@article {3370, title = {Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.}, journal = {Amyotroph Lateral Scler Frontotemporal Degener}, volume = {15}, year = {2014}, month = {06/2014}, pages = {207-15}, abstract = {Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 {\texttimes} 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3\%). Seventeen averaged 92 ({\textpm} 3)\% (range 71-100\%), which is adequate for communication (G70 group). Eight averaged 12 ({\textpm} 6)\% (range 0-36\%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65\%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.}, keywords = {Adult, Aged, Amyotrophic Lateral Sclerosis, Biofeedback, Psychology, brain-computer interfaces, Communication Disorders, Electroencephalography, Event-Related Potentials, P300, Female, Humans, Male, Middle Aged, Online Systems, Photic Stimulation, Psychomotor Performance, Reaction Time}, issn = {2167-9223}, doi = {10.3109/21678421.2013.865750}, url = {http://www.ncbi.nlm.nih.gov/pubmed/24555843}, author = {McCane, Lynn M and Sellers, Eric W and Dennis J. McFarland and Mak, Joseph N and Carmack, C Steve and Zeitlin, Debra and Jonathan Wolpaw and Theresa M Vaughan} } @article {3400, title = {Dichotic and dichoptic digit perception in normal adults.}, journal = {J Am Acad Audiol}, volume = {22}, year = {2011}, month = {06/2011}, pages = {332-41}, abstract = {BACKGROUND: Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. PURPOSE: To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. RESEARCH DESIGN: A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. STUDY SAMPLE: Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. DATA COLLECTION AND ANALYSIS: A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. RESULTS: The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. CONCLUSIONS: The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects.}, keywords = {Adolescent, Adult, Auditory Perception, Dichotic Listening Tests, Female, Functional Laterality, Humans, Male, Recognition (Psychology), Reference Values, Reproducibility of Results, Task Performance and Analysis, Visual Perception, Young Adult}, issn = {1050-0545}, doi = {10.3766/jaaa.22.6.3}, url = {http://www.ncbi.nlm.nih.gov/pubmed/21864471}, author = {Lawfield, Angela and Dennis J. McFarland and Cacace, Anthony T} } @article {2184, title = {Towards an independent brain-computer interface using steady state visual evoked potentials.}, journal = {Clin Neurophysiol}, volume = {119}, year = {2008}, month = {02/2008}, pages = {399-408}, abstract = {

OBJECTIVE:\ 

Brain-computer interface (BCI) systems using steady state visual evoked potentials (SSVEPs) have allowed healthy subjects to communicate. However, these systems may not work in severely disabled users because they may depend on gaze shifting. This study evaluates the hypothesis that overlapping stimuli can evoke changes in SSVEP activity sufficient to control a BCI. This would provide evidence that SSVEP BCIs could be used without shifting gaze.

METHODS:\ 

Subjects viewed a display containing two images that each oscillated at a different frequency. Different conditions used overlapping or non-overlapping images to explore dependence on gaze function. Subjects were asked to direct attention to one or the other of these images during each of 12 one-minute runs.

RESULTS:\ 

Half of the subjects produced differences in SSVEP activity elicited by overlapping stimuli that could support BCI control. In all remaining users, differences did exist at corresponding frequencies but were not strong enough to allow effective control.

CONCLUSIONS:\ 

The\ data\ demonstrate that SSVEP differences sufficient for BCI control may be elicited by selective attention to one of two overlapping stimuli. Thus, some SSVEP-based BCI approaches may not depend on gaze control. The nature and extent of any BCI{\textquoteright}s dependence on muscle activity is a function of many factors, including the display, task, environment, and user.

SIGNIFICANCE:\ 

SSVEP BCIs might function in severely disabled users unable to reliably control gaze. Further research with these users is necessary to explore the optimal parameters of such a system and validate online performance in a home environment.

}, keywords = {Adolescent, Adult, Attention, Brain, Brain Mapping, Dose-Response Relationship, Radiation, Electroencephalography, Evoked Potentials, Visual, Female, Humans, Male, Pattern Recognition, Visual, Photic Stimulation, Spectrum Analysis, User-Computer Interface}, issn = {1388-2457}, doi = {10.1016/j.clinph.2007.09.121}, url = {http://www.ncbi.nlm.nih.gov/pubmed/18077208}, author = {Brendan Z. Allison and Dennis J. McFarland and Gerwin Schalk and Zheng, Shi Dong and Moore-Jackson, Melody and Jonathan Wolpaw} } @article {2165, title = {The Wadsworth Center brain-computer interface (BCI) research and development program.}, journal = {IEEE Trans Neural Syst Rehabil Eng}, volume = {11}, year = {2003}, month = {06/2003}, pages = {204-7}, abstract = {

Brain-computer interface (BCI) research at the Wadsworth Center has focused primarily on using electroencephalogram (EEG) rhythms recorded from the scalp over sensorimotor cortex to\ control\ cursor movement in one or two dimensions. Recent and current studies seek to improve the speed and accuracy of this\ control\ by improving the selection of signal features and their translation into device commands, by incorporating additional signal features, and by optimizing the adaptive interaction between the user and system. In addition, to facilitate the evaluation, comparison, and combination of alternative BCI methods, we have developed a general-purpose BCI system called BCI-2000 and have made it available to other research\ groups. Finally, in collaboration with several other\ groups, we are developing simple BCI applications and are testing their practicality and long-term value for people with severe motor disabilities.

}, keywords = {Academic Medical Centers, Adult, Algorithms, Artifacts, Brain, Brain Mapping, Electroencephalography, Evoked Potentials, Visual, Feedback, Humans, Middle Aged, Nervous System Diseases, Research, Research Design, User-Computer Interface, Visual Perception}, issn = {1534-4320}, doi = {10.1109/TNSRE.2003.814442}, url = {http://www.ncbi.nlm.nih.gov/pubmed/12899275}, author = {Jonathan Wolpaw and Dennis J. McFarland and Theresa M Vaughan and Gerwin Schalk} }