@article {2204, title = {Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex.}, journal = {J Neurosci}, volume = {31}, year = {2011}, month = {02/2011}, pages = {2091-100}, abstract = {

High-gamma-band (\>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca{\textquoteright}s area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform\ trends\ across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics.

}, keywords = {Acoustic Stimulation, Adolescent, Adult, Analysis of Variance, Brain Mapping, Brain Waves, Cerebral Cortex, Cognition Disorders, Electroencephalography, Epilepsy, Evoked Potentials, Female, Humans, Male, Middle Aged, Neuropsychological Tests, Nonlinear Dynamics, Photic Stimulation, Reaction Time, Spectrum Analysis, Time Factors, Vocabulary}, issn = {1529-2401}, doi = {10.1523/JNEUROSCI.4722-10.2011}, url = {http://www.ncbi.nlm.nih.gov/pubmed/21307246}, author = {Charles M Gaona and Sharma, Mohit and Zachary V. Freudenberg and Breshears, Jonathan and Bundy, David T and Roland, Jarod and Barbour, Dennis L and Gerwin Schalk and Leuthardt, E C} } @article {2150, title = {Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition.}, journal = {Neuroimage}, volume = {54}, year = {2011}, month = {02/2011}, pages = {2960-72}, abstract = {

Language is one of the defining abilities of humans. Many studies have characterized the neural correlates of different aspects of language processing. However, the imaging techniques typically used in these studies were limited in either their temporal or spatial resolution. Electrocorticographic (ECoG) recordings from the surface of the\ brain\ combine high spatial with high temporal resolution and thus could be a valuable tool for the study of neural correlates of language function. In this study, we defined the spatiotemporal dynamics of ECoG activity during a word repetition task in nine human subjects. ECoG was recorded while each subject overtly or covertly repeated words that were presented either visually or auditorily. ECoG amplitudes in the high gamma (HG) band confidently tracked neural changes associated with stimulus presentation and with the subject{\textquoteright}s verbal response. Overt word production was primarily associated with HG changes in the superior and middle parts of temporal lobe, Wernicke{\textquoteright}s area, the supramarginal gyrus, Broca{\textquoteright}s area, premotor cortex (PMC), primary motor cortex. Covert word production was primarily associated with HG changes in superior temporal lobe and the supramarginal gyrus. Acoustic processing from both auditory stimuli as well as the subject{\textquoteright}s own voice resulted in HG power changes in superior temporal lobe and Wernicke{\textquoteright}s area. In summary, this study represents a comprehensive characterization of overt and covert speech using electrophysiological imaging with high spatial and temporal resolution. It thereby complements the findings of previous neuroimaging studies of language and thus further adds to\ current\ understanding of word processing in humans.

}, keywords = {Adolescent, Adult, Brain, Brain Mapping, Electroencephalography, Female, Humans, Male, Middle Aged, Signal Processing, Computer-Assisted, Verbal Behavior}, issn = {1095-9572}, doi = {10.1016/j.neuroimage.2010.10.029}, url = {http://www.ncbi.nlm.nih.gov/pubmed/21029784}, author = {Pei, Xiao-Mei and Leuthardt, E C and Charles M Gaona and Peter Brunner and Jonathan Wolpaw and Gerwin Schalk} } @article {2206, title = {Using the electrocorticographic speech network to control a brain-computer interface in humans.}, journal = {J Neural Eng}, volume = {8}, year = {2011}, month = {06/2011}, pages = {036004}, abstract = {

Electrocorticography (ECoG) has emerged as a new signal platform for\ brain-computer interface\ (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been\ brain\ signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional\ computer\ cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68\% and 91\% within 15 min. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for\ BCI\ operation and that these signals can be acquired from a cortical array that is small and minimally invasive.

}, keywords = {Adult, Brain, Brain Mapping, Computer Peripherals, Electroencephalography, Evoked Potentials, Feedback, Physiological, Female, Humans, Imagination, Male, Middle Aged, Nerve Net, Speech Production Measurement, User-Computer Interface}, issn = {1741-2552}, doi = {10.1088/1741-2560/8/3/036004}, url = {http://www.ncbi.nlm.nih.gov/pubmed/21471638}, author = {Leuthardt, E C and Charles M Gaona and Sharma, Mohit and Szrama, Nicholas and Roland, Jarod and Zachary V. Freudenberg and Solisb, Jamie and Breshears, Jonathan and Gerwin Schalk} } @article {2196, title = {Electrocorticographic frequency alteration mapping for extraoperative localization of speech cortex.}, journal = {Neurosurgery}, volume = {66}, year = {2010}, month = {02/2010}, pages = {E407-9}, abstract = {

OBJECTIVE:\ 

Electrocortical stimulation (ECS) has long been established for delineating eloquent cortex in extraoperative mapping. However, ECS is still coarse and inefficient in delineating regions of functional cortex and can be hampered by afterdischarges. Given these constraints, an adjunct approach to defining motor cortex is the use of electrocorticographic (ECoG) signal changes associated with active regions of cortex. The broad range of frequency oscillations are categorized into 2 main groups with respect to sensorimotor cortex: low-frequency bands (LFBs) and high-frequency bands (HFBs). The LFBs tend to show a power reduction, whereas the HFBs show power increases with cortical activation. These power changes associated with activated cortex could potentially provide a powerful tool in delineating areas of speech cortex. We explore ECoG signal alterations as they occur with activated region of speech cortex and its potential in clinical brain mapping applications.

METHODS:\ 

We evaluated 7 patients who underwent invasive monitoring for seizure localization. Each had extraoperative ECS mapping to identify speech cortex. Additionally, all subjects performed overt speech tasks with an auditory or a visual cue to identify associated frequency power changes in regard to location and degree of concordance with ECS results.

RESULTS:\ 

Electrocorticographic frequency alteration mapping (EFAM) had an 83.9\% sensitivity and a 40.4\% specificity in identifying any language site when considering both frequency bands and both stimulus cues. Electrocorticographic frequency alteration mapping was more sensitive in identifying the Wernicke area (100\%) than the Broca area (72.2\%). The HFB is uniquely suited to identifying the Wernicke area, whereas a combination of the HFB and LFB is important for Broca localization.

CONCLUSION:\ 

The concordance between stimulation and spectral power changes demonstrates the possible utility of EFAM as an adjunct method to improve the efficiency and resolution of identifying speech cortex.

}, keywords = {Acoustic Stimulation, Adolescent, Adult, Brain Mapping, Cerebral Cortex, Chi-Square Distribution, Electroencephalography, Epilepsy, Female, Humans, Male, Mass Spectrometry, Middle Aged, Photic Stimulation, Speech, Verbal Behavior, Young Adult}, issn = {1524-4040}, doi = {10.1227/01.NEU.0000345352.13696.6F}, url = {http://www.ncbi.nlm.nih.gov/pubmed/20087111}, author = {Wu, Melinda and Wisneski, Kimberly and Gerwin Schalk and Sharma, Mohit and Roland, Jarod and Breshears, Jonathan and Charles M Gaona and Leuthardt, E C} }