%0 Journal Article %J IEEE Trans Neural Syst Rehabil Eng %D 2014 %T Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain-computer interfaces. %A Lu, Jun %A Xie, Kan %A Dennis J. McFarland %K Algorithms %K Artificial Intelligence %K brain-computer interfaces %K Data Interpretation, Statistical %K Electroencephalography %K Evoked Potentials, Motor %K Humans %K Imagination %K Motor Cortex %K Movement %K Pattern Recognition, Automated %K Reproducibility of Results %K Sensitivity and Specificity %K Signal Processing, Computer-Assisted %K Spatio-Temporal Analysis %X Movement related potentials (MRPs) are used as features in many brain-computer interfaces (BCIs) based on electroencephalogram (EEG). MRP feature extraction is challenging since EEG is noisy and varies between subjects. Previous studies used spatial and spatio-temporal filtering methods to deal with these problems. However, they did not optimize temporal information or may have been susceptible to overfitting when training data are limited and the feature space is of high dimension. Furthermore, most of these studies manually select data windows and low-pass frequencies. We propose an adaptive spatio-temporal (AST) filtering method to model MRPs more accurately in lower dimensional space. AST automatically optimizes all parameters by employing a Gaussian kernel to construct a low-pass time-frequency filter and a linear ridge regression (LRR) algorithm to compute a spatial filter. Optimal parameters are simultaneously sought by minimizing leave-one-out cross-validation error through gradient descent. Using four BCI datasets from 12 individuals, we compare the performances of AST filter to two popular methods: the discriminant spatial pattern filter and regularized spatio-temporal filter. The results demonstrate that our AST filter can make more accurate predictions and is computationally feasible. %B IEEE Trans Neural Syst Rehabil Eng %V 22 %P 847-57 %8 07/2014 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/24723632 %N 4 %R 10.1109/TNSRE.2014.2315717 %0 Journal Article %J Amyotroph Lateral Scler Frontotemporal Degener %D 2014 %T Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. %A McCane, Lynn M %A Sellers, Eric W %A Dennis J. McFarland %A Mak, Joseph N %A Carmack, C Steve %A Zeitlin, Debra %A Jonathan Wolpaw %A Theresa M Vaughan %K Adult %K Aged %K Amyotrophic Lateral Sclerosis %K Biofeedback, Psychology %K brain-computer interfaces %K Communication Disorders %K Electroencephalography %K Event-Related Potentials, P300 %K Female %K Humans %K Male %K Middle Aged %K Online Systems %K Photic Stimulation %K Psychomotor Performance %K Reaction Time %X Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective. %B Amyotroph Lateral Scler Frontotemporal Degener %V 15 %P 207-15 %8 06/2014 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/24555843 %N 3-4 %R 10.3109/21678421.2013.865750 %0 Journal Article %J Brain Res Bull %D 2012 %T Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain-computer interface. %A Krusienski, Dean J %A Dennis J. McFarland %A Jonathan Wolpaw %K Algorithms %K Brain %K Electroencephalography %K Humans %K Motor Cortex %K User-Computer Interface %X Measures that quantify the relationship between two or more brain signals are drawing attention as neuroscientists explore the mechanisms of large-scale integration that enable coherent behavior and cognition. Traditional Fourier-based measures of coherence have been used to quantify frequency-dependent relationships between two signals. More recently, several off-line studies examined phase-locking value (PLV) as a possible feature for use in brain-computer interface (BCI) systems. However, only a few individuals have been studied and full statistical comparisons among the different classes of features and their combinations have not been conducted. The present study examines the relative BCI performance of spectral power, coherence, and PLV, alone and in combination. The results indicate that spectral power produced classification at least as good as PLV, coherence, or any possible combination of these measures. This may be due to the fact that all three measures reflect mainly the activity of a single signal source (i.e., an area of sensorimotor cortex). This possibility is supported by the finding that EEG signals from different channels generally had near-zero phase differences. Coherence, PLV, and other measures of inter-channel relationships may be more valuable for BCIs that use signals from more than one distinct cortical source. %B Brain Res Bull %V 87 %P 130-4 %8 01/2012 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/21985984 %N 1 %R 10.1016/j.brainresbull.2011.09.019 %0 Journal Article %J Clin Neurophysiol %D 2008 %T Towards an independent brain-computer interface using steady state visual evoked potentials. %A Brendan Z. Allison %A Dennis J. McFarland %A Gerwin Schalk %A Zheng, Shi Dong %A Moore-Jackson, Melody %A Jonathan Wolpaw %K Adolescent %K Adult %K Attention %K Brain %K Brain Mapping %K Dose-Response Relationship, Radiation %K Electroencephalography %K Evoked Potentials, Visual %K Female %K Humans %K Male %K Pattern Recognition, Visual %K Photic Stimulation %K Spectrum Analysis %K User-Computer Interface %X

