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SUMMARY

Humanorbitofrontal cortex (OFC) has longbeen impli-
cated in value-baseddecisionmaking. In recent years,
convergent evidence from human and model organ-
isms has further elucidated its role in representing
reward-related computations underlying decision
making. However, a detailed description of these pro-
cesses remains elusive due in part to (1) limitations in
our ability to observe human OFC neural dynamics at
the timescale of decision processes and (2) methodo-
logical and interspecies differences that make it chal-
lenging to connect human and animal findings or
to resolve discrepancies when they arise. Here, we
sought to address these challenges by conducting
multi-electrode electrocorticography (ECoG) record-
ings in neurosurgical patients during economic
decision making to elucidate the electrophysiological
signature, sub-second temporal profile, and anatom-
ical distributionof reward-relatedcomputationswithin
human OFC. We found that high-frequency activity
(HFA) (70–200 Hz) reflectedmultiple valuation compo-
nents grouped in two classes of valuation signals that
were dissociable in temporal profile and information
content: (1) fast, transient responses reflecting signals
associated with choice and outcome processing,
including anticipated risk and outcome regret, and
(2) sustained responses explicitly encoding what
happened in the immediately preceding trial. Anatom-
ically, these responses were widely distributed in
partially overlapping networks, including regions in
the central OFC (Brodmann areas 11 and 13), which
have been consistently implicated in reward process-
ing in animal single-unit studies. Together, these re-
sults integrate insights drawn from human and animal
studies and provide evidence for a role of humanOFC
in representing multiple reward computations.
Current Biolo
INTRODUCTION

Making decisions under incomplete information is a notoriously

difficult problem [1, 2] that relies on representation of multiple

types of reward-related computations across prefrontal cortical

areas [3–5]. Among these areas, neural activity in human orbito-

frontal cortex (OFC) has been consistently shown to represent

multiple reward-related computations [6–10]. In particular, neu-

roimaging studies over the past decade have expanded our

knowledge of OFC contributions to decision making, providing

a rich characterization of OFC signals consistent with predictions

from influential theories on valuation and learning, including

those associated with choice value, uncertainty, and counterfac-

tual representations, such as regret [5, 10–12].

Despite this progress, a detailed account of human OFC pro-

cesses in the human OFC remains elusive, due in part to limita-

tions in our ability to observe neural dynamics at the timescale of

decision processes, as well as methodological and interspecies

differences that make it challenging to connect human and ani-

mal findings or to resolve discrepancies when they arise. First,

recent data from model organisms have begun to delineate a

more complex picture whereby OFC encodes a much broader

variety of information than would be predicted by pure valuation

and associative learning accounts. In particular, whereas there is

evidence for the existence of valuation and learning signals that

reflect integration of all relevant decision features, such as prob-

ability, reward magnitude, prior expectations, etc., OFC also re-

sponds to these value-relevant features in an independent

manner that does not reflect overall value or level of reinforce-

ment, which is notably different from the ventral striatum, where

integrated representations are prevalent [8, 9]. Indeed, OFC en-

coding extends even to information such as specific identity of

sensory stimuli, which, by themselves, do not carry reinforcing

value. However, due to the inherent spatiotemporal limitations

of non-invasive techniques, such as fMRI and electroencepha-

lography (EEG), the nature of encoding in the human OFC re-

mains to be defined.

Second, although there is a broadcorrespondencebetweenhu-

man and animal findings on OFC functioning, important discrep-

ancies exist, in particular at the more detailed anatomical level
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[9, 13, 14].Whereas human neuroimaging studies have repeatedly

implicated some portions of the OFC, such as ventromedial pre-

frontal cortex (vmPFC) (Brodmannarea14)duringdecisionmaking

[5, 15], the implication of other regions, including the directly adja-

cent central OFC (Brodmann regions 11 and 13), has received

much less support. In contrast, nonhuman primate studies have

foundsubstantial reward-related responses inhomologsofcentral

OFC but interestingly little evidence for such encoding in the ho-

mologs of the vmPFC [9, 13, 14].

Two sets of hypotheses have been offered for these differ-

ences. First, they may arise due to differences in human and an-

imal study procedures, such as the extensive overtraining typical

in animal studies, or the common use of secondary reinforcers in

human studies, both of which may result in the engagement of

different sets of cognitive processes [16]. The second, and

non-mutually exclusive, set of possibilities is related to well-

known limitations of fMRI measures. Human OFC is known to

be particularly vulnerable to motion and sinus air artifacts that

can corrupt fMRI signals [17, 18]. In addition, as the blood-oxy-

gen-level-dependent (BOLD) signal is sensitive to both input and

output events, vmPFC findings in fMRI may in fact reflect pro-

cessing elsewhere in upstream regions. Importantly, these is-

sues have different implications for our understanding of human

OFC functioning but to date have been difficult to resolve.

Here, we sought to address these challenges by combining

the rare opportunity to conduct intracranial recording in neuro-

surgical patients with the administration of a neuroeconomic

task. Specifically, we conducted electrocorticographic (ECoG)

recordings of field potentials (FPs) from OFC using multi-elec-

trode strips and grids. ECoG signals capture the activity of

hundreds of thousands of neurons at a millisecond temporal

resolution and spatial resolution of <1 cm [19]. This intermediate

spatiotemporal coverage has been referred to as a ‘‘mesoscale’’

level of analysis, lying between the extensive anatomical

coverage of fMRI and the exquisite temporal resolution of sin-

gle-unit recordings [20–22]. In addition, because electrodes are

placed directly on the cortical surface, the resulting signals are

not affected by susceptibility artifacts arising near air-tissue

boundaries to which OFC is sensitive [17, 18].

