%0 Journal Article %J Proc Natl Acad Sci U S A %D 2010 %T Cortical activity during motor execution, motor imagery, and imagery-based online feedback. %A Miller, K.J. %A Gerwin Schalk %A Fetz, Eberhard E %A den Nijs, Marcel %A Ojemann, J G %A Rao, Rajesh P N %K Adolescent %K Adult %K Biofeedback, Psychology %K Cerebral Cortex %K Child %K Electric Stimulation %K Electrocardiography %K Female %K Humans %K Male %K Middle Aged %K Motor Activity %K Young Adult %X

Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in "high frequency" (76-100 Hz) and "low frequency" (8-32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was approximately 25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement.

%B Proc Natl Acad Sci U S A %V 107 %P 4430-5 %8 03/2010 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/20160084 %N 9 %R 10.1073/pnas.0913697107 %0 Conference Proceedings %B Conf Proc IEEE Eng Med Biol Soc %D 2008 %T Three cases of feature correlation in an electrocorticographic BCI. %A Miller, John W %A Blakely, Timothy %A Gerwin Schalk %A den Nijs, Marcel %A Rao, Rajesh P N %A Ojemann, J G %K Adolescent %K Adult %K Algorithms %K Electrocardiography %K Evoked Potentials, Motor %K Female %K Humans %K Male %K Middle Aged %K Motor Cortex %K Pattern Recognition, Automated %K Statistics as Topic %K Task Performance and Analysis %K User-Computer Interface %X Three human subjects participated in a closed-loop brain computer interface cursor control experiment mediated by implanted subdural electrocorticographic arrays. The paradigm consisted of several stages: baseline recording, hand and tongue motor tasks as the basis for feature selection, two closed-loop one-dimensional feedback experiments with each of these features, and a two-dimensional feedback experiment using both of the features simultaneously. The two selected features were simple channel and frequency band combinations associated with change during hand and tongue movement. Inter-feature correlation and cross-correlation between features during different epochs of each task were quantified for each stage of the experiment. Our anecdotal, three subject, result suggests that while high correlation between horizontal and vertical control signal can initially preclude successful two-dimensional cursor control, a feedback-based learning strategy can be successfully employed by the subject to overcome this limitation and progressively decorrelate these control signals. %B Conf Proc IEEE Eng Med Biol Soc %P 5318-21 %8 2008 %G eng %R 10.1109/IEMBS.2008.4650415 %0 Conference Paper %B Engineering in Medicine and Biology Society, 2008. %D 2008 %T Three cases of feature correlation in an electrocorticographic BCI. %A Miller, Kai J %A Blakely, Timothy %A Gerwin Schalk %A den Nijs, Marcel %A Rao, Rajesh PN %A Ojemann, Jeffrey G %K Adolescent %K Adult %K Algorithms %K automated pattern recognition %K control systems %K decorrelation %K Electrocardiography %K Electrodes %K Electroencephalography %K evoked motor potentials %K Feedback %K Female %K frequency %K hospitals %K Humans %K Male %K Middle Aged %K Motor Cortex %K Signal Processing %K Statistics as Topic %K Task Performance and Analysis %K Tongue %K User-Computer Interface %X Three human subjects participated in a closed-loop brain computer interface cursor control experiment mediated by implanted subdural electrocorticographic arrays. The paradigm consisted of several stages: baseline recording, hand and tongue motor tasks as the basis for feature selection, two closed-loop one-dimensional feedback experiments with each of these features, and a two-dimensional feedback experiment using both of the features simultaneously. The two selected features were simple channel and frequency band combinations associated with change during hand and tongue movement. Inter-feature correlation and cross-correlation between features during different epochs of each task were quantified for each stage of the experiment. Our anecdotal, three subject, result suggests that while high correlation between horizontal and vertical control signal can initially preclude successful two-dimensional cursor control, a feedback-based learning strategy can be successfully employed by the subject to overcome this limitation and progressively decorrelate these control signals. %B Engineering in Medicine and Biology Society, 2008. %I IEEE %C Vancouver, BC %8 08/2008 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/19163918 %R 10.1109/IEMBS.2008.4650415