TY - JOUR T1 - A procedure for measuring latencies in brain-computer interfaces. JF - IEEE Trans Biomed Eng Y1 - 2010 A1 - Adam J Wilson A1 - Mellinger, Jürgen A1 - Gerwin Schalk A1 - Williams, Justin C KW - Brain KW - Computer Systems KW - Electroencephalography KW - Evoked Potentials KW - Humans KW - Models, Neurological KW - Reproducibility of Results KW - Signal Processing, Computer-Assisted KW - Time Factors KW - User-Computer Interface AB -

Brain-computer interface (BCI) systems must process neural signals with consistent timing in order to support adequate system performance. Thus, it is important to have the capability to determine whether a particular BCI configuration (i.e., hardware and software) provides adequate timing performance for a particular experiment. This report presents a method of measuring and quantifying different aspects of system timing in several typical BCI experiments across a range of settings, and presents comprehensive measures of expected overall system latency for each experimental configuration.

VL - 57 UR - http://www.ncbi.nlm.nih.gov/pubmed/20403781 IS - 7 ER - TY - JOUR T1 - A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. JF - Epilepsy Behav Y1 - 2009 A1 - Peter Brunner A1 - A L Ritaccio A1 - Lynch, Timothy M A1 - Emrich, Joseph F A1 - Adam J Wilson A1 - Williams, Justin C A1 - Aarnoutse, Erik J A1 - Ramsey, Nick F A1 - Leuthardt, E C A1 - H Bischof A1 - Gerwin Schalk KW - Adult KW - Brain Mapping KW - Cerebral Cortex KW - Electric Stimulation KW - Electrodes, Implanted KW - Electroencephalography KW - Epilepsy KW - Female KW - Humans KW - Male KW - Middle Aged KW - Practice Guidelines as Topic KW - Signal Processing, Computer-Assisted KW - Young Adult AB -

Functional mapping of eloquent cortex is often necessary prior to invasive brain surgery, but current techniques that derive this mapping have important limitations. In this article, we demonstrate the first comprehensive evaluation of a rapid, robust, and practical mapping system that uses passive recordings of electrocorticographic signals. This mapping procedure is based on the BCI2000 and SIGFRIED technologies that we have been developing over the past several years. In our study, we evaluated 10 patients with epilepsy from four different institutions and compared the results of our procedure with the results derived using electrical cortical stimulation (ECS) mapping. The results show that our procedure derives a functional motor cortical map in only a few minutes. They also show a substantial concurrence with the results derived using ECS mapping. Specifically, compared with ECS maps, a next-neighbor evaluation showed no false negatives, and only 0.46 and 1.10% false positives for hand and tongue maps, respectively. In summary, we demonstrate the first comprehensive evaluation of a practical and robust mapping procedure that could become a new tool for planning of invasive brain surgeries.

VL - 15 UR - http://www.ncbi.nlm.nih.gov/pubmed/19366638 IS - 3 ER -