In particular, we concentrated on examination of high-fre-

quency activity (HFA) (70–200 Hz) within the broadband FP

signal to characterize the nature and anatomical distribution of

information encoding across the human OFC. Unlike lower fre-

quency bands that reflect activity in broadly distributed networks

[23], growing evidence suggests HFA, which is not observable in

traditional scalp EEG due to conduction filtering and source

spread, reflects local non-rhythmic synaptic activity [19] and is

a key marker of cortical activation [24, 25]. HFA analyses have

significantly advanced our understanding of cortical dynamics

in a number of domains, including attention, language, memory,

andmotor control [20–22, 26], but to date, no study to our knowl-

edge has examined the relationship between HFA and decision-

making computations in humans [27, 28].

RESULTS

Economic Choice Behavior in Neurosurgical Patients
To probe decision-making processes in our subjects, we com-

bined ECoG recordings in 10 patients with administration of a
2890 Current Biology 28, 2889–2899, September 24, 2018
neuroeconomic task that captures the tradeoff between risk

and reward [4, 29]. All patients had medically refractory epilepsy

and were implanted with chronic subdural grid and/or strip elec-

trodes as part of a pre-operative procedure to localize the epilep-

togenic focus, which in none of the patients was judged to be

located in OFC (see STAR Methods). As electrode placement

and treatment were based solely on the clinical needs of each

patient, the specific number and location of electrodes varied

across individuals. We recorded from a total of 210 electrodes,

of which 192 were included in the final dataset (for details

regarding electrode implantation, localization, ECoG recording,

and electrophysiological quality control, see STAR Methods;

coverage in Figure 1A and individual subject coverage in

Figure S1).

Testing was conducted over a single session of 15–20 min in

the epilepsy monitoring unit, while paying careful attention to

the patient’s neurological condition and testing only when the

patient was fully alert and cooperative. On each trial, participants

were presented with a choice between a sure prize and a risky

gamble with a varying probability of higher winnings (Figure 1B;

STAR Methods). Although simple, the explicit presentation of

risk and reward information across trials allowed us to exert

strong experimental control over each decision while minimizing

working memory load. Similar tasks have been used in a number

of previous neuroimaging studies in healthy human participants

to characterize decision-making processes in frontostriatal cir-

cuits [4, 29], providing the ability to compare findings across

recording methodologies.

For subsequent analyses, we defined two sets of reward-

related signals associated with both choice and outcome evalu-

ation processes, respectively, which have been implicated in

previous studies (see STAR Methods and Table S1). Choice-

related regressors reflected information available during deliber-

ation, namely, (1) the probability of the gamble resulting in a win

(win probability); (2) the risk, or variance, associated with the

gamble regardless of choice (risk); (3) the expected value of

the chosen option (chosen value); and (4) whether the subject

chose to gamble (gamble). Outcome evaluation regressors

were defined as (1) whether the gamble resulted in a win (win)

(2) or a loss (loss), (3) reward prediction error (RPE) (difference

between the obtained reward and the expected value of the

gamble), and (4) the amount of extra money that would have

been won for the non-chosen option (regret).

Behaviorally, we found that subjects were approximately risk

neutral, choosing to gamble only slightly more often than a risk

neutral baseline model (55.9% ± 8.5% of risky choices). The

proportion of risky choices increased as the offer value (win prob-

ability) increased, which was well captured by a logit model of

decision under risk (p < 0.001; random effects logit analysis; Fig-

ure 1C). Importantly, a comparison of behavior from patients

undergoing intracranial recordingwith those from10 healthy com-

parison participants (see STAR Methods) shows that patterns of

behavior were comparable at both level of sensitivity of risk-

reward tradeoff (Figures 1C and S1) and reaction time (Figure S2).

OFC HFA Reflects Choice- and Outcome-Related
Valuation Signals
Next, we sought to connect neural responses in OFC to valuation

components related to choice and outcome processing.
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Figure 1. Experimental Approach

(A) Anatomical reconstruction showing placement of all 192 ECoG electrodes in OFC across all 10 patients. Each color corresponds to a patient.

(B) Subjects (n = 10) chose between a sure prize and a risky gamble with varying probabilities for potential higher winnings. Trials resulted in a win if a second

number was higher than the first. Gamble outcome was shown regardless of choice.

(C) Subjects’ choices were significantly affected by likelihood of winning the gamble (p < 0.001; random effects logit analysis; error bars = SEM) and were

comparable to those of healthy participants (gray line; all p > 0.2).

See also Figures S1 and S2 and Tables S1 and S2.
Because ECoG signals reflect cortical FP activity, one possibility

is to analyze broadband activity using event-related potentials

(ERPs) as in traditional EEG analyses [30, 31]. In contrast, moti-

vated by recent human and animal findings, we focused on

cortical HFA in the 70–200 Hz range, which is not observable

in traditional scalp EEG due to distortions caused by signal

propagation from the deep location of OFC and the reduced

amplitude of HFA due to the 1/f power law. Growing evidence

suggests that HFA acts as an index of local cortical computation

[19, 32], unlike broadband power, which in addition reflects

activity from coordinated interactions in broadly distributed net-

works [23, 33], and is better suited to reveal distinct computa-

tions across recording sites. Thus, we examined the extent to

which variation in HFA power within and across trials was asso-

ciated with reward-related signals (see Figure 2 for analytical

strategy and example risk- and regret-encoding electrodes).

We applied this strategy to examine OFC-wide encoding

across types of information and electrodes. Specifically, for

each regressor of interest, we selected electrodes that showed

a significant correlation (p < 0.05) at 5 or more consecutive

time windows at any point (see STAR Methods) and averaged

their temporal encoding profiles (%EV) to reveal OFC-wide en-

coding temporal profiles. Consistent with human neuroimaging

and animal electrophysiological studies [4, 8, 14, 28, 34, 35],

we found robust evidence within the HFA band for multiple valu-

ation components related to choice (risk, gamble choice, offer

value, and expected value of chosen option; see Figure S3 for

additional risk analyses) and outcome (gamble win, gamble

loss, RPE, and regret) processing.

