TY - JOUR T1 - Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. JF - J Neural Eng Y1 - 2011 A1 - Pei, Xiao-Mei A1 - Barbour, Dennis L A1 - Leuthardt, E C A1 - Gerwin Schalk KW - Adolescent KW - Adult KW - Brain KW - Brain Mapping KW - Cerebral Cortex KW - Communication Aids for Disabled KW - Data Interpretation, Statistical KW - Discrimination (Psychology) KW - Electrodes, Implanted KW - Electroencephalography KW - Epilepsy KW - Female KW - Functional Laterality KW - Humans KW - Male KW - Middle Aged KW - Movement KW - Speech Perception KW - User-Computer Interface AB -

Several stories in the popular media have speculated that it may be possible to infer from the brain which word a person is speaking or even thinking. While recent studies have demonstrated that brain signals can give detailed information about actual and imagined actions, such as different types of limb movements or spoken words, concrete experimental evidence for the possibility to 'read the mind', i.e. to interpret internally-generated speech, has been scarce. In this study, we found that it is possible to use signals recorded from the surface of the brain (electrocorticography) to discriminate the vowels and consonants embedded in spoken and in imagined words, and we defined the cortical areas that held the most information about discrimination of vowels and consonants. The results shed light on the distinct mechanisms associated with production of vowels and consonants, and could provide the basis for brain-based communication using imagined speech.

VL - 8 UR - http://www.ncbi.nlm.nih.gov/pubmed/21750369 IS - 4 ER - TY - JOUR T1 - Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex. JF - J Neurosci Y1 - 2011 A1 - Charles M Gaona A1 - Sharma, Mohit A1 - Zachary V. Freudenberg A1 - Breshears, Jonathan A1 - Bundy, David T A1 - Roland, Jarod A1 - Barbour, Dennis L A1 - Gerwin Schalk A1 - Leuthardt, E C KW - Acoustic Stimulation KW - Adolescent KW - Adult KW - Analysis of Variance KW - Brain Mapping KW - Brain Waves KW - Cerebral Cortex KW - Cognition Disorders KW - Electroencephalography KW - Epilepsy KW - Evoked Potentials KW - Female KW - Humans KW - Male KW - Middle Aged KW - Neuropsychological Tests KW - Nonlinear Dynamics KW - Photic Stimulation KW - Reaction Time KW - Spectrum Analysis KW - Time Factors KW - Vocabulary AB -

High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca's area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics.

VL - 31 UR - http://www.ncbi.nlm.nih.gov/pubmed/21307246 IS - 6 ER - TY - JOUR T1 - Electrocorticographic frequency alteration mapping for extraoperative localization of speech cortex. JF - Neurosurgery Y1 - 2010 A1 - Wu, Melinda A1 - Wisneski, Kimberly A1 - Gerwin Schalk A1 - Sharma, Mohit A1 - Roland, Jarod A1 - Breshears, Jonathan A1 - Charles M Gaona A1 - Leuthardt, E C KW - Acoustic Stimulation KW - Adolescent KW - Adult KW - Brain Mapping KW - Cerebral Cortex KW - Chi-Square Distribution KW - Electroencephalography KW - Epilepsy KW - Female KW - Humans KW - Male KW - Mass Spectrometry KW - Middle Aged KW - Photic Stimulation KW - Speech KW - Verbal Behavior KW - Young Adult AB -

OBJECTIVE: 

Electrocortical stimulation (ECS) has long been established for delineating eloquent cortex in extraoperative mapping. However, ECS is still coarse and inefficient in delineating regions of functional cortex and can be hampered by afterdischarges. Given these constraints, an adjunct approach to defining motor cortex is the use of electrocorticographic (ECoG) signal changes associated with active regions of cortex. The broad range of frequency oscillations are categorized into 2 main groups with respect to sensorimotor cortex: low-frequency bands (LFBs) and high-frequency bands (HFBs). The LFBs tend to show a power reduction, whereas the HFBs show power increases with cortical activation. These power changes associated with activated cortex could potentially provide a powerful tool in delineating areas of speech cortex. We explore ECoG signal alterations as they occur with activated region of speech cortex and its potential in clinical brain mapping applications.