OBJECTIVE: 

Brain-computer interface (BCI) systems using steady state visual evoked potentials (SSVEPs) have allowed healthy subjects to communicate. However, these systems may not work in severely disabled users because they may depend on gaze shifting. This study evaluates the hypothesis that overlapping stimuli can evoke changes in SSVEP activity sufficient to control a BCI. This would provide evidence that SSVEP BCIs could be used without shifting gaze.

METHODS: 

Subjects viewed a display containing two images that each oscillated at a different frequency. Different conditions used overlapping or non-overlapping images to explore dependence on gaze function. Subjects were asked to direct attention to one or the other of these images during each of 12 one-minute runs.

RESULTS: 

Half of the subjects produced differences in SSVEP activity elicited by overlapping stimuli that could support BCI control. In all remaining users, differences did exist at corresponding frequencies but were not strong enough to allow effective control.

CONCLUSIONS: 

The data demonstrate that SSVEP differences sufficient for BCI control may be elicited by selective attention to one of two overlapping stimuli. Thus, some SSVEP-based BCI approaches may not depend on gaze control. The nature and extent of any BCI's dependence on muscle activity is a function of many factors, including the display, task, environment, and user.

SIGNIFICANCE: 

SSVEP BCIs might function in severely disabled users unable to reliably control gaze. Further research with these users is necessary to explore the optimal parameters of such a system and validate online performance in a home environment.

%B Clin Neurophysiol %V 119 %P 399-408 %8 02/2008 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/18077208 %N 2 %R 10.1016/j.clinph.2007.09.121 %0 Journal Article %J IEEE Trans Biomed Eng %D 2007 %T A µ-rhythm Matched Filter for Continuous Control of a Brain-Computer Interface. %A Krusienski, Dean J %A Gerwin Schalk %A Dennis J. McFarland %A Jonathan Wolpaw %K Algorithms %K Cerebral Cortex %K Cortical Synchronization %K Electroencephalography %K Evoked Potentials %K Humans %K Imagination %K Pattern Recognition, Automated %K User-Computer Interface %X

A brain-computer interface (BCI) is a system that provides an alternate nonmuscular communication/control channel for individuals with severe neuromuscular disabilities. With proper training, individuals can learn to modulate the amplitude of specific electroencephalographic (EEG) components (e.g., the 8-12 Hz mu rhythm and 18-26 Hz beta rhythm) over the sensorimotor cortex and use them to control a cursor on a computer screen. Conventional spectral techniques for monitoring the continuousamplitude fluctuations fail to capture essential amplitude/phase relationships of the mu and beta rhythms in a compact fashion and, therefore, are suboptimal. By extracting the characteristic mu rhythm for a user, the exact morphology can be characterized and exploited as a matched filter. A simple, parameterized model for the characteristic mu rhythm is proposed and its effectiveness as a matched filter is examined online for a one-dimensional cursor control task. The results suggest that amplitude/phase coupling exists between the mu and beta bands during event-related desynchronization, and that an appropriate matched filter can provide improved performance.

%B IEEE Trans Biomed Eng %V 54 %P 273-80 %8 02/2007 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/17278584 %N 2 %R 10.1109/TBME.2006.886661 %0 Journal Article %J IEEE Trans Neural Syst Rehabil Eng %D 2006 %T The Wadsworth BCI Research and Development Program: At Home with BCI. %A Theresa M Vaughan %A Dennis J. McFarland %A Gerwin Schalk %A Sarnacki, William A %A Krusienski, Dean J %A Sellers, Eric W %A Jonathan Wolpaw %K Animals %K Brain %K Electroencephalography %K Evoked Potentials %K Humans %K Neuromuscular Diseases %K New York %K Research %K Switzerland %K Therapy, Computer-Assisted %K Universities %K User-Computer Interface %X

The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive, electroencephalography (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. We have also improved P300-based BCI operation. We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the complexity of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people's homes.