In particular, choice and outcome processing signals were

consistently time locked across multiple electrodes to external

game presentation (Figures 3A and 3B) and outcome reveal (Fig-

ures 3C and 3D), respectively. The delays after the presentation

of external information, game presentation and outcome reveal,

respectively, were not statistically different (512.5 ± 59 ms and
287 ± 114.33 ms; p = 0.14; t test), with transient activation pro-

files of comparable duration (612.15 ± 132.9 ms and 712.5 ±

112.5 ms, respectively; p = 0.58; t test). The increase in overall

variance for each information type was furthermore accompa-

nied by an increase in the number of encoding electrodes (Fig-

ure 3). These results were robust to additional analyses more

explicitly accounting for inter-subject or inter-electrode vari-

ability, and similar patterns were not observed when we used

motor responses, i.e., left or right response, as a negative control

(Figure S3).

In comparison, there was much weaker evidence of encoding

in broadband power (Figure S4). Across all regressors, the pro-

portion of encoding electrodes identified using HFA was signifi-

cantly greater than using FP (mean HFA = 20.9% versus FP =

3.3%; p < 10�5; t test). In addition, overall power modulation

across OFC was maximal at the time of button press but weak

at the times of maximal HFA encoding (i.e., �750 ms post-

outcome reveal for outcome regressors; Figure S4), strongly

suggesting that HFA activity and encoding is temporally distinct

from broadband power modulation.

Dissociable OFC Encoding of Past Choice and Outcome
Information
In addition to reward-related signals relating to choice pro-

cesses, we found that HFA signals also responded to a variety

of past-trial characteristics [36, 37]. Specifically, we regressed

HFA power on time-shifted choice and outcome regressors re-

flecting the characteristics of previous rounds (e.g., past loss in-

dicates a gamble loss in the immediately preceding round).

Because of the stationary nature of our task where probabilities

are explicit and underlying distribution does not change over

time, past and current regressors were uncorrelated (mean

R2 = 2.1%;maxR2 = 3.7%), thus allowing us to identify the extent

to which neural signals reflected past trial information indepen-

dently of current trial information. We found that past round
Current Biology 28, 2889–2899, September 24, 2018 2891
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Figure 2. Analytical Approach and Example

Encoding Electrodes

Electrode HFA time series was parsed into choice-

and outcome-related epochs, and the inter-trial

correlation between the HFA analytical amplitude

and regressors of interest across task timewas taken

as an indication of encoding strength.

(A) HFA trials from example electrode encoding win

information. Trials are time locked to gamble

outcome reveal (t = 0) and split according to whether

they resulted in a win (top) or not (bottom).

(B) Average HFA power for all win (blue trace; shade =

SEM) and no win (red trace and shading) trials de-

picted in (A).

(C) Percentage of variance in the HFA signal in (A) and

(B) explained by win or no win regressor (%EV).

(D) Three example electrodes encoding risk infor-

mation. Activity is time locked to the time of initial

game presentation (i.e., the deliberation period; left)

and choice or outcome (right) and is expressed (as in

D) as the percentage of variance in the HFA signal

accounted for by risk information (%EV, linear

regression; see STAR Methods).

(E) Relationship between win probability and HFA for

one of the example electrodes at the time of peak

encoding. The relationship follows an inverted u

shape with win probabilities as would be expected

for risk encoding.

(F) Three example electrodes, as in (D), but encoding

regret information.

(G) As in (E), but showing a linear drop for electrodes

encoding regret (parametrized as the extra payoff

that would have been obtained by making a different

choice).

See also Figures S4 and S6.
features were widely represented across the OFC, with the

exception of past risk, and were dissociable from current choice

and outcome signals (Figures 4A–4D; see Figure S5 for individual

electrode examples).

Unlike transient choice and outcome signals, which were time

locked to gamble and outcome reveal events, respectively, sig-

nals containing past trial information were sustained, with a

longer encoding duration (Figure 5). Comparing the longest

continuous stretch of timewhere HFA showed a significant asso-

ciation with each regressor of interest for all active electrodes,

both past outcome (average duration = 1,341.37 ± 49.63 ms)

and past choice (1,169.15 ± 61.2 ms) showed significantly

more sustained activation than current choice and outcome sig-

nals (799.6 ± 36.94 and 706.9 ± 30.56 ms, respectively; all

p < 10�6; t test). As in the case of present information signals,

this encoding was sustained through an increase in the number

of encoding electrodes, and there was significantly less evi-

dence of encoding at the level of broadband activity (Figure S4).

Interestingly, past trial characteristics were represented in

spite of the fact that they did not appear to influence behavior.

Random effects logistic regression showed that none of

the past trial characteristics significantly affected risk-taking
2892 Current Biology 28, 2889–2899, September 24, 2018
behavior (all p > 0.15). Moreover, evidence

of such encoding appeared to be limited

to the immediately preceding trial and not

more temporally distant events. Specif-
ically, we extended our time-lagged regressors to the past 5

trials (t�2 through t�5). Strikingly, we found no evidence for en-

coding of information from earlier rounds (t�2–t�5; Figure 6A;

see Figure 6B for individual regressors and Figure S5 for an in-

depth comparison). That is, in contrast to predictions from

associative learning accounts where learning signals contain

the cumulative history of past outcomes, representation of

past choices and outcomes in our data was short lived.

