%0 Journal Article %J Brain Res %D 2013 %T Novel inter-hemispheric white matter connectivity in the BTBR mouse model of autism. %A Miller, V M %A Disha Gupta %A Neu, N %A Cotroneo, A %A Chadwick B. Boulay %A Seegal, R F %K Analysis of Variance %K Animals %K Autistic Disorder %K Brain %K Corpus Callosum %K Disease Models, Animal %K Electroencephalography %K Enzyme-Linked Immunosorbent Assay %K Female %K Functional Laterality %K Image Processing, Computer-Assisted %K Male %K Mice %K Mice, Inbred C57BL %K Mice, Neurologic Mutants %K Microtubule-Associated Proteins %K Myelin Basic Protein %K Nerve Fibers, Myelinated %K Neuroimaging %K Spectrum Analysis %X Alterations in the volume, density, connectivity and functional activation of white matter tracts are reported in some individuals with autism and may contribute to their abnormal behaviors. The BTBR (BTBR T+tf/J) inbred strain of mouse, is used to model facets of autism because they develop low social behaviors, stereotypical and immune changes similar to those found in people with autism. Previously, it was thought a total absence of corpus callosal interhemispheric connective tissues in the BTBR mice may underlie their abnormal behaviors. However, postnatal lesions of the corpus callosum do not precipitate social behavioral problems in other strains of mice suggesting a flaw in this theory. In this study we used digital pathological methods to compare subcortical white matter connective tracts in the BTBR strain of mice with those found in the C57Bl/6 mouse and those reported in a standardized mouse brain atlas. We report, for the first time, a novel connective subcortical interhemispheric bridge of tissue in the posterior, but not anterior, cerebrum of the BTBR mouse. These novel connective tissues are comprised of myelinated fibers, with reduced myelin basic protein levels (MBP) compared to levels in the C57Bl/6 mouse. We used electrophysiological analysis and found increased inter-hemispheric connectivity in the posterior hemispheres of the BTBR strain compared with the anterior hemispheres. The conduction velocity was slower than that reported in normal mice. This study shows there is novel abnormal interhemispheric connectivity in the BTBR strain of mice, which may contribute to their behavioral abnormalities. %B Brain Res %V 1513 %P 26-33 %8 06/2013 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/23570707 %R 10.1016/j.brainres.2013.04.001 %0 Journal Article %J J Neurosci %D 2011 %T Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex. %A Charles M Gaona %A Sharma, Mohit %A Zachary V. Freudenberg %A Breshears, Jonathan %A Bundy, David T %A Roland, Jarod %A Barbour, Dennis L %A Gerwin Schalk %A Leuthardt, E C %K Acoustic Stimulation %K Adolescent %K Adult %K Analysis of Variance %K Brain Mapping %K Brain Waves %K Cerebral Cortex %K Cognition Disorders %K Electroencephalography %K Epilepsy %K Evoked Potentials %K Female %K Humans %K Male %K Middle Aged %K Neuropsychological Tests %K Nonlinear Dynamics %K Photic Stimulation %K Reaction Time %K Spectrum Analysis %K Time Factors %K Vocabulary %X

High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca's area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics.

%B J Neurosci %V 31 %P 2091-100 %8 02/2011 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/21307246 %N 6 %R 10.1523/JNEUROSCI.4722-10.2011 %0 Journal Article %J Ann Neurol %D 2010 %T Brain-computer interfacing based on cognitive control. %A Vansteensel, Mariska J %A Hermes, Dora %A Aarnoutse, Erik J %A Bleichner, Martin G %A Gerwin Schalk %A van Rijen, Peter C %A Leijten, Frans S S %A Ramsey, Nick F %K Cognition %K Computers %K Electrodes %K Electroencephalography %K Epilepsy %K Humans %K Image Processing, Computer-Assisted %K Magnetic Resonance Imaging %K Neuropsychological Tests %K Oxygen %K Prefrontal Cortex %K Psychomotor Performance %K Spectrum Analysis %K Time Factors %K User-Computer Interface %X

OBJECTIVE: 

Brain-computer interfaces (BCIs) translate deliberate intentions and associated changes in brain activity into action, thereby offering patients with severe paralysis an alternative means of communication with and control over their environment. Such systems are not available yet, partly due to the high performance standard that is required. A major challenge in the development of implantable BCIs is to identify cortical regions and related functions that an individual can reliably and consciously manipulate. Research predominantly focuses on the sensorimotor cortex, which can be activated by imagining motor actions. However, because this region may not provide an optimal solution to all patients, other neuronal networks need to be examined. Therefore, we investigated whether the cognitive control network can be used for BCI purposes. We also determined the feasibility of using functional magnetic resonance imaging (fMRI) for noninvasive localization of the cognitive control network.