%B IEEE Trans Neural Syst Rehabil Eng %V 14 %P 229-33 %8 06/2006 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/16792301 %N 2 %R 10.1109/TNSRE.2006.875577 %0 Journal Article %J Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology %D 2005 %T Brain-computer interface (BCI) operation: signal and noise during early training sessions. %A Dennis J. McFarland %A Sarnacki, William A. %A Theresa M Vaughan %A Jonathan Wolpaw %K brain-computer interface %K EEG %K Electroencephalography %K Learning %K mu rhythm %K sensorimotor cortex %X OBJECTIVE: People can learn to control mu (8-12 Hz) or beta (18-25 Hz) rhythm amplitude in the electroencephalogram (EEG) recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. The recorded signal may also contain electromyogram (EMG) and other non-EEG artifacts. This study examines the presence and characteristics of EMG contamination during new users' initial brain-computer interface (BCI) training sessions, as they first attempt to acquire control over mu or beta rhythm amplitude and to use that control to move a cursor to a target. METHODS: In the standard one-dimensional format, a target appears along the right edge of the screen and 1s later the cursor appears in the middle of the left edge and moves across the screen at a fixed rate with its vertical movement controlled by a linear function of mu or beta rhythm amplitude. In the basic two-choice version, the target occupies the upper or lower half of the right edge. The user's task is to move the cursor vertically so that it hits the target when it reaches the right edge. The present data comprise the first 10 sessions of BCI training from each of 7 users. Their data were selected to illustrate the variations seen in EMG contamination across users. RESULTS: Five of the 7 users learned to change rhythm amplitude appropriately, so that the cursor hit the target. Three of these 5 showed no evidence of EMG contamination. In the other two of these 5, EMG was prominent in early sessions, and tended to be associated with errors rather than with hits. As EEG control improved over the 10 sessions, this EMG contamination disappeared. In the remaining two users, who never acquired actual EEG control, EMG was prominent in initial sessions and tended to move the cursor to the target. This EMG contamination was still detectable by Session 10. CONCLUSIONS: EMG contamination arising from cranial muscles is often present early in BCI training and gradually wanes. In those users who eventually acquire EEG control, early target-related EMG contamination may be most prominent for unsuccessful trials, and may reflect user frustration. In those users who never acquire EEG control, EMG may initially serve to move the cursor toward the target. Careful and comprehensive topographical and spectral analyses throughout user training are essential for detecting EMG contamination and differentiating between cursor control provided by EEG control and cursor control provided by EMG contamination. SIGNIFICANCE: Artifacts such as EMG are common in EEG recordings. Comprehensive spectral and topographical analyses are necessary to detect them and ensure that they do not masquerade as, or interfere with acquisition of, actual EEG-based cursor control. %B Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology %V 116 %P 56–62 %8 01/2005 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/15589184 %R 10.1016/j.clinph.2004.07.004 %0 Journal Article %J Neurology %D 2005 %T Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. %A Kübler, A. %A Nijboer, F %A Mellinger, Jürgen %A Theresa M Vaughan %A Pawelzik, H %A Gerwin Schalk %A Dennis J. McFarland %A Niels Birbaumer %A Jonathan Wolpaw %K Aged %K Amyotrophic Lateral Sclerosis %K Electroencephalography %K Evoked Potentials, Motor %K Evoked Potentials, Somatosensory %K Female %K Humans %K Imagination %K Male %K Middle Aged %K Motor Cortex %K Movement %K Paralysis %K Photic Stimulation %K Prostheses and Implants %K Somatosensory Cortex %K Treatment Outcome %K User-Computer Interface %X

People with severe motor disabilities can maintain an acceptable quality of life if they can communicate. Brain-computer interfaces (BCIs), which do not depend on muscle control, can provide communication. Four people severely disabled by ALS learned to operate a BCI with EEG rhythms recorded over sensorimotor cortex. These results suggest that a sensorimotor rhythm-based BCI could help maintain quality of life for people with ALS.