To assess the robustness of these and earlier results, we con-

ducted several additional sets of analyses to address potential

issues arising frommultiple comparisons. First, to account for in-

ter-subject or inter-electrode variation in neural activity, we ran a

series of nested mixed-effects models, including patient and

electrode identity as random effects to examine the impact of re-

gressors on HFA activity. We found that all of our regressors

were significantly active (all p < 10�4; Bonferroni corrected), indi-

cating that the computations were robust across electrodes and

patients. To further verify that our results were not driven by re-

gressor collinearity, we examined regressor correlation (Fig-

ure S6) and carried out a stepwise regression analysis, in which

only regressors that significantly improve model fit are included

in the results (STAR Methods). Overall, the stepwise regression
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Figure 3. Human OFC Encodes Present Choice and Outcome

Information

(A) Average% explained variance (%EV) (line plots and left axis; shade = SEM)

and % of encoding electrodes (bars and right axis) time courses for linear

regression of HFA neural activity onto all choice regressors (risk, gamble/safe

bet choice, offer value, and expected chosen value) time locked to game

presentation (t = 0); horizontal dotted line indicates chance results.

(B) Superimposed and average time courses for choice regressors; each gray

line represents the average %EV shown for each regressor in (A).

(C) As in (A), but for outcome regressors (gamble win, gamble loss, reward

prediction error [RPE], and regret), time locked to gamble outcome (t = 0).

(D) As in (B), but for outcome regressors (gamble win, gamble loss, RPE, and

regret), time locked to gamble outcome (t = 0).

See also Figures S3, S4, and S6.
showed comparable results to our linear regression approach

(Figure S6), indicating that our results were not driven by collin-

earity effects.

Anatomical Distribution of Present and Past Valuation
Signals
Finally, we examined the anatomical localization of the above

signals by examining their location across Brodmann areas

(BAs) using Freesurfer and anatomical atlases [38] (see STAR

Methods). The majority of electrodes in our sample were located

in putative BA 11 (n = 53 out of 192 total), 13 (n = 40/192), and 14

(n = 67/192), providing a rare opportunity to assess the involve-

ment of human central OFC in economic decision making. We
found that, consistent with findings in monkey neurophysiolog-

ical studies that implicate regions in the monkey homolog of

the human central and mid-OFC [9, 14], there was strong evi-

dence for the presence of electrodes capturing each type of

signal (present and past choice and outcome) across all three

areas (Figures 7B–7E). We found a similar proportion of elec-

trodes encoded each valuation signal type across regions

(Figure S7).

We found no consistent evidence for differential encoding of

individual valuation components across OFC subregions (BA

11/13/14), or across anatomical gradients (fronto-posterior or

medio-lateral; STAR Methods). To further verify that our results

were not driven primarily by a subset of subjects, we examined

the extent to which each value’s signals were represented

across patients. We found that all signals were present in at least

6 of the 10 patients in our sample (mean = 7.41 ± 0.4; Table S2),

suggesting that our findings are robust and similarly represented

across individuals.

In addition, we examined the extent to which electrodes repre-

sented multiple types of information. Individual OFC neurons are

known to be capable of encoding multiple kinds of reward-

related information [14], but whether this multiplexing appears

at the level of HFA activity in individual cortical sites is largely un-

known. To address this question, we further examined the re-

sults of our stepwise regression analysis (STAR Methods). To

minimize the number of sets, we pooled encoding electrodes

into four separate groups, integrated by electrodes encoding

choice, outcome, past choice, and past outcome. We observed

significant overlap in electrode sets, with most electrodes

(n = 132/192; 68.7%) encoding at least two types of signals

and 15.6% of electrodes (n = 30/192) encoding all four (Fig-

ure 7F). Electrodes encoding both present and past information

were slightly overrepresented (chi-square test; p < 0.05; Fig-

ure S7), although a substantial proportion of electrodes encoded

only present or past information (Figure 7F). Therefore, encoding

of past and present information showed distinct temporal pro-

files and appeared in only partially overlapping OFC networks.

DISCUSSION

HumanOFC is involved in an array of cognitive processes neces-

sary for goal-directed behavior [6, 10]. Neural activity in OFC has

been shown to reflect a variety of valuation signals necessary for

estimating the value of available options, with rich evidence from

fMRI studies demonstrating the existence of multiple valuation-

related signals in human OFC, including expected reward, risk,

and learning signals [3, 4, 39]. Here, we add to this knowledge

by (1) providing novel insights into nature of human OFC encod-

ing and (2) shedding light on the relationship between past hu-

man and animal findings.

First, we show that electrophysiological HFA in the OFC in-

dexes multiple valuation components to a greater extent than

broadband metrics. Specifically, the fast activation dynamics

of HFA revealed that these signals were organized into two

dissociable types of signals, with different information content

showing different time courses in partially overlapping but

distinct OFC networks. Signals related to choice and outcome

evaluation processes were sequentially encoded in fast, tran-

sient activation volleys (Figure 3), whereas information about
Current Biology 28, 2889–2899, September 24, 2018 2893
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Figure 4. Human OFC Encodes Past Choice and Outcome Information from the Preceding Trial

(A) Average%EV (line plots and left axis; shade = SEM) and%of encoding electrodes (bars and right axis) time courses for linear regression of HFA neural activity

onto all past choice regressors time locked to game (t = 0, left) and gamble outcome (t = 0, right); shade = SEM; horizontal dotted line indicates chance results.

(B) Superimposed and average time courses for past choice regressors, excluding past risk; each gray line represents the average %EV shown for each

regressor in (A).

(C) As in (A), for past outcome regressors.

(D) As in (B), for past outcome regressors.

See also Figures S4, S5, and S6.
past choices and outcomes was represented in a second set of

sustained signals overlapping both choice and outcome epochs

(Figures 4 and 5) and were therefore encoded using a distinct

temporal mechanism. The latter sustained signals, which have

been shown in both rodent andmonkey OFC [8, 14], were partic-

ularly notable in their information content: they reflect only what

happened in the immediately preceding trial (e.g., whether sub-

ject chose to gamble, whether the gamble was won or lost, how

much regret was experienced, etc.; Figure 6) rather than a cumu-

lative history of past associations.

