@article {2131, title = {Transition from the locked in to the completely locked-in state: a physiological analysis.}, journal = {Clin Neurophysiol}, volume = {122}, year = {2011}, month = {06/2011}, pages = {925-33}, abstract = {

OBJECTIVE:\ 

To clarify the physiological and behavioral boundaries between locked-in (LIS) and the completely locked-in state (CLIS) (no voluntary eye movements, no communication possible) through electrophysiological data and to secure\ brain-computer-interface\ (BCI) communication.

METHODS:\ 

Electromyography from facial muscles, external anal sphincter (EAS), electrooculography and electrocorticographic data during different psychophysiological tests were acquired to define electrophysiological differences in an amyotrophic lateral sclerosis (ALS) patient with an intracranially implanted grid of 112 electrodes for nine months while the patient passed from the LIS to the CLIS.

RESULTS:\ 

At the very end of the LIS there was no facial muscle activity, nor external anal sphincter but eye control. Eye movements were slow and lasted for short periods only. During CLIS event related\ brainpotentials (ERP) to passive limb movements and auditory stimuli were recorded, vibrotactile stimulation of different body parts resulted in no ERP response.

CONCLUSIONS:\ 

The results presented contradict the commonly accepted assumption that the EAS is the last remaining muscle under voluntary control and demonstrate complete loss of eye movements in CLIS. The eye muscle was shown to be the last muscle group under voluntary control. The findings suggest ALS as a multisystem disorder, even affecting afferent sensory pathways.

SIGNIFICANCE:\ 

Auditory and proprioceptive\ brain-computer-interface\ (BCI) systems are the only remaining communication channels in CLIS.

}, keywords = {Adult, Amyotrophic Lateral Sclerosis, Area Under Curve, Brain, Communication Aids for Disabled, Disease Progression, Electroencephalography, Electromyography, Humans, Male, Signal Processing, Computer-Assisted, User-Computer Interface}, issn = {1872-8952}, doi = {10.1016/j.clinph.2010.08.019}, url = {http://www.ncbi.nlm.nih.gov/pubmed/20888292}, author = {Murguialday, A Ramos and Jeremy Jeremy Hill and Bensch, M and Martens, S M M and S Halder and Nijboer, F and Schoelkopf, Bernhard and Niels Birbaumer and Gharabaghi, A} } @article {2137, title = {Voluntary brain regulation and communication with electrocorticogram signals.}, journal = {Epilepsy Behav}, volume = {13}, year = {2008}, month = {08/2008}, pages = {300-6}, abstract = {

Brain-computer interfaces\ (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of\ brain\ signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals. After training of the classifier, binary classification responses were used to select letters from a\ computer-generated menu. Offline analysis showed increased theta activity in the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals, combined with short training periods, may offer an alternative for communication in complete paralysis, locked-in syndrome, and motor restoration.

}, keywords = {Adult, Biofeedback, Psychology, Cerebral Cortex, Communication Aids for Disabled, Dominance, Cerebral, Electroencephalography, Epilepsies, Partial, Female, Humans, Imagination, Male, Middle Aged, Motor Activity, Motor Cortex, Signal Processing, Computer-Assisted, Software, Somatosensory Cortex, Theta Rhythm, User-Computer Interface, Writing}, issn = {1525-5069}, doi = {10.1016/j.yebeh.2008.03.014}, url = {http://www.ncbi.nlm.nih.gov/pubmed/18495541}, author = {Hinterberger, T. and Widman, Guido and Lal, T.N and Jeremy Jeremy Hill and Tangermann, Michael and Rosenstiel, W. and Sch{\"o}lkopf, B and Elger, Christian and Niels Birbaumer} } @article {2172, title = {The BCI competition III: Validating alternative approaches to actual BCI problems.}, journal = {IEEE Trans Neural Syst Rehabil Eng}, volume = {14}, year = {2006}, month = {06/2006}, pages = {153-9}, abstract = {

A\ brain-computer interface\ (BCI) is a system that allows its users to control external devices with\ brainactivity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user{\textquoteright}s\ brain, which produces\ brain\ activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual\ online\ use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.

}, keywords = {Algorithms, Brain, Communication Aids for Disabled, Databases, Factual, Electroencephalography, Evoked Potentials, Humans, Neuromuscular Diseases, Software Validation, Technology Assessment, Biomedical, User-Computer Interface}, issn = {1534-4320}, doi = {10.1109/TNSRE.2006.875642}, url = {http://www.ncbi.nlm.nih.gov/pubmed/16792282}, author = {Benjamin Blankertz and M{\"u}ller, Klaus-Robert and Krusienski, Dean J and Gerwin Schalk and Jonathan Wolpaw and Schl{\"o}gl, Alois and Pfurtscheller, Gert and Mill{\'a}n, Jos{\'e} del R and Schr{\"o}der, Michael and Niels Birbaumer} } @article {2166, title = {BCI2000: a general-purpose brain-computer interface (BCI) system.}, journal = {IEEE Trans Biomed Eng}, volume = {51}, year = {2004}, month = {06/2004}, pages = {1034-43}, abstract = {Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.}, keywords = {Algorithms, Brain, Cognition, Communication Aids for Disabled, Computer Peripherals, Electroencephalography, Equipment Design, Equipment Failure Analysis, Evoked Potentials, Humans, Systems Integration, User-Computer Interface}, issn = {0018-9294}, doi = {10.1109/TBME.2004.827072}, author = {Gerwin Schalk and Dennis J. McFarland and Hinterberger, T. and Niels Birbaumer and Jonathan Wolpaw} } @article {2268, title = {Brain-computer interfaces for communication and control.}, journal = {Clin Neurophysiol}, volume = {113}, year = {2002}, month = {06/2002}, pages = {767-91}, abstract = {