%B Neurology %V 64 %P 1775-7 %8 05/2005 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/15911809 %N 10 %R 10.1212/01.WNL.0000158616.43002.6D %0 Conference Paper %B Proc. IEEE International Conference of Neural Engineering %D 2005 %T Tracking of the mu rhythm using an empirically derived matched filter. %A Krusienski, Dean J %A Gerwin Schalk %A Dennis J. McFarland %A Jonathan Wolpaw %K bioelectric potentials %K Brain Computer Interfaces %K brain modeling %K brain-computer interface %K communication device %K communication system control %K cortical mu rhythm modulation %K EEG %K Electroencephalography %K empirically derived matched filter %K handicapped aids %K laboratories %K matched filters %K medical signal detection %K medical signal processing %K monitoring %K motor imagery %K mu rhythm tracking %K noninvasive treatment %K rhythm %K synchronous motors %K two-dimensional cursor control data %B Proc. IEEE International Conference of Neural Engineering %I IEEE %C Arlington, VA %8 03/2005 %@ 0-7803-8710-4 %G eng %U http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1419559 %R 10.1109/CNE.2005.1419559 %0 Journal Article %J IEEE Trans Biomed Eng %D 2004 %T BCI2000: a general-purpose brain-computer interface (BCI) system. %A Gerwin Schalk %A Dennis J. McFarland %A Hinterberger, T. %A Niels Birbaumer %A Jonathan Wolpaw %K Algorithms %K Brain %K Cognition %K Communication Aids for Disabled %K Computer Peripherals %K Electroencephalography %K Equipment Design %K Equipment Failure Analysis %K Evoked Potentials %K Humans %K Systems Integration %K User-Computer Interface %X Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups. %B IEEE Trans Biomed Eng %V 51 %P 1034-43 %8 06/2004 %G eng %N 6 %R 10.1109/TBME.2004.827072 %0 Journal Article %J Proceedings of the National Academy of Sciences of the United States of America %D 2004 %T Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. %A Jonathan Wolpaw %A Dennis J. McFarland %K brain-machine interface %K Electroencephalography %X Brain-computer interfaces (BCIs) can provide communication and control to people who are totally paralyzed. BCIs can use noninvasive or invasive methods for recording the brain signals that convey the user's commands. Whereas noninvasive BCIs are already in use for simple applications, it has been widely assumed that only invasive BCIs, which use electrodes implanted in the brain, can provide multidimensional movement control of a robotic arm or a neuroprosthesis. We now show that a noninvasive BCI that uses scalp-recorded electroencephalographic activity and an adaptive algorithm can provide humans, including people with spinal cord injuries, with multidimensional point-to-point movement control that falls within the range of that reported with invasive methods in monkeys. In movement time, precision, and accuracy, the results are comparable to those with invasive BCIs. The adaptive algorithm used in this noninvasive BCI identifies and focuses on the electroencephalographic features that the person is best able to control and encourages further improvement in that control. The results suggest that people with severe motor disabilities could use brain signals to operate a robotic arm or a neuroprosthesis without needing to have electrodes implanted in their brains. %B Proceedings of the National Academy of Sciences of the United States of America %V 101 %P 17849–17854 %8 12/2004 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/15585584 %R 10.1073/pnas.0403504101 %0 Journal Article %J IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society %D 2004 %T Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). %A Fabiani, Georg E. %A Dennis J. McFarland %A Jonathan Wolpaw %A Pfurtscheller, Gert %K augmentative communication %K Brain-computer interface (BCI) %K Electroencephalography %K Feedback %X The Wadsworth electroencephalogram (EEG)-based brain-computer interface (BCI) uses amplitude in mu or beta frequency bands over sensorimotor cortex to control cursor movement. Trained users can move the cursor in one or two dimensions. The primary goal of this research is to provide a new communication and control option for people with severe motor disabilities. Currently, cursor movements in each dimension are determined 10 times/s by an empirically derived linear function of one or two EEG features (i.e., spectral bands from different electrode locations). This study used offline analysis of data collected during system operation to explore methods for improving the accuracy of cursor movement. The data were gathered while users selected among three possible targets by controlling vertical [i.e., one-dimensional (1-D)] cursor movement. The three methods analyzed differ in the dimensionality of the cursor movement [1-D versus two-dimensional (2-D)] and in the type of the underlying function (linear versus nonlinear). We addressed two questions: Which method is best for classification (i.e., to determine from the EEG which target the user wants to hit)? How does the number of EEG features affect the performance of each method? All methods reached their optimal performance with 10-20 features. In offline simulation, the 2-D linear method and the 1-D nonlinear method improved performance significantly over the 1-D linear method. The 1-D linear method did not do so. These offline results suggest that the 1-D nonlinear or the 2-D linear cursor function will improve online operation of the BCI system. %B IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society %V 12 %P 331–338 %8 09/2004 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/15473195 %R 10.1109/TNSRE.2004.834627 %0 Journal Article %J Biological psychology %D 2003 %T Brain-computer interface (BCI) operation: optimizing