Thus, the timing and anatomical features of these signals add

to our knowledge of human OFC functioning and go beyond pre-

dictions of influential theories based on associative learning

models [35, 40, 41]. In particular, these models predict that

past expectations and outcomes should be represented as an
2894 Current Biology 28, 2889–2899, September 24, 2018
integrated learning signal with progressive decay of past infor-

mation. Neural signatures of such a signal should therefore

exhibit two properties. First, current and past outcomes should

be present in the same signal rather than in separate electrodes

following distinct temporal profiles. Second, the strengths of re-

sponses to past outcomes should depreciate smoothly, with

distant past events showing progressively weaker representa-

tions compared to more recent events [42]. In contrast, we

observed past and current signals, including responses reflect-

ing reward prediction errors and regret, were represented in

distinct networks of cortical sites (Figure 7) with a sharp inter-

temporal boundary between recent and distant past events

(Figure 6).

Instead, our results aremore compatible with the broader view

of OFC functioning put forward in the more recent animal
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Figure 5. Dissociable Time Courses Representing Current and Past Information

(A) Mean duration of encoding across electrodes for each type of information (choice/outcome or past choice or past outcome). Choice groups include risk,

gamble, offer value, and expected chosen value regressors (present/past); outcome groups includewin, loss, RPE, and regret regressors (present/past). Duration

of encoding was significantly longer for past than present valuation signals (**p < 0.01; t test; error bars = SEM).

(B) Histograms representing the distribution of encoding duration for individual electrodes. Each plot represents the duration of encoding for individual electrodes

for all regressors in each group; data are the same as in (A).
literature centered on temporary maintenance and manipulation

of goals and outcomes useful for behavioral performance [7]. The

diverse encoding of past information is consistent with the view

that OFC encodes a collection of relevant task states that in-

cludes not only information tied to external stimuli, such as the

probability of winning the gamble, but also internal information

that is not available in the environment and must be retained in

memory, such as the previous action and outcome [7]. In partic-

ular, the sustained nature of our past encoding is consistent with

proposals that OFC supports a working memory mechanism

specialized for reward-related information [6], such that the

OFC operates in a fashion similar to other prefrontal areas by

holding relevant recent past information in working memory for

short periods of time [43].

These ideas provide one possible explanation for the encoding

of past choice and outcome information in our data, even as they

do not appear to bias behavior. Under this proposal, past infor-

mation may be maintained in working memory due to its poten-

tial usefulness for subsequent both action selection and value

updating processes [5, 6, 9]. Although optimal decisions in our

task should not incorporate past information, given the indepen-

dent trial structure, it may nevertheless be beneficial for the brain

to represent past history to detect any changes in the task envi-

ronment, such as reversals, should they occur. Alternatively, the

absence of signals integrating an extended history of trials may

be due to the fact that our task did not require learning and

that the nature of this signal may depend on whether paradigms

require information to be accumulated across trials. Finally, it is

possible that the functions of these signals were simply not

captured in our behavioral assay. For example, past studies

have suggested that OFC supports the representation of the

hedonic value of temporally extended experiences [44], for
example, what is colloquially referred to as ‘‘happiness.’’ Thus,

even if past choices and outcomes do not bias overt choice

behavior in our task, they could be important for processes

that update organisms’ internal states. Future studies

that manipulate learning, as well as expanding the set of behav-

ioral assays, will be necessary to address these challenging

questions.

In addition to variation in encoding duration, an important

question remains regarding the extent to which there exists sys-

tematic variation in the relative onset of individual computational

components. However, our ability to make conclusions about

onset differences was limited by both the size of our data as

well as between-subject variation. Although our dataset is large

by human intracranial recording standards, the number of trials

(n = 200) from each subject is small compared to animal studies

that involve a small number of subjects but amuch larger number

of observations.

Our results also provide evidence regarding the anatomical or-

ganization of reward-related computations in the human brain.

Whereas neurophysiological studies in monkeys have mostly

implicated central OFC, corresponding to Brodmann areas 11

and 13 [14, 34], human fMRI studies commonly report vmPFC

activations, corresponding to area 14 [5, 15, 35]. One possible

explanation is that these differences reflect inter-species differ-

ences between humans and nonhuman primates. However,

given the evidence for homology between monkey and human

OFC [16], alternative explanations have focused onmethodolog-

ical differences between human and monkey studies, including

(1) loss of OFC signal in fMRI due to susceptibility gradients

above the orbital air-tissue interface [17, 18], (2) overtraining in

animal studies, which often involve thousands of training trials

over the course of months [8, 9, 14], and (3) the use of verbal
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A B Figure 6. Past Representations Are Short

Lived

(A) Significantly lower proportion of electrodes

encoding distant (2–5 trials back; t�2 through t�5)

past choices and outcomes compared to present

(t) and immediate past (previous trial, t�1;

**p < 0.01; t test; error bars = SEM).

(B) Proportion of electrodes encoding present and

past information, separated by regressor: choice

(left) and outcome (right) regressors. Horizontal

dotted line indicates Null regressor results.

See also Figure S5.
instructions in human studies. Our electrophysiological record-

ings showing abundant encoding of value-related activations in

central human OFC, including areas 11, 13, and 14 across mul-

tiple electrodes, participants, and types of valuation compo-

nents, support the proposal that signal dropout in fMRI is a likely

contributor to the lack of reported activation in human Brodmann

areas 11 and 13.