METHODS: 

Three patients with intractable epilepsy, who were temporarily implanted with subdural grid electrodes for diagnostic purposes, attempted to gain BCI control using the electrocorticographic (ECoG) signal of the left dorsolateral prefrontal cortex (DLPFC).

RESULTS: 

All subjects quickly gained accurate BCI control by modulation of gamma-power of the left DLPFC. Prelocalization of the relevant region was performed with fMRI and was confirmed using the ECoG signals obtained during mental calculation localizer tasks.

INTERPRETATION: 

The results indicate that the cognitive control network is a suitable source of signals for BCI applications. They also demonstrate the feasibility of translating understanding about cognitive networks derived from functional neuroimaging into clinical applications.

%B Ann Neurol %V 67 %P 809-16 %8 06/2010 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/20517943 %N 6 %R 10.1002/ana.21985 %0 Journal Article %J J Neurosci Methods %D 2008 %T Extraction and localization of mesoscopic motor control signals for human ECoG neuroprosthetics. %A Sanchez, Justin C %A Gunduz, Aysegul %A Carney, Paul R %A Principe, Jose %K Adolescent %K Biofeedback, Psychology %K Brain Mapping %K Cerebral Cortex %K Electroencephalography %K Epilepsies, Partial %K Female %K Hand %K Humans %K Magnetic Resonance Imaging %K Physical Therapy Modalities %K Psychomotor Performance %K Signal Processing, Computer-Assisted %K Spectrum Analysis %K User-Computer Interface %X

Electrocorticogram (ECoG) recordings for neuroprosthetics provide a mesoscopic level of abstraction of brain function between microwire single neuron recordings and the electroencephalogram (EEG). Single-trial ECoG neural interfaces require appropriate feature extraction and signal processing methods to identify and model in real-time signatures of motor events in spontaneous brain activity. Here, we develop the clinical experimental paradigm and analysis tools to record broadband (1Hz to 6kHz) ECoG from patients participating in a reaching and pointing task. Motivated by the significant role of amplitude modulated rate coding in extracellular spike based brain-machine interfaces (BMIs), we develop methods to quantify spatio-temporal intermittent increased ECoG voltages to determine if they provide viable control inputs for ECoG neural interfaces. This study seeks to explore preprocessing modalities that emphasize amplitude modulation across frequencies and channels in the ECoG above the level of noisy background fluctuations in order to derive the commands for complex, continuous control tasks. Preliminary experiments show that it is possible to derive online predictive models and spatially localize the generation of commands in the cortex for motor tasks using amplitude modulated ECoG.

%B J Neurosci Methods %V 167 %P 63-81 %8 01/2008 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/17582507 %N 1 %R 10.1016/j.jneumeth.2007.04.019 %0 Journal Article %J Clin Neurophysiol %D 2008 %T Towards an independent brain-computer interface using steady state visual evoked potentials. %A Brendan Z. Allison %A Dennis J. McFarland %A Gerwin Schalk %A Zheng, Shi Dong %A Moore-Jackson, Melody %A Jonathan Wolpaw %K Adolescent %K Adult %K Attention %K Brain %K Brain Mapping %K Dose-Response Relationship, Radiation %K Electroencephalography %K Evoked Potentials, Visual %K Female %K Humans %K Male %K Pattern Recognition, Visual %K Photic Stimulation %K Spectrum Analysis %K User-Computer Interface %X

OBJECTIVE: 

Brain-computer interface (BCI) systems using steady state visual evoked potentials (SSVEPs) have allowed healthy subjects to communicate. However, these systems may not work in severely disabled users because they may depend on gaze shifting. This study evaluates the hypothesis that overlapping stimuli can evoke changes in SSVEP activity sufficient to control a BCI. This would provide evidence that SSVEP BCIs could be used without shifting gaze.

METHODS: 

Subjects viewed a display containing two images that each oscillated at a different frequency. Different conditions used overlapping or non-overlapping images to explore dependence on gaze function. Subjects were asked to direct attention to one or the other of these images during each of 12 one-minute runs.

RESULTS: 

Half of the subjects produced differences in SSVEP activity elicited by overlapping stimuli that could support BCI control. In all remaining users, differences did exist at corresponding frequencies but were not strong enough to allow effective control.

CONCLUSIONS: 

The data demonstrate that SSVEP differences sufficient for BCI control may be elicited by selective attention to one of two overlapping stimuli. Thus, some SSVEP-based BCI approaches may not depend on gaze control. The nature and extent of any BCI's dependence on muscle activity is a function of many factors, including the display, task, environment, and user.

SIGNIFICANCE: 

SSVEP BCIs might function in severely disabled users unable to reliably control gaze. Further research with these users is necessary to explore the optimal parameters of such a system and validate online performance in a home environment.

%B Clin Neurophysiol %V 119 %P 399-408 %8 02/2008 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/18077208 %N 2 %R 10.1016/j.clinph.2007.09.121