For many years people have speculated that electroencephalographic activity or other electrophysiological measures of brain function might provide a new non-muscular channel for sending messages and commands to the external world - a brain-computer interface (BCI). Over the past 15 years, productive BCI research programs have arisen. Encouraged by new understanding of brain function, by the advent of powerful low-cost computer equipment, and by growing recognition of the needs and potentials of people with disabilities, these programs concentrate on developing new augmentative communication and\ controltechnology for those with severe neuromuscular disorders, such as amyotrophic lateral sclerosis, brainstem stroke, and spinal cord injury. The immediate goal is to provide these users, who may be completely paralyzed, or {\textquoteright}locked in{\textquoteright}, with basic communication capabilities so that they can express their wishes to caregivers or even operate word processing programs or neuroprostheses. Present-day BCIs determine the intent of the user from a variety of different electrophysiological signals. These signals include slow cortical potentials, P300 potentials, and mu or beta rhythms recorded from the scalp, and cortical neuronal activity recorded by implanted electrodes. They are translated in real-time into commands that operate a computer display or other device. Successful operation requires that the user encode commands in these signals and that the BCI derive the commands from the signals. Thus, the user and the BCI system need to adapt to each other both initially and continually so as to ensure stable performance. Current BCIs have maximum information transfer rates up to 10-25bits/min. This limited capacity can be valuable for people whose severe disabilities prevent them from using conventional augmentative communication methods. At the same time, many possible applications of BCI technology, such as neuroprosthesis\ control, may require higher information transfer rates. Future progress will depend on: recognition that BCI research and development is an interdisciplinary problem, involving neurobiology, psychology, engineering, mathematics, and computer science; identification of those signals, whether evoked potentials, spontaneous rhythms, or neuronal firing rates, that users are best able to\ control\ independent of activity in conventional motor output pathways; development of training methods for helping users to gain and maintain that\ control; delineation of the best algorithms for translating these signals into device commands; attention to the identification and elimination of artifacts such as electromyographic and electro-oculographic activity; adoption of precise and objective procedures for evaluating BCI performance; recognition of the need for long-term as well as short-term assessment of BCI performance; identification of appropriate BCI applications and appropriate matching of applications and users; and attention to factors that affect user acceptance of augmentative technology, including ease of use, cosmesis, and provision of those communication and\ control\ capacities that are most important to the user. Development of BCI technology will also benefit from greater emphasis on peer-reviewed research publications and avoidance of the hyperbolic and often misleading media attention that tends to generate unrealistic expectations in the public and skepticism in other researchers. With adequate recognition and effective engagement of all these issues, BCI systems could eventually provide an important new communication and\ control\ option for those with motor disabilities and might also give those without disabilities a supplementary\ control\ channel or a\ control\ channel useful in special circumstances.

}, keywords = {Brain Diseases, Communication Aids for Disabled, Computer Systems, Electroencephalography, Humans, User-Computer Interface}, issn = {1388-2457}, doi = {10.1016/S1388-2457(02)00057-3}, url = {http://www.ncbi.nlm.nih.gov/pubmed/12048038}, author = {Jonathan Wolpaw and Niels Birbaumer and Dennis J. McFarland and Pfurtscheller, Gert and Theresa M Vaughan} } @article {2163, title = {Brain-computer interface technology: a review of the first international meeting.}, journal = {IEEE Trans Rehabil Eng}, volume = {8}, year = {2000}, month = {06/2000}, pages = {164-73}, abstract = {

Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI{\textquoteright}s provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI{\textquoteright}s use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI{\textquoteright}s have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, and from adoption of standard venues for presentations and discussion.

}, keywords = {Algorithms, Cerebral Cortex, Communication Aids for Disabled, Disabled Persons, Electroencephalography, Evoked Potentials, Humans, Neuromuscular Diseases, Signal Processing, Computer-Assisted, User-Computer Interface}, issn = {1063-6528}, doi = {10.1109/TRE.2000.847807}, url = {http://www.ncbi.nlm.nih.gov/pubmed/10896178}, author = {Jonathan Wolpaw and Niels Birbaumer and Heetderks, W J and Dennis J. McFarland and Peckham, P H and Gerwin Schalk and Emanuel Donchin and Quatrano, L A and Robinson, C J and Theresa M Vaughan} }