information transfer rates. %A Dennis J. McFarland %A Sarnacki, William A. %A Jonathan Wolpaw %K augmentative communication %K Electroencephalography %K information %K Learning %K mu rhythm %K operant conditioning %K prosthesis %K Rehabilitation %K sensorimotor cortex %X People can learn to control mu (8-12 Hz) or beta (18-25 Hz) rhythm amplitude in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In the present version of the cursor movement task, vertical cursor movement is a linear function of mu or beta rhythm amplitude. At the same time the cursor moves horizontally from left to right at a fixed rate. A target occupies 50% (2-target task) to 20% (5-target task) of the right edge of the screen. The user's task is to move the cursor vertically so that it hits the target when it reaches the right edge. The goal of the present study was to optimize system performance. To accomplish this, we evaluated the impact on system performance of number of targets (i.e. 2-5) and trial duration (i.e. horizontal movement time from 1 to 4 s). Performance was measured as accuracy (percent of targets selected correctly) and also as bit rate (bits/min) (which incorporates, in addition to accuracy, speed and the number of possible targets). Accuracy declined as target number increased. At the same time, for six of eight users, four targets yielded the maximum bit rate. Accuracy increased as movement time increased. At the same time, the movement time with the highest bit rate varied across users from 2 to 4 s. These results indicate that task parameters such as target number and trial duration can markedly affect system performance. They also indicate that optimal parameter values vary across users. Selection of parameters suited both to the specific user and the requirements of the specific application is likely to be a key factor in maximizing the success of EEG-based communication and control. %B Biological psychology %V 63 %P 237–251 %8 07/2003 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/12853169 %R 10.1016/S0301-0511(03)00073-5 %0 Journal Article %J Neuroscience letters %D 2003 %T Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans. %A Sheikh, Hesham %A Dennis J. McFarland %A Sarnacki, William A. %A Jonathan Wolpaw %K augmentative communication %K brain-computer interface %K brain-machine interface %K Electroencephalography %K mu and beta rhythms %K neuroprosthesis %K Rehabilitation %X People can learn to control electroencephalographic (EEG) sensorimotor rhythm amplitude so as to move a cursor to select among choices on a computer screen. We explored the dependence of system performance on EEG control. Users moved the cursor to reach a target at one of four possible locations. EEG control was measured as the correlation (r(2)) between rhythm amplitude and target location. Performance was measured as accuracy (% of targets hit) and as information transfer rate (bits/trial). The relationship between EEG control and accuracy can be approximated by a linear function that is constant for all users. The results facilitate offline predictions of the effects on performance of using different EEG features or combinations of features to control cursor movement. %B Neuroscience letters %V 345 %P 89–92 %8 07/2002 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/12821178 %R 10.1016/S0304-3940(03)00470-1 %0 Journal Article %J Hearing research %D 2003 %T Spectral dynamics of electroencephalographic activity during auditory information processing. %A Anthony T. Cacace %A Dennis J. McFarland %K Electroencephalography %K event-related brain dynamics %K event-related desynchronization %K event-related synchronization %K psychophysics %K spectral analysis %K time domain analysis %X Dynamics of electroencephalographic (EEG) activity during auditory information processing were evaluated in response to changes in stimulus complexity, stimulus discriminability and attention using the oddball paradigm. In comparison to pre-stimulus baseline conditions, auditory stimulation synchronized EEG activity in delta, theta and alpha frequency bands. Event-related synchronization (ERS) effects were greatest at approximately 3 Hz (theta frequency band), and their magnitude depended on stimulus and task demands. Event-related desynchronization (ERD) of EEG activity was observed in the beta frequency band. This effect was greatest at approximately 21 Hz but occurred only for easily discriminable stimuli in attention-related target conditions. Because active discrimination tasks also required a button-press response with the right hand, ERDs involved more complex responses that may be related to a combination of perceptual, motor and cognitive processes. These results demonstrate that oddball and attention-related EEG responses to auditory stimulation could be characterized in the frequency domain. The specific design and analysis features described herein may prove useful since they provide a simple index of the brain's response to stimulation while at the same time provide powerful information not contained in typical time domain analysis. %B Hearing research %V 176 %P 25–41 %8 02/2003 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/12583879 %R 10.1016/S0378-5955(02)00715-3 %0 Journal Article %J IEEE Trans Neural Syst Rehabil Eng %D 2003 %T The Wadsworth Center brain-computer interface (BCI) research and development program. %A Jonathan Wolpaw %A Dennis J. McFarland %A Theresa M Vaughan %A Gerwin Schalk %K Academic Medical Centers %K Adult %K Algorithms %K Artifacts %K Brain %K Brain Mapping %K Electroencephalography %K Evoked Potentials, Visual %K Feedback %K Humans %K Middle Aged %K Nervous System Diseases %K Research %K Research Design %K User-Computer Interface %K Visual Perception %X

