 epochs. In our tests, the
average was updated after every stimulus to determine an upper
bound for the processing load.

2) MATLAB-Based BCI: The MATLAB-based BCI imple-
mented a version of the BCI2000 cursor task (2-D) using
MATLAB processing and visualization functions, and used the
MATLAB equivalents of the algorithms employed in BCI2000.
We used the ∗ operator to implement a spatial filter (i.e., for
matrix–matrix multiplication), and the pburg function to cal-
culate the power spectral estimate using the Burg algorithm.
Additionally, we created a MATLAB software interface for
the g.USBamp device, so that data could be acquired from
the ADC directly into MATLAB. The cursor task was cho-
sen for the MATLAB BCI because it uses the most compu-
tationally intensive signal processing algorithm. Finally, vi-
sual stimuli were presented using the MATLAB figure and
rectangle functions, with OpenGL rendering enabled. The
MATLAB figure and rectangle objects were created once,
and the rectangle was displayed and hidden using the MAT-
LAB commands set(r, ‘‘visible,’’ ‘‘on’’) and
set(r, ‘‘visible,’’ ‘‘off’’), respectively, where
r was the handle of the rectangle object.

E. Analysis Methods

We implemented a validation and certification program to an-
alyze and interpret the tests. The rising edges on three channels
were detected to determine the time points for the events shown
in Fig. 4. The associated software time-stamp values stored in
the data file (i.e., the sample block onset and stimulus time)
were used to determine the ADC latency, video and audio laten-
cies, and system latencies. For example, if the optical detection
pulse was on channel 2 (e.g., video (2) in Fig. 4), then the rising
edges on that channel were compared to the starting time of the
corresponding data block, and the difference between the two
values was the video system latency for that block.

III. RESULTS

This section presents example data for the tested BCI con-
figurations using both BCI2000 and a MATLAB-based BCI,
which demonstrate the type of results that can be obtained using
the procedure shown in this paper; the results are not meant
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Fig. 4. Illustration of recorded events. Amp (1) records the digital output set
after a block of data is acquired; at the same time, a software time stamp is
stored (t0 ). At t2 , the stimulus command is issued, and software time stamp is
stored. Video (2) and audio (3) record the video and audio stimuli, respectively.

to be demonstrative of results that can be obtained only with
BCI2000, or any other specific BCI implementation. Further-
more, all of the results shown are dependent on the specific
hardware and BCI systems used, and are included to demon-
strate that the procedure accomplishes what this paper claims.
In fact, it is precisely because all BCI systems are different (and
will, therefore, produce different results) that this procedure is
even necessary.

The main results of the evaluations in this paper are shown
in Fig. 5, which shows the latencies for the Mac Pro system
running Windows XP with BCI2000. The results are shown for
60 tests, which include the three core BCI2000 tasks, repeated
with all combinations of sampling rates and number of channels
acquired. In order to condense the figure, the results for two of
the tasks, cursor (2-D) and P3 speller (1 × 1), are not shown in
Fig. 5, since they are similar to the cursor (3-D) and P3 speller
(7 × 7) results, respectively (detailed descriptions for all tasks
are provided later). The next paragraphs describe these results,
compare these results obtained with the MATLAB-based BCI,
and summarize the results for the other systems. For certain sets
of configurations, we also tested the hypothesis that particular
sets of latencies have the same mean and variance (resulting in
a p-value for each comparison).

A. ADC Latency

1) g.USBamp: The latencies obtained from 60 tests for the
g.USBamp ADC are shown graphically in Fig. 5 and in tabular
form in Table III. An analysis of variance (ANOVA) determined
that the type of the task had no effect on ADC latency (p = 0.9).
However, the sampling rate and number of channels each had
significant effects on ADC latency (p < 0.01). This is expected,
since a higher sampling rate and/or channel count corresponds to
more data that needs to be acquired by the ADC and transmitted
to the PC.

The ADC latencies were not affected by whether BCI2000
or MATLAB were used. The MATLAB version of the data
acquisition program was implemented in C++, and used the
MATLAB MEX interface. Thus, it was not affected by any
overhead that might be introduced by MATLAB.

Because the ADC latency was measured by analyzing the
digitized signals, the resolution of the reported values was de-
pendent on the sampling rate. Specifically, sampling rates of
512, 1200, 2400, and 4800 Hz correspond to a timing resolution
of 1.95, 0.83, 0.42, and 0.21 ms, respectively. Therefore, a value
of 0 ms corresponds to a latency that is smaller than a single
sample at the given rate.