METHODS: 

We evaluated 7 patients who underwent invasive monitoring for seizure localization. Each had extraoperative ECS mapping to identify speech cortex. Additionally, all subjects performed overt speech tasks with an auditory or a visual cue to identify associated frequency power changes in regard to location and degree of concordance with ECS results.

RESULTS: 

Electrocorticographic frequency alteration mapping (EFAM) had an 83.9% sensitivity and a 40.4% specificity in identifying any language site when considering both frequency bands and both stimulus cues. Electrocorticographic frequency alteration mapping was more sensitive in identifying the Wernicke area (100%) than the Broca area (72.2%). The HFB is uniquely suited to identifying the Wernicke area, whereas a combination of the HFB and LFB is important for Broca localization.

CONCLUSION: 

The concordance between stimulation and spectral power changes demonstrates the possible utility of EFAM as an adjunct method to improve the efficiency and resolution of identifying speech cortex.

VL - 66 UR - http://www.ncbi.nlm.nih.gov/pubmed/20087111 IS - 2 ER - TY - JOUR T1 - Passive real-time identification of speech and motor cortex during an awake craniotomy. JF - Epilepsy Behav Y1 - 2010 A1 - Roland, Jarod A1 - Peter Brunner A1 - Johnston, James A1 - Gerwin Schalk A1 - Leuthardt, E C KW - Brain Mapping KW - Brain Neoplasms KW - Cerebral Cortex KW - Craniotomy KW - Electric Stimulation KW - Electroencephalography KW - Humans KW - Neurologic Examination AB -

Precise localization of eloquent cortex is a clinical necessity prior to surgical resections adjacent to speech or motor cortex. In the intraoperative setting, this traditionally requires inducing temporary lesions by direct electrocortical stimulation (DECS). In an attempt to increase efficiency and potentially reduce the amount of necessary stimulation, we used a passive mapping procedure in the setting of an awake craniotomy for tumor in two patients resection. We recorded electrocorticographic (ECoG) signals from exposed cortex while patients performed simple cue-directed motor and speech tasks. SIGFRIED, a procedure for real-time event detection, was used to identify areas of cortical activation by detecting task-related modulations in the ECoG high gamma band. SIGFRIED's real-time output quickly localized motor and speech areas of cortex similar to those identified by DECS. In conclusion, real-time passive identification of cortical function using SIGFRIED may serve as a useful adjunct to cortical stimulation mapping in the intraoperative setting.

VL - 18 UR - http://www.ncbi.nlm.nih.gov/pubmed/20478745 IS - 1-2 ER - TY - JOUR T1 - Evolution of brain-computer interfaces: going beyond classic motor physiology. JF - Neurosurg Focus Y1 - 2009 A1 - Leuthardt, E C A1 - Gerwin Schalk A1 - Roland, Jarod A1 - Rouse, Adam A1 - Moran, D KW - Brain KW - Cerebral Cortex KW - Humans KW - Man-Machine Systems KW - Motor Cortex KW - Movement KW - Movement Disorders KW - Neuronal Plasticity KW - Prostheses and Implants KW - Research KW - Signal Processing, Computer-Assisted KW - User-Computer Interface AB -

The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future.

VL - 27 UR - http://www.ncbi.nlm.nih.gov/pubmed/19569892 IS - 1 ER - TY - JOUR T1 - A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. JF - Epilepsy Behav Y1 - 2009 A1 - Peter Brunner A1 - A L Ritaccio A1 - Lynch, Timothy M A1 - Emrich, Joseph F A1 - Adam J Wilson A1 - Williams, Justin C A1 - Aarnoutse, Erik J A1 - Ramsey, Nick F A1 - Leuthardt, E C A1 - H Bischof A1 - Gerwin Schalk KW - Adult KW - Brain Mapping KW - Cerebral Cortex KW - Electric Stimulation KW - Electrodes, Implanted KW - Electroencephalography KW - Epilepsy KW - Female KW - Humans KW - Male KW - Middle Aged KW - Practice Guidelines as Topic KW - Signal Processing, Computer-Assisted KW - Young Adult AB -