Brain-computer interface (BCI) research at the Wadsworth Center has focused primarily on using electroencephalogram (EEG) rhythms recorded from the scalp over sensorimotor cortex to control cursor movement in one or two dimensions. Recent and current studies seek to improve the speed and accuracy of this control by improving the selection of signal features and their translation into device commands, by incorporating additional signal features, and by optimizing the adaptive interaction between the user and system. In addition, to facilitate the evaluation, comparison, and combination of alternative BCI methods, we have developed a general-purpose BCI system called BCI-2000 and have made it available to other research groups. Finally, in collaboration with several other groups, we are developing simple BCI applications and are testing their practicality and long-term value for people with severe motor disabilities.

%B IEEE Trans Neural Syst Rehabil Eng %V 11 %P 204-7 %8 06/2003 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/12899275 %N 2 %R 10.1109/TNSRE.2003.814442 %0 Journal Article %J Clin Neurophysiol %D 2002 %T Brain-computer interfaces for communication and control. %A Jonathan Wolpaw %A Niels Birbaumer %A Dennis J. McFarland %A Pfurtscheller, Gert %A Theresa M Vaughan %K Brain Diseases %K Communication Aids for Disabled %K Computer Systems %K Electroencephalography %K Humans %K User-Computer Interface %X

For many years people have speculated that electroencephalographic activity or other electrophysiological measures of brain function might provide a new non-muscular channel for sending messages and commands to the external world - a brain-computer interface (BCI). Over the past 15 years, productive BCI research programs have arisen. Encouraged by new understanding of brain function, by the advent of powerful low-cost computer equipment, and by growing recognition of the needs and potentials of people with disabilities, these programs concentrate on developing new augmentative communication and controltechnology for those with severe neuromuscular disorders, such as amyotrophic lateral sclerosis, brainstem stroke, and spinal cord injury. The immediate goal is to provide these users, who may be completely paralyzed, or 'locked in', with basic communication capabilities so that they can express their wishes to caregivers or even operate word processing programs or neuroprostheses. Present-day BCIs determine the intent of the user from a variety of different electrophysiological signals. These signals include slow cortical potentials, P300 potentials, and mu or beta rhythms recorded from the scalp, and cortical neuronal activity recorded by implanted electrodes. They are translated in real-time into commands that operate a computer display or other device. Successful operation requires that the user encode commands in these signals and that the BCI derive the commands from the signals. Thus, the user and the BCI system need to adapt to each other both initially and continually so as to ensure stable performance. Current BCIs have maximum information transfer rates up to 10-25bits/min. This limited capacity can be valuable for people whose severe disabilities prevent them from using conventional augmentative communication methods. At the same time, many possible applications of BCI technology, such as neuroprosthesis control, may require higher information transfer rates. Future progress will depend on: recognition that BCI research and development is an interdisciplinary problem, involving neurobiology, psychology, engineering, mathematics, and computer science; identification of those signals, whether evoked potentials, spontaneous rhythms, or neuronal firing rates, that users are best able to control independent of activity in conventional motor output pathways; development of training methods for helping users to gain and maintain that control; delineation of the best algorithms for translating these signals into device commands; attention to the identification and elimination of artifacts such as electromyographic and electro-oculographic activity; adoption of precise and objective procedures for evaluating BCI performance; recognition of the need for long-term as well as short-term assessment of BCI performance; identification of appropriate BCI applications and appropriate matching of applications and users; and attention to factors that affect user acceptance of augmentative technology, including ease of use, cosmesis, and provision of those communication and control capacities that are most important to the user. Development of BCI technology will also benefit from greater emphasis on peer-reviewed research publications and avoidance of the hyperbolic and often misleading media attention that tends to generate unrealistic expectations in the public and skepticism in other researchers. With adequate recognition and effective engagement of all these issues, BCI systems could eventually provide an important new communication and control option for those with motor disabilities and might also give those without disabilities a supplementary control channel or a control channel useful in special circumstances.