2) g.MOBIlab+: The g.MOBIlab+ ADC was tested using
16 channels (eight analog and eight digital) sampled at 256 Hz
with the same five BCI configurations used for the g.USBamp.
The mean latency for this ADC was 3.91 ms, equivalent to one
sample at 256 Hz, and was the same for all five tasks. According
to the manufacturer, this delay by one sample is due to internal
buffers on the ADC.

B. Signal Processing Latency

1) BCI2000: As expected, the processing latency was sig-
nificantly influenced by the sampling rate, number of channels,
and task (p < 0.001). However, there were important similari-
ties between configurations. The cursor (3-D) and cursor (2-D)
processing latencies were nearly identical for all channel and
sampling rate configurations, differing by no more than 0.5 ms,
which is less than the resolution of the event timer (1 ms). Com-
paring the two P3 speller configurations, all processing latencies
were significantly different (p < 0.001); the 7 × 7 configuration
updated 49 averages with every stimulus presentation, compared
to just one update for the 1 × 1 configuration, which had lower
processing latencies in every configuration. Similarly, the stim-
ulus presentation task only computed a single average for every
stimulus, and had processing latencies that were similar to those
for the P3 speller (1 × 1) configuration.

The two cursor task configurations used the most computa-
tionally intensive signal processing procedures. These proce-
dures involved calculating the power spectrum of every channel
for every sample block, and had a peak processing latency of
49.63 ms for both cursor tasks. The processing latencies for the
cursor task (3-D) are shown in Table IV. The P3 speller task
and the stimulus presentation tasks calculated the time average
of 500 ms blocks of data for every stimulus, requiring consider-
ably less computational power, and had a maximum processing
latency of 24 ms.

We also calculated the correlation coefficients (r) between
the total number of processed elements (i.e., the number of
channels times the number of samples in a block) and the corre-
sponding signal processing latency. The correlation for all tasks
was r > 0.97 (p < 0.001), indicating that the processing latency
was substantially influenced by the number of processed data
elements, as expected.

2) MATLAB-Based BCI: The processing latency in the
MATLAB-based BCI was also significantly influenced by the
sampling rate and channel count (p < 0.001). In all cases,
the processing time was longer in MATLAB than in BCI2000,
except for four channels at 4800 Hz (7.29 ms in MATLAB ver-
sus 8.42 ms in BCI2000). At lower sampling rates (e.g., 512
and 1200 Hz), the processing latencies were much larger in
MATLAB than BCI2000 (e.g., with 16 channels at 512 Hz, in
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Fig. 5. System latency components for the three core BCI2000 tasks run on the Mac Pro computer running Windows XP. The stacked bars represent the
contribution of each latency to the system latency, which is the height of each bar. Each group of three bars contains results for 4, 16, and 32 channels; each of
these groups are organized by the sample rate (512, 1200, 2400, and 4800 Hz). The stimulus presentation task also contains audio latency values; in this case, the
video latency and audio latency are adjacent. The right panel shows the values from 0 to 2 ms for the P3 speller (7 × 7) task to demonstrate the relative time scale
of the ADC latency.

TABLE III
MEAN G.USBAMP ADC LATENCIES IN MILLISECOND FOR

COMBINATIONS OF SAMPLING RATES AND CHANNELS

TABLE IV
BCI2000 CURSOR TASK (3-D) PROCESSING LATENCIES IN MILLISECOND FOR

COMBINATIONS OF SAMPLE RATES AND CHANNELS

TABLE V
MEAN MATLAB CURSOR TASK PROCESSING LATENCIES IN MILLISECOND FOR

COMBINATIONS OF SAMPLE RATES AND CHANNELS

MATLAB the latency was 22.39 ms, while in BCI2000 it was
8.02 ms); however, as the amount of data increased, the pro-
cessing latencies for MATLAB and BCI2000 were closer. This
suggests an additional software overhead in MATLAB that is
present regardless of the amount of data to be processed and
unrelated to the actual algorithm used. As the amount of pro-
cessed data increases, the algorithmic latency dominates the
timing of this overhead, while with smaller amounts of data, the
MATLAB overhead dominates the latency (see Table V).

Fig. 6. Comparison of BCI2000 video output latencies for CRT and LCD
monitors, for all tests.

