%0 Journal Article %J Brain Res Bull %D 2012 %T Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain-computer interface. %A Krusienski, Dean J %A Dennis J. McFarland %A Jonathan Wolpaw %K Algorithms %K Brain %K Electroencephalography %K Humans %K Motor Cortex %K User-Computer Interface %X Measures that quantify the relationship between two or more brain signals are drawing attention as neuroscientists explore the mechanisms of large-scale integration that enable coherent behavior and cognition. Traditional Fourier-based measures of coherence have been used to quantify frequency-dependent relationships between two signals. More recently, several off-line studies examined phase-locking value (PLV) as a possible feature for use in brain-computer interface (BCI) systems. However, only a few individuals have been studied and full statistical comparisons among the different classes of features and their combinations have not been conducted. The present study examines the relative BCI performance of spectral power, coherence, and PLV, alone and in combination. The results indicate that spectral power produced classification at least as good as PLV, coherence, or any possible combination of these measures. This may be due to the fact that all three measures reflect mainly the activity of a single signal source (i.e., an area of sensorimotor cortex). This possibility is supported by the finding that EEG signals from different channels generally had near-zero phase differences. Coherence, PLV, and other measures of inter-channel relationships may be more valuable for BCIs that use signals from more than one distinct cortical source. %B Brain Res Bull %V 87 %P 130-4 %8 01/2012 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/21985984 %N 1 %R 10.1016/j.brainresbull.2011.09.019 %0 Journal Article %J Neurology %D 2005 %T Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. %A Kübler, A. %A Nijboer, F %A Mellinger, Jürgen %A Theresa M Vaughan %A Pawelzik, H %A Gerwin Schalk %A Dennis J. McFarland %A Niels Birbaumer %A Jonathan Wolpaw %K Aged %K Amyotrophic Lateral Sclerosis %K Electroencephalography %K Evoked Potentials, Motor %K Evoked Potentials, Somatosensory %K Female %K Humans %K Imagination %K Male %K Middle Aged %K Motor Cortex %K Movement %K Paralysis %K Photic Stimulation %K Prostheses and Implants %K Somatosensory Cortex %K Treatment Outcome %K User-Computer Interface %X

People with severe motor disabilities can maintain an acceptable quality of life if they can communicate. Brain-computer interfaces (BCIs), which do not depend on muscle control, can provide communication. Four people severely disabled by ALS learned to operate a BCI with EEG rhythms recorded over sensorimotor cortex. These results suggest that a sensorimotor rhythm-based BCI could help maintain quality of life for people with ALS.

%B Neurology %V 64 %P 1775-7 %8 05/2005 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/15911809 %N 10 %R 10.1212/01.WNL.0000158616.43002.6D