%B Clin Neurophysiol %V 113 %P 767-91 %8 06/2002 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/12048038 %N 6 %R 10.1016/S1388-2457(02)00057-3 %0 Journal Article %J IEEE Trans Rehabil Eng %D 2000 %T Brain-computer interface technology: a review of the first international meeting. %A Jonathan Wolpaw %A Niels Birbaumer %A Heetderks, W J %A Dennis J. McFarland %A Peckham, P H %A Gerwin Schalk %A Emanuel Donchin %A Quatrano, L A %A Robinson, C J %A Theresa M Vaughan %K Algorithms %K Cerebral Cortex %K Communication Aids for Disabled %K Disabled Persons %K Electroencephalography %K Evoked Potentials %K Humans %K Neuromuscular Diseases %K Signal Processing, Computer-Assisted %K User-Computer Interface %X

Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.

%B IEEE Trans Rehabil Eng %V 8 %P 164-73 %8 06/2000 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/10896178 %N 2 %R 10.1109/TRE.2000.847807 %0 Journal Article %J Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology %D 2000 %T EEG-based communication: presence of an error potential. %A Gerwin Schalk %A Jonathan Wolpaw %A Dennis J. McFarland %A Pfurtscheller, G. %K augmentative communication %K brain-computer interface %K Electroencephalography %K error potential %K error related negativity %K event related potential %K mu rhythm %K Rehabilitation %K sensorimotor cortex %X EEG-based communication could be a valuable new augmentative communication technology for those with severe motor disabilities. Like all communication methods, it faces the problem of errors in transmission. In the Wadsworth EEG-based brain-computer interface (BCI) system, subjects learn to use mu or beta rhythm amplitude to move a cursor to targets on a computer screen. While cursor movement is highly accurate in trained subjects, it is not perfect. %B Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology %V 111 %P 2138–2144 %8 12/2000 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/11090763 %R 10.1016/S1388-2457(00)00457-0 %0 Journal Article %J Electroencephalography and clinical neurophysiology %D 1998 %T EEG-based communication: analysis of concurrent EMG activity. %A Theresa M Vaughan %A Miner, L. A. %A Dennis J. McFarland %A Jonathan Wolpaw %K augmentative communication %K conditioning %K Electroencephalography %K Electromyography %K mu rhythm %K Rehabilitation %K sensorimotor cortex %X OBJECTIVE: Recent studies indicate that people can learn to control the amplitude of mu or beta rhythms in the EEG recorded from the scalp over sensorimotor cortex and can use that control to move a cursor to targets on the computer screen. While subjects do not move during performance, it is possible that inapparent or unconscious muscle contractions contribute to the changes in the mu and beta rhythm activity responsible for cursor movement. We evaluated this possibility. METHODS: EMG was recorded from 10 distal limb muscle groups while five trained subjects used mu or beta rhythms to move a cursor to targets at the bottom or top edge of a computer screen. RESULTS: EMG activity was very low during performance, averaging 4.0+/-4.4% (SD) of maximum voluntary contraction. Most important, the correlation, measured as r2, between target position and EMG activity averaged only 0.01+/-0.02, much lower than the correlation between target position and the EEG activity that controlled cursor movement, which averaged 0.39+/-0.18. CONCLUSIONS: These results strongly support the conclusion that EEG-based cursor control does no depend on concurrent muscle activity. EEG-based communication and control might provide a new augmentative communication option for those with severe motor disabilities. %B Electroencephalography and clinical neurophysiology %V 107 %P 428–433 %8 12/1998 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/9922089 %R 10.1016/S0013-4694(98)00107-2 %0 Journal Article %J Electroencephalography and clinical neurophysiology %D 1997 %T Spatial filter selection for EEG-based communication. %A Dennis J. McFarland %A McCane, L. M. %A David, S. V. %A Jonathan Wolpaw %K assistive communication %K Electroencephalography %K mu rhythm %K operant conditioning %K prosthesis %K Rehabilitation %K sensorimotor cortex %X Individuals can learn to control the amplitude of mu-rhythm activity in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. The speed and accuracy of cursor movement depend on the consistency of the control signal and on the signal-to-noise ratio achieved by the spatial and temporal filtering methods that extract the activity prior to its translation into cursor movement. The present study compared alternative spatial filtering methods. Sixty-four channel EEG data collected