C. Video Output Latency

1) BCI2000: In contrast to the signal processing latency, the
video output latency did not depend on the number of channels,
sampling rate, or task (p = 0.67). The mean video output latency
on the MacPro Windows XP system using a CRT monitor with
a refresh rate of 100 Hz was 5.06 ± 3.13 ms. The minimum and
maximum output latencies were 1.33 and 11.33 ms, respectively.
Because the current implementations of the BCI2000 feedback
protocols are not synchronized to the refresh rate of the monitor,
the video output latency values can range from 0 ms (i.e., when
the output command is issued precisely at the monitor refresh)
to the inverse of the refresh rate, ∆t (i.e., when the output
command is issued immediately following a refresh), which
is 10 ms at a 100 Hz refresh rate. Our experimental results
correspond closely to this: 1/(11.33–1.33 ms) = 100 Hz. The
minimum output latency (1.33 ms) should then correspond to
the latency of the system (operating system and video card) to
process a graphics command and send it to the monitor.

As described, all tests were replicated using an LCD mon-
itor (see Fig. 6). In this case, the mean video output latency
was 15.22 ± 5.31 ms, with a range of 7.29 to 27.16 ms. The
maximum possible refresh rate for this monitor was 60 Hz. The
mean value is larger for the LCD monitor due to the “ON” time
for liquid crystals, which is the amount of time required for the
crystals to reconfigure and let light pass through when a cur-
rent is applied [3]. This issue is addressed in more detail in the
Section IV.
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2) MATLAB-Based BCI: The MATLAB video output la-
tency was very erratic compared to that obtained in BCI2000
using the same PC, algorithm, and (CRT) monitor. The mean la-
tency was 45.80 ± 32.66 ms, with a range of 7.56 to 141.05 ms.
This indicates that there is a large software overhead required
to update the display, and that the exact time that the display
is updated is very inconsistent from sample block to sample
block. This suggests that the timing of stimulus presentation
using MATLAB may be inadequate for many BCI applications.

D. Audio Output Latency

The stimulus presentation task in BCI2000, described in
Section II-D, was used to measure the audio output latency.
Initially, we ran the stimulus presentation task in three different
configurations in which the video and audio latency were mea-
sured both separately, and then, together. However, we found
that there was not a significant difference for the latencies if
they are measured in the same task compared to if they are
run separately. That is, the inclusion of auditory stimuli did not
affect the video output latency, and vice versa.

The audio latency differed widely between computers and
operating systems in the task that tested the audio output la-
tency. The mean audio latency on the Mac Pro system running
Windows XP was 40.45 ± 2.35 ms, and did not change based
on the sampling rate or number of channels (p = 0.67). On the
same computer running Windows Vista, however, the latency
was 62.6 ± 4.59 ms, nearly 50% larger than the audio latency
in Windows XP.

E. Block Duration and Jitter

1) BCI2000: The block durations were measured using both
the software time stamps and hardware timing, as discussed in
Section II. The block durations calculated using these two meth-
ods were compared to determine the accuracy of the software
time stamp method versus hardware timing using pulses. We
found that the two methods produced the same results for sam-
pling rates of 1200, 2400, and 4800 Hz. When a sampling rate
of 512 Hz was used, the software time stamps were unable to
accurately measure the block duration, because the block dura-
tion was not an integer (i.e., the block duration was 101.56 ms
at 512 Hz, compared to exactly 100 ms for the other sample
rates). Since the software time stamp had a resolution of 1 ms,
the block duration was measured as 102 and 101 ms on alter-
nating blocks, and the mean block duration was measured as
101.56 ± 0.5 ms. Therefore, the hardware timing method was
used for calculating the block duration.

The theoretical block duration for all tests was 100 ms, ex-
cept for those with a sampling rate of 512 Hz, which had a
block duration of 101.56 ms. The block duration was calculated
from the rising edge of the digital input channel on consecutive
sample blocks. This implies that the variance in the calculated
block duration is dependent on the variance of the ADC latency.
However, the block duration was not significantly dependent on
the sample rate or number of channels (p = 0.99).

For tasks configured with sampling rates of 1200, 2400, and
4800 Hz, 94.6% of the measured block durations were exactly

TABLE VI
MATLAB BLOCK DURATION JITTER

Fig. 7. Comparison of video output latencies for Windows XP and Windows
Vista.

100 ms; the standard deviation of the block durations (i.e., the
jitter) was 0.46 ms, with a range of 99.58 to 100.42 ms. Hundred
percent of the block durations for 512 Hz were 101.5625 ms (a
block size of 52 samples at 512 Hz), resulting in 0 ms jitter.
However, the jitter value was smaller than the temporal resolu-
tion given by the sampling rate.

