TY - JOUR T1 - Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. JF - J Neural Eng Y1 - 2011 A1 - Gomez-Rodriguez, M A1 - Peters, J A1 - Jeremy Jeremy Hill A1 - Schölkopf, B A1 - Gharabaghi, A A1 - Grosse-Wentrup, Moritz KW - Brain KW - Evoked Potentials, Motor KW - Evoked Potentials, Somatosensory KW - Feedback, Physiological KW - Female KW - Humans KW - Imagination KW - Male KW - Movement KW - Robotics KW - Touch KW - User-Computer Interface AB -

The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

VL - 8 UR - http://www.ncbi.nlm.nih.gov/pubmed/21474878 IS - 3 ER -