By analyzing field potentials in the human OFC, our results

provide a level of description complementary to the rich human

BOLD [3–5, 11] and animal single unit [2, 8, 9, 14] literatures on

the neural substrates of decision making. First, our time fre-

quency analyses reveal that HFA are a more sensitive measure

of reward-related responses than broadband FP activity. This

is consistent with previous observations on the relationship be-

tween single-unit spiking, HFA, and BOLD. In particular,

although broadband local field potential (LFP) activity is known

to be correlated with both BOLD and single-unit spiking

[45–47], these associations appear driven by activity in higher

frequency bands. Specifically, power modulation in higher fre-

quencies (40–130 Hz) has been shown to be significantly better

at explaining BOLD responses than activity in lower frequencies,

which are instead thought to reflect activity in broadly distributed

networks [45, 48, 49]. Indeed, experiments in nonhuman pri-

mates, which do not face the same time constraints as our hu-

man intracranial recordings, have shown the existence of

reward-related information in OFC LFP at the level of ERPs [50].

Similarly, HFA as captured using ECoG has been shown to be

a better measure of neuronal spiking than broadband LFPs

[46, 47], consistent with the idea that HFA reflects aggregate

local neuronal output [19]. In contrast, due to challenges associ-

ated with conducting filtering and source spread, frequency-

band-specific analyses using non-invasive recording tech-

niques, such as EEG/MEG, have largely concentrated on the

lower frequency bands, including low gamma band (50–60 Hz)

[51]. Our observation that encoding is distributed across OFC

also supports recent suggestions of intermingled, mixed selec-

tivity in OFC [32]. Specifically, recent findings have shown that

signals from multiple neurons with different encoding schemes

[14] in the HFA signal do not result in weakening of encoding

but rather generate comparably strong responses with clearer

spatial and temporal structure [32]. Such functional grouping

has been speculated to be computationally advantageous for

decoding task-relevant information and for allowing behavioral

flexibility [52].

As electrode locations were based solely on clinical criteria,

variation in anatomical coverage can pose challenges for char-
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acterizing processing across brain regions. Within the OFC, a

number of hypotheses have been proposed regarding functional

differences across medial (area 14) and more lateral (areas 11

and 13) portions of OFC, including desirability (appetitive or aver-

sive), primary or secondary nature of rewards, and processes

(valuation or choice) [44, 53]. However, although we observed

value-related signals across Brodmann areas 11, 13, and 14,

there were no clear fronto-posterior or medio-lateral gradients

for any of the reward-related computations we examined.

Instead, we show that distinct types of signals are represented

in overlapping but distinct cortical networks (Figure 7). A partial

overlap provides a way in which a rich representation of task var-

iables can be maintained in unique OFC sites, and sites that

encode multiple types of signals provide a potential substrate

for information integration. This distributed representation may

be biased by the number of patients and electrodes in our sam-

ple. Alternatively, our data may reflect a distributed representa-

tion of distinct types of information across the orbital surface

rather than anatomically clustered representations that can be

uniquely captured by our multi-electrode ECoG approach.

Consistent with this interpretation, distributed activation pat-

terns have been observed in a number of cortical areas in

ECoG studies [54, 55].

As with other studies involving rare patient populations, impor-

tant methodological and interpretational limitations exist. First,

theremaybeconcerns regarding thegeneralizability ofbothneural

activity andbehavior of our patient participants to the general pop-

ulation. To address potential abnormalities in neural activity, we

undertook extensive efforts to only test patients fully alert and

cooperative and removed from analysis electrodes placed over

seizure foci or abnormal tissue (see STARMethods). Behaviorally,

we addressed potential fatigue issues and the strict time limits of

our recording sessions by minimizing the cognitive complexity of

the task. Indeed,we found thatbehavioral performance of patients

was consistent with those from healthy participants (Figure 1C),

suggesting that key circuits implicated in decision making under

uncertainty are intact in our patient sample.

Finally, although ECoG is not affected by air-tissue artifacts

present in fMRI measures of OFC activity, there are concerns

of signal contamination by adjacent extra-ocular muscle move-

ments that may have spectral characteristics similar to those

of neural signals of interest. Wewere unable to record eyemove-

ment with our intracranial data and cannot rule out the existence

of such artifacts in our data directly. However, prior findings

incorporating eye movement data found no evidence for such

artifacts in the OFC [56]. In addition, we examined whether
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Figure 7. Anatomical Distribution of Valuation Components

(A) Ventral view of the brain. Blue shadowed area corresponds to OFC as shown in (B) and (E). Boundaries and white numbers (left) indicate putative Brodmann

areas [6].

(B) Anatomical localization of electrodes encoding choice signals (red dots; white dots represent non-encoding electrodes).

(C–E) Same as (B) for electrodes encoding outcome (C), past choice (D), and past outcome (E) signals.

(F) Venn diagram indicating the number of electrodes (out of n = 192) encoding one or several types of signals.
movement-related activity was represented in OFC and found no

significant association between the direction of movement (left-

right) and HFA activity (Figure S3), suggesting that movement-

related activity is not present in OFC HFA.

More generally, intracranial recording approaches open the

door for human studies to build on insights from animal and neu-

roimaging research to study long-standing questions involving

human OFC functioning, such as the interregional communica-

tion and flow of information across different brain regions

[21, 23, 57]. For example, given their different information con-

tent, transient and sustained encoding modes may be related

to their routes of entry into OFC such that the former signals

reflect external input reaching OFC from ascending sensory

pathways [58], and the latter signals reflect internal inputs

relayed in a top-down manner from executive control and mem-

ory structures, such as lateral PFC or hippocampus [59]. Simi-

larly, past fMRI studies have emphasized the importance of

lateral PFC in controlling and biasing valuation signals in OFC

during decision making [5], but the precise nature of the under-

lying mechanisms have remained unclear. Addressing these

questions will help elucidate the neural basis of uniquely human

decisions related to highly complex decisions, abstract rewards,

or those performed in complex social settings.
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Deposited Data

Electrophysiological and behavioral data This paper https://crcns.org/data-sets/ofc/ofc-3

Software and Algorithms

MATLAB R2016b Mathworks software RRID: SCR:001622

RStudio running R v.3.4.1 R Foundation for Statistical Computing RRID: SCR:000432
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Ming Hsu (mhsu@haas.

berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Data was collected from 10 (4 female) adult subjects with intractable epilepsy who were implanted with chronic subdural grid and/or

strip electrodes as part of a pre-operative procedure to localize the epileptogenic focus. We paid careful attention to the patient’s

neurological condition and only tested when the patient was fully alert and cooperative. The surgeons determined electrode place-

ment and treatment based solely on the clinical needs of each patient. Patient recordings took place at four hospitals: the University

of California, San Francisco (UCSF) Hospital (n = 2), the Stanford School ofMedicine (n = 2), the University of California, IrvineMedical

Center (UCI) (n = 5) and at Albany Medical College (n = 1). Due to IRB limitations, subjects were not paid for their participation in the

study but were encouraged to make as many points as possible. As part of the clinical observation procedure, patients were off anti-

epileptic medication during these experiments. Healthy participants (n = 10) with no prior history of neurological disease were re-

cruited from UC Berkeley’s undergraduate population and played an identical version of the gambling task. All subjects gave written

informed consent to participate in the study in accordance with the University of California, Berkeley Institutional Review Board.

METHOD DETAILS

Behavioral task
We probed risk-reward tradeoffs using a simple gambling task in which subjects chose between a sure payoff and a gamble for po-

tential higher winnings. Trials started with a fixation cross (t = 0), followed by the game presentation screen (t = 750ms). At that time,

patients were given up to 2 s to choose between a fixed prize (safe bet, $10) and a higher payoff gamble (e.g., $30; Figure 1). Gamble

prizes varied between $10 and $30, in $5 increments. If the patient did not choose within the allotted time limit, a timeout occurred

and no reward was awarded for that round. Timeouts were infrequent (9.98% of all trials) and were excluded from analysis. Gamble

win probability varied round by round; at the time of game presentation, subjects are shown a number between 0-10. At the time of

outcome (t = 550ms post-choice), a second number (also 0-10) is revealed, and the subject wins the prize if the second number is

greater than the first one. Only integers were presented, and ties were not allowed; therefore, a shown ‘20 had a win probability of

20%. The delay between buttonpress and gamble outcome presentation (550ms) was fixed, and activity for both epochs is tempo-

rally aligned. Therefore, offer value, risk and chosen value vary parametrically on a round-by-round basis, and patients had full knowl-

edge of the (fair) task structure from the beginning of the game. Both numbers were randomly generated using a uniform distribution.

The gamble outcome (win/loss) was revealed regardless of subject choice, allowing us to calculate experiential and counterfactual

prediction errors (see Behavioral analysis, below). A new round started 1 s after outcome reveal. Patients played a total of 200 rounds

(plus practice rounds), and a full experimental run typically lasted 12-15min. Location of safe bet and gamble options (left/right) was

randomized across trials. Patients completed a training session prior to the game in which they played at least 10 rounds under the

experimenter’s supervision until they felt confident they understood the task, at which point they started the game. This gambling

task minimized other cognitive demands (working memory, learning, etc.) on our participants, while at the same time allowing us

to probe important decision-making components implicated in previous computational and empirical studies, such as expected

reward, payoff risk, prediction errors, and counterfactual signals.

ECoG Recording
ECoG was recorded and stored with behavioral data. Data collection was carried out using Tucker-Davis Technologies (Albany,

Stanford and UCSF) or Nihon-Kohden (at UCI) systems. Data processing was identical across all sites: channels were
e1 Current Biology 28, 2889–2899.e1–e3, September 24, 2018
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amplified x10000, analog filtered (0.01-1000 Hz) with > 2kHz digitization rate, re-referenced to a common average offline, high-pass

filtered at 1.0 Hz with a symmetrical (phase true) finite impulse response (FIR) filter (�35 dB/octave roll-off). Channels with low signal-

to-noise ratio (SNR) were identified and deleted (i.e., 60 Hz line interference, electromagnetic equipment noise, amplifier saturation,

poor contact with cortical surface). Out of 210 OFC electrodes, 192 were artifact-free and included in subsequent analyses. Addi-

tionally, all channels were visually inspected by a neurologist to exclude epochs of aberrant or noisy activity (typically < 1% of data-

points). A photodiode recorded screen updates in the behavioral task, recorded in the electrophysiological system as an analog input

and used to synchronize behavioral and electrophysiological data. Data analysis was carried out in MATLAB and R using custom

scripts. Data for each channel was downsampled to 1KHz and filtered into high frequency activity (HFA; 70–200 Hz) using a two-

way, zero phase-lag, finite impulse response band pass filter to prevent phase distortion.

Anatomical reconstructions
For each patient, we collected a pre-operative anatomical MRI (T1) image and a post-implantation CT scan. The CT scan allows iden-

tification of individual electrodes but offers poor anatomical resolution, making it difficult to determine their anatomical location.

Therefore, the CT scan was realigned to the pre-operative MRI scan. Briefly, both the MRI and CT images were aligned to a common

coordinate system and fused with each other using a rigid body transformation. Following CT-MR co-registration, we compensated

for brain shift, an inward sinking and shrinking of brain tissue caused by the implantation surgery. A hull of the patient brain was gener-

ated using the Freesurfer analysis suite, and each grid and strip was realigned independently onto the hull of the patient’s brain. This

step often avoided localization errors of several millimeters. Subsequently, each patient’s brain and the corresponding electrode

locations were normalized to a template using a volume-based normalization technique, and snapped to the cortical surface [38].