2) MATLAB-Based BCI: The mean block duration was
equal to the theoretical block duration for all sample rates and
channel counts tested (i.e., 100 ms for sample rates of 1200,
2400, and 4800 Hz, and 101.5625 ms for 512 Hz). However,
there was more jitter in the block duration in MATLAB than
in BCI2000, i.e., the standard deviations of the block durations
were larger. The jitter did not vary in a predictable manner with
the number of channels or sampling rate, as shown in Table VI.

F. Operating System

In addition to the tests described earlier, all tests were repli-
cated on the same Mac Pro system that dual-booted into Win-
dows Vista Enterprise instead of Windows XP to determine the
effect that the operating system has on the tasks using otherwise
identical hardware. There were no significant measurable differ-
ences in the ADC latency or signal processing latency between
Windows XP and Windows Vista for any task, sampling rate or
number of channels (p > 0.5).

However, the video and audio output latencies for Windows
Vista were significantly larger than those for Windows XP (each
had p < 0.001). The mean video output latency was 20.26 ±
7.56 ms, with a range from 6.12 to 42.39 ms, compared to
5.72 ± 1.62 ms with a range of 1.33 to 11.33 ms in Windows
XP. Fig. 7 shows the distributions of video output latencies for
Windows XP and Windows Vista on the Mac Pro. The mean
audio output latency in Windows Vista was 62.64 ± 7.55 ms,
ranging from 52.58 to 112.91 ms, compared to a mean latency in
Windows XP of 40.45 ± 2.32 ms. This suggests that the timing
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of stimulus presentation using Vista, at least with this particular
hardware and driver configuration, may be inadequate for many
BCI applications.

G. Other Systems

Results from other systems are briefly summarized here.
1) Dell Optiplex (Windows XP): The Dell Optiplex work-

station had slightly better performance compared to the Mac
Pro in every aspect. The most striking difference, however,
was the audio output latency, which was significantly smaller
(16.58 ± 1.62 ms) than for the Mac Pro (40.45 ± 2.35 ms). Ad-
ditionally, the processing latencies were smaller on the Dell than
on the Mac Pro for all tasks. This difference may be due to the
Dell’s higher clock speed (3.0 GHz for the Dell compared to
2.8 GHz for the Mac Pro; all processing algorithms were single-
threaded, and thus, did not take advantage of the multiple cores
in the Mac Pro).

2) Macbook Pro (Windows Vista): The processing latencies
were longer for all tasks on this computer than for the Mac Pro
running Windows XP or Vista, and than for the Dell Optiplex.
This is likely due to the slower CPU clock speed (2.2 GHz)
compared to the other two systems (2.8 and 3.0 GHz). The
video output latency (19.72 ms) was nearly identical to the value
obtained under Windows Vista on the Mac Pro (19.97 ms),
indicating further that the operating system has a significant
effect on the output latencies. Similarly, the audio output latency
was 63.85 ms on this system, compared to 62.64 ms on the Mac
Pro.

3) Dell Latitude (Windows XP): This system was the only
one tested that was unable to maintain online performance in
some tasks. Specifically, both of the cursor tasks performed
poorly for higher sampling rates, particularly for the 3-D cursor
setting, which had significantly longer processing latencies than
for the 2-D cursor task. These longer processing latencies are
presumably due to the integrated Intel graphics card, which can-
not handle 3-D graphics; the processing latency includes some
OpenGL preprocessing video commands, which are processed
on the graphics card on the other systems, but are processed on
the CPU on systems without hardware acceleration, such as this
laptop.

The older and slower CPU clock speed also contributed to
longer processing latencies for all tasks. However, it is also
important to note that even this older laptop was able to process
32 channels sampled at 4800 Hz for the P300 and stimulus
presentation tasks, and up to 32 channels sampled at 512 Hz
in the 2-D cursor task. In most circumstances, a laptop such as
this would likely be used as a portable EEG system, and would
not require a sampling rate higher than 512 Hz. Additionally,
usually only a subset of all channels are typically processed for
a given task (e.g., C3, C4, and Cz for the cursor task), indicating
that the computational requirements for many applications are
not beyond those of many laptop systems.

