%0 Journal Article %J Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology %D 2010 %T A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. %A Townsend, G. %A LaPallo, B. K. %A Chadwick B. Boulay %A Krusienski, D. J. %A Frye, G. E. %A Hauser, C. K. %A Schwartz, N. E. %A Theresa M Vaughan %A Jonathan Wolpaw %A Sellers, E. W. %K brain-computer interface %K brain-machine interface %K EEG %K event-related potential %K P300 %K Rehabilitation %X OBJECTIVE: An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation - the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell and Donchin (1988). METHODS: Using an 8x9 matrix of alphanumeric characters and keyboard commands, 18 participants used the CBP and RCP in counter-balanced fashion. With approximately 9-12 min of calibration data, we used a stepwise linear discriminant analysis for online classification of subsequent data. RESULTS: Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial tests with three advanced ALS participants produced similar results. Furthermore, these individuals preferred the CBP to the RCP. CONCLUSIONS: These results suggest that the CBP is markedly superior to the RCP in performance and user acceptability. SIGNIFICANCE: The CBP has the potential to provide a substantially more effective BCI than the RCP. This is especially important for people with severe neuromuscular disabilities. %B Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology %V 121 %P 1109–1120 %8 07/2010 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/20347387 %R 10.1016/j.clinph.2010.01.030