while well-trained subjects were moving the cursor to targets at the top or bottom edge of a video screen were analyzed offline by four different spatial filters, namely a standard ear-reference, a common average reference (CAR), a small Laplacian (3 cm to set of surrounding electrodes) and a large Laplacian (6 cm to set of surrounding electrodes). The CAR and large Laplacian methods proved best able to distinguish between top and bottom targets. They were significantly superior to the ear-reference method. The difference in performance between the large Laplacian and small Laplacian methods presumably indicated that the former was better matched to the topographical extent of the EEG control signal. The results as a whole demonstrate the importance of proper spatial filter selection for maximizing the signal-to-noise ratio and thereby improving the speed and accuracy of EEG-based communication. %B Electroencephalography and clinical neurophysiology %V 103 %P 386–394 %8 09/1997 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/9305287 %R 10.1016/S0013-4694(97)00022-2 %0 Journal Article %J Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society %D 1997 %T Timing of EEG-based cursor control. %A Jonathan Wolpaw %A Flotzinger, D. %A Pfurtscheller, G. %A Dennis J. McFarland %K assistive communication %K Electroencephalography %K mu rhythm %K operant conditioning %K prosthesis %K Rehabilitation %K sensorimotor cortex %X Recent studies show that humans can learn to control the amplitude of electroencephalography (EEG) activity in specific frequency bands over sensorimotor cortex and use it to move a cursor to a target on a computer screen. EEG-based communication could be a valuable new communication and control option for those with severe motor disabilities. Realization of this potential requires detailed knowledge of the characteristic features of EEG control. This study examined the course of EEG control after presentation of a target. At the beginning of each trial, a target appeared at the top or bottom edge of the subject's video screen and 1 sec later a cursor began to move vertically as a function of EEG amplitude in a specific frequency band. In well-trained subjects, this amplitude was high at the time the target appeared and then either remained high (i.e., for a top target) or fell rapidly (i.e., for a bottom target). Target-specific EEG amplitude control began 0.5 sec after the target appeared and appeared to wax and wane with a period of approximately 1 sec until the cursor reached the target (i.e., a hit) or the opposite edge of the screen (i.e., a miss). Accuracy was 90% or greater for each subject. Top-target errors usually occurred later in the trial because of failure to reach and/or maintain sufficiently high amplitude, whereas bottom-target errors usually occurred immediately because of failure to reduce an initially high amplitude quickly enough. The results suggest modifications that could improve performance. These include lengthening the intertrial period, shortening the delay between target appearance and cursor movement, and including time within the trial as a variable in the equation that translates EEG into cursor movement. %B Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society %V 14 %P 529–538 %8 11/1997 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/9458060 %0 Journal Article %J Electroencephalography and clinical neurophysiology %D 1994 %T Multichannel EEG-based brain-computer communication. %A Jonathan Wolpaw %A Dennis J. McFarland %K assistive communication %K Electroencephalography %K mu rhythm %K operant conditioning %K prosthesis %K Rehabilitation %K sensorimotor cortex %X Individuals who are paralyzed or have other severe movement disorders often need alternative means for communicating with and controlling their environments. In this study, human subjects learned to use two channels of bipolar EEG activity to control 2-dimensional movement of a cursor on a computer screen. Amplitudes of 8-12 Hz activity in the EEG recorded from the scalp across right and left central sulci were determined by fast Fourier transform and combined to control vertical and horizontal cursor movements simultaneously. This independent control of two separate EEG channels cannot be attributed to a non-specific change in brain activity and appeared to be specific to the mu rhythm frequency range. With further development, multichannel EEG-based communication may prove of significant value to those with severe motor disabilities. %B Electroencephalography and clinical neurophysiology %V 90 %P 444–449 %8 06/1994 %G eng %U http://www.ncbi.nlm.nih.gov/pubmed/7515787 %R 10.1016/0013-4694(94)90135-X