IV. DISCUSSION AND CONCLUSION

This study presented a procedure to measure system latencies
for any general hardware and software BCI configuration. We

used this system to characterize the timing behavior of differ-
ent BCI2000 and MATLAB-based BCI implementations. The
results demonstrate that it is possible to accurately determine
the latency at each step of the BCI system without the use of an
external unit event timer or other hardware, besides a stimulus
detector (a common, if not necessary, piece of equipment in
many BCI and psychophysical laboratories). This procedure is
general, so that it can be applied to different BCI systems, and
that it can be modified or expanded for additional output events,
e.g., the movement of a robotic arm. This procedure provides
1) the capability to determine if a computer is able of running
a particular BCI configuration; 2) information about the perfor-
mance capabilities for a given configuration (e.g., the minimum
block duration at a particular sample rate and channel count);
and 3) a method to test and optimize new modules (e.g., a new
signal processing algorithm that is computationally intensive).

The first point is particularly important for experiments that
include both audio and visual stimuli. For example, the Windows
XP Mac Pro system had a mean video latency of 5.06 ms and a
mean audio latency of 40.45 ms, a potentially large difference for
psychophysical studies. Therefore, a better choice of computer
in this case may be the Dell Optiplex computer, with video and
audio latencies of 6.72 and 16.58 ms, respectively. Therefore,
the choice of a computer system and components for use in a
BCI experiment can have a significant impact on the results of
the study, and there may be tradeoffs in the selected system.

Another important consideration in any psychophysical study
including BCI research is the use of LCD monitors. LCD mon-
itors operate with a fundamentally different technology com-
pared to CRT monitors, and have become the standard display
type shipped with new computers. They are more convenient
in terms of size and weight, particularly, if the researcher is re-
quired to travel to the location of the subject instead of keeping
the display in a fixed location in the laboratory. However, the
increased overall latency and variability in output timing from
LCD monitors may compromise the results. For example, a re-
cent study showed that the onset of the P100 response in EEG
is significantly delayed when different LCD monitors are used
compared to a CRT monitor [1]. In summary, LCD monitors
employ a more technically complex process to realize the video
output. This latencies for this process are governed by a number
of factors that include conversion of the digital signal to pixel-
by-pixel values, setting the luminance of each pixel to a certain
value (the response times for which can vary depending on the
colors, e.g., the gray-to-gray response time can be very different
from the black-to-white response time), the refresh rate, plus
any additional image processing done on the monitor itself. An
additional consideration is “overdrive” technology that is used
in some LCDs, which can actually introduce an input lag of
up to 60 ms, or inverse ghosting in which a shadow appears
behind a quickly moving object, each of which could contribute
to experimental problems.

The choice of operating system is clearly important as well.
As shown in Fig. 7, video latency jitter, and therefore, sys-
tem latency jitter was much higher for Windows Vista than for
Windows XP on identical hardware and BCI software configu-
rations. It is possible that the video card drivers were optimized
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for Windows XP, but not for Windows Vista, or that Windows
Vista generally has inferior timing characteristics. Whatever the
reason, the fact that the operating system itself can have a sig-
nificant effect on BCI timing further demonstrates the need for
the tools developed in this study.

The results also show that the choice of BCI system imple-
mentation can have a significant impact on the quality of the
experiment and data recorded. In this study, the BCI2000 cur-
sor movement task was replicated in the most recent version of
MATLAB (2009a), including signal acquisition, signal process-
ing, and application display. To most observers, both versions of
the experiment would likely appear to run identically. However,
the results obtained in this study show that the MATLAB BCI
implementation had very inconsistent timing, particularly for
updating the display. Such timing inconsistencies are likely to
degrade the quality of the recordings and experiment.

As BCI experiments continue to push technical limits by
moving toward experiments with higher sampling rates, chan-
nel counts, and experimental complexity, such as experiments
using electrocorticographic (ECoG) electrodes and microelec-
trodes, it remains important to be confident that a particular
experimental protocol can be executed properly on a chosen
system.”As evidenced by the results shown in this paper, even
a relatively high-end computer, the 8-core Mac Pro, may be
unable to maintain online performance with just 32 channels at
a sampling rate of 4.8 kHz. (It is important to remember here
that the signal processing demands of this configuration were
relatively high. Simple data acquisition and stimulus presenta-
tion, or processing with less demanding configurations, proved
possible at these data rates on this computer.)

The methods developed in this study provide a means of
identifying and addressing system bottlenecks, allowing the re-
searcher to decide whether the capabilities of a system are suffi-
cient for a given experiment, if the system needs to be upgraded,
or if algorithms need to be further optimized.
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