Finally, the electrode coordinates are cross-referenced with labeled anatomical atlases (JuBrain and AAL atlases) to obtain the gross

anatomical location of the electrodes, verified by visual confirmation of electrode location based on surgical notes. Only electrodes

confirmed to be in OFC (n = 192) were included in the analysis. For display purposes, electrodes are displayed over a traced recon-

struction of the ventral surface showing putative Brodmann areas. For analysis of anatomical gradients of encoding, for every elec-

trode/regressor combination we took the %EV at the time of average regressor encoding (i.e., at the maximum %EV in the average

activation profile across electrodes) as an index of information encoding. We then carried out two different analyses: first, we

compared the distribution of %EV values for each regressor across areas using a K-S test. Second, we examined whether a corre-

lation existed between the %EV values and the fronto-posterior and medio-lateral location of individual electrodes (i.e., x and y co-

ordinates in the anatomical reconstruction, referenced to the anterior commisure).

Behavioral Analysis
We derived round-to-round parametric signals from a value-based decision-making framework that includes notions of win proba-

bility, expected reward, reward-prediction errors and counterfactual errors (defined as the difference between actual reward and the

maximum reward that could have been obtained, commonly described as ‘‘regret,’’ in $) and risk, as well as binary classifications

related to choice (gamble/safe bet) and outcome (gamble win, gamble loss; see Table S1 for a complete description). As an example,

if a ‘20 is initially shown, in a $30 prize trial and the subject chose to gamble, win probability would be 0.8 (probability of obtaining a

second number > 2), chosen value would be $24 ($303 0.8) and the binary gamble indicator would be 1. Risk is maximal at 0.5 win

probability and lowest at pw = 0 and pw = 1, so in this example it would be low. If the gamble resulted in a loss, the RPEwould be large

and negative (-$24, the difference between the chosen value of $24 and the actual outcome, $0) and regret would be -$10 (the dif-

ference between the actual outcome, $0 and the counterfactual best possible outcome, the safe bet worth $10). Importantly, RPEs

are zero in safe bet trials (the won amount is always as expected, $10), but regret may not be (i.e., ‘‘would have won’’). To examine

whether HFA captured information about past events, we built time-shifted versions of the regressors in our sample. We used the

same parameterization as for current regressors, but derived using information from earlier trials (one trial back, t-1, through 5 trials

back, t-5). For example, gamble t-3 indicates whether the subject chose to gamble 3 trials back. As for present regressors,% of active

electrodes was calculated as the proportion that shows significant encoding (linear regression p < 0.05) for over 5 consecutive

windows.

QUANTIFICATION AND STATISTICAL ANALYSIS

ECoG analysis and behavioral regression
To identify HFA encoding, we used a regression approach where the dependent variable was defined as the analytic amplitude of the

HFA time series extracted via Hilbert transform. Next, we divided HFA time series into event-related epochs using a 200-ms baseline

to remove any pre-stimulus differences in baseline amplitude, averaging HFA activity using a 200ms rolling window at 50ms incre-

ments. To identity task-selective channels, we performed separate linear regressions of average HFA activity on each reward-related

regressor of interest. Given the inter-trial variability in response latencies, we performed this analysis separately for time-locked to

both game presentation (game epoch) and to buttonpress/reward events (buttonpress epoch). Analyses to identify encoding in FPs

followed a similar procedure, except replacing HFA with broadband power as the dependent variable.

We used the resulting R2 (variance in the neural data that can be explained by the behavioral regressors of interest, % explained

variance,%EV) as ametric of the quality of the fit. This approach is insensitive with respect to time of task-related activation and to the

direction of encoding (i.e., HFA increases or decreases). Electrodes were classified as task active for any given regressor if they
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showed a significant correlation (p < 0.05) at 5 or more consecutive time windows at any point during the epochs. False positive rate

was determined using a permutation strategy. For each regressor-HFA regression, we shuffled the relationship between behavioral

labels and HFA activity 1,000 times. The resulting distribution was taken as the null for that particular regressor-electrode combina-

tion. Duration of encoding in individual regressors/electrodes (Figure 5) was defined as the longest stretch of time in which all time

points showed significant encoding (p < 0.05).

Stepwise regression
To verify the encoding profile of individual electrodes was not affected by regressor collinearity, we used a stepwise regressionmodel

successfully used in the analysis of single unit activity in similar settings in the past [9]. The analysis for each electrode proceeded as

follows: first, we carried out multiple individual linear regressions for all regressors. To leverage the time profile of the signals without

imposing restrictions on activation timing, an aggregate statistic was calculated as the sum of F-stats for the longest stretch of

consecutive significant (linear regression p < 0.05) windows.We then repeated this procedure 10,000 times after shuffling the behav-

ioral labels, and took the proportion of permuted fits with a sum-of-F-stat higher than that in the original dataset was taken as the

permutation p value. This p value was further corrected for multiple comparisons using a Bonferroni correction (across n = 192

electrodes); regressors that did not survive multiple comparisons were discarded at this point.

Subsequently, we sought to identify the set of regressors that best explains neural HFA variance by performed a model selection

procedure on the surviving regressor set. We first selected the regressor that explained the most variance in the neural data

(maximum peak %EV) as the base model. We then created an alternative complex model by incorporating the second regressor

that most improved the model. These two models were compared using an ANOVA test; if the complex model resulted in a signif-

icantly improved fit (ANOVA p < 0.05), we rejected the basic model. This process was iteratively repeated by adding new regressors,

sorted by residual %EV improvement, until the model could not be further improved (ANOVA p > 0.05). Finally, we estimated the pro-

portion of electrodes encoding each variable across all electrodes, regardless of the order in which they were incorporated into the

model.

To verify that the results were not driven by inter-subject or inter-electrode variability, we conducted mixed-effects model analysis

using the concatenated HFA for all electrodes as dependent variable, round-by-round regressors of interest (risk, regret, etc.) as fixed

effects, and patient and electrode ID as nested mixed-effects.

DATA AND SOFTWARE AVAILABILITY

The accession number for the electrophysiological and behavioral data reported in this paper is CRCNS: K0VM49GF (https://doi.org/

10.6080/K0VM49GF).
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