Functional mapping of eloquent cortex is often necessary prior to invasive brain surgery, but current techniques that derive this mapping have important limitations. In this article, we demonstrate the first comprehensive evaluation of a rapid, robust, and practical mapping system that uses passive recordings of electrocorticographic signals. This mapping procedure is based on the BCI2000 and SIGFRIED technologies that we have been developing over the past several years. In our study, we evaluated 10 patients with epilepsy from four different institutions and compared the results of our procedure with the results derived using electrical cortical stimulation (ECS) mapping. The results show that our procedure derives a functional motor cortical map in only a few minutes. They also show a substantial concurrence with the results derived using ECS mapping. Specifically, compared with ECS maps, a next-neighbor evaluation showed no false negatives, and only 0.46 and 1.10% false positives for hand and tongue maps, respectively. In summary, we demonstrate the first comprehensive evaluation of a practical and robust mapping procedure that could become a new tool for planning of invasive brain surgeries.

VL - 15 UR - http://www.ncbi.nlm.nih.gov/pubmed/19366638 IS - 3 ER - TY - JOUR T1 - Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. JF - J Neural Eng Y1 - 2007 A1 - Gerwin Schalk A1 - Kubánek, J A1 - Miller, John W A1 - Nicholas R Anderson A1 - Leuthardt, E C A1 - Ojemann, J G A1 - Limbrick, D A1 - Moran, D A1 - Lester A Gerhardt A1 - Jonathan Wolpaw KW - Adult KW - Algorithms KW - Arm KW - Brain Mapping KW - Cerebral Cortex KW - Electroencephalography KW - Evoked Potentials, Motor KW - Female KW - Humans KW - Male KW - Movement AB -

Signals from the brain could provide a non-muscular communication and control system, a brain-computer interface (BCI), for people who are severely paralyzed. A common BCI research strategy begins by decoding kinematic parameters from brain signals recorded during actual arm movement. It has been assumed that these parameters can be derived accurately only from signals recorded by intracortical microelectrodes, but the long-term stability of such electrodes is uncertain. The present study disproves this widespread assumption by showing in humans that kinematic parameters can also be decoded from signals recorded by subdural electrodes on the cortical surface (ECoG) with an accuracy comparable to that achieved in monkey studies using intracortical microelectrodes. A new ECoG feature labeled the local motor potential (LMP) provided the most information about movement. Furthermore, features displayed cosine tuning that has previously been described only for signals recorded within the brain. These results suggest that ECoG could be a more stable and less invasive alternative to intracortical electrodes for BCI systems, and could also prove useful in studies of motor function.

VL - 4 UR - http://www.ncbi.nlm.nih.gov/pubmed/17873429 IS - 3 ER - TY - JOUR T1 - Electrocorticography-based brain computer interface--the Seattle experience. JF - IEEE Trans Neural Syst Rehabil Eng Y1 - 2006 A1 - Leuthardt, E C A1 - Miller, John W A1 - Gerwin Schalk A1 - Rao, Rajesh P N A1 - Ojemann, J G KW - Cerebral Cortex KW - Electroencephalography KW - Epilepsy KW - Evoked Potentials KW - Humans KW - Therapy, Computer-Assisted KW - User-Computer Interface KW - Washington AB -

Electrocorticography (ECoG) has been demonstrated to be an effective modality as a platform for brain-computer interfaces (BCIs). Through our experience with ten subjects, we further demonstrate evidence to support the power and flexibility of this signal for BCI usage. In a subset of four patients, closed-loop BCI experiments were attempted with the patient receiving online feedback that consisted of one-dimensional cursor movement controlled by ECoG features that had shown correlation with various real and imagined motor and speech tasks. All four achieved control, with final target accuracies between 73%-100%. We assess the methods for achieving control and the manner in which enhancing online control can be accomplished by rescreening during online tasks. Additionally, we assess the relevant issues of the current experimental paradigm in light of their clinical constraints.

VL - 14 UR - http://www.ncbi.nlm.nih.gov/pubmed/16792292 IS - 2 ER -