%0 Journal Article %J J Neurosci %D 2011 %T Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex. %A Charles M Gaona %A Sharma, Mohit %A Zachary V. Freudenberg %A Breshears, Jonathan %A Bundy, David T %A Roland, Jarod %A Barbour, Dennis L %A Gerwin Schalk %A Leuthardt, E C %K Acoustic Stimulation %K Adolescent %K Adult %K Analysis of Variance %K Brain Mapping %K Brain Waves %K Cerebral Cortex %K Cognition Disorders %K Electroencephalography %K Epilepsy %K Evoked Potentials %K Female %K Humans %K Male %K Middle Aged %K Neuropsychological Tests %K Nonlinear Dynamics %K Photic Stimulation %K Reaction Time %K Spectrum Analysis %K Time Factors %K Vocabulary %X

High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca's area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics.

%B J Neurosci %V 31 %P 2091-100 %8 02/2011 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/21307246 %N 6 %R 10.1523/JNEUROSCI.4722-10.2011 %0 Journal Article %J J Neural Eng %D 2011 %T Using the electrocorticographic speech network to control a brain-computer interface in humans. %A Leuthardt, E C %A Charles M Gaona %A Sharma, Mohit %A Szrama, Nicholas %A Roland, Jarod %A Zachary V. Freudenberg %A Solisb, Jamie %A Breshears, Jonathan %A Gerwin Schalk %K Adult %K Brain %K Brain Mapping %K Computer Peripherals %K Electroencephalography %K Evoked Potentials %K Feedback, Physiological %K Female %K Humans %K Imagination %K Male %K Middle Aged %K Nerve Net %K Speech Production Measurement %K User-Computer Interface %X

Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68% and 91% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

%B J Neural Eng %V 8 %P 036004 %8 06/2011 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/21471638 %N 3 %R 10.1088/1741-2560/8/3/036004