@article {3399, title = {Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain-computer interface.}, journal = {Brain Res Bull}, volume = {87}, year = {2012}, month = {01/2012}, pages = {130-4}, abstract = {Measures that quantify the relationship between two or more brain signals are drawing attention as neuroscientists explore the mechanisms of large-scale integration that enable coherent behavior and cognition. Traditional Fourier-based measures of coherence have been used to quantify frequency-dependent relationships between two signals. More recently, several off-line studies examined phase-locking value (PLV) as a possible feature for use in brain-computer interface (BCI) systems. However, only a few individuals have been studied and full statistical comparisons among the different classes of features and their combinations have not been conducted. The present study examines the relative BCI performance of spectral power, coherence, and PLV, alone and in combination. The results indicate that spectral power produced classification at least as good as PLV, coherence, or any possible combination of these measures. This may be due to the fact that all three measures reflect mainly the activity of a single signal source (i.e., an area of sensorimotor cortex). This possibility is supported by the finding that EEG signals from different channels generally had near-zero phase differences. Coherence, PLV, and other measures of inter-channel relationships may be more valuable for BCIs that use signals from more than one distinct cortical source.}, keywords = {Algorithms, Brain, Electroencephalography, Humans, Motor Cortex, User-Computer Interface}, issn = {1873-2747}, doi = {10.1016/j.brainresbull.2011.09.019}, url = {http://www.ncbi.nlm.nih.gov/pubmed/21985984}, author = {Krusienski, Dean J and Dennis J. McFarland and Jonathan Wolpaw} } @article {2174, title = {A {\textmu}-rhythm Matched Filter for Continuous Control of a Brain-Computer Interface.}, journal = {IEEE Trans Biomed Eng}, volume = {54}, year = {2007}, month = {02/2007}, pages = {273-80}, abstract = {

A brain-computer interface (BCI) is a system that provides an alternate nonmuscular communication/control channel for individuals with severe neuromuscular disabilities. With proper training, individuals can learn to modulate the amplitude of specific electroencephalographic (EEG) components (e.g., the 8-12 Hz mu rhythm and 18-26 Hz beta rhythm) over the sensorimotor cortex and use them to control a cursor on a computer screen. Conventional spectral techniques for monitoring the\ continuousamplitude fluctuations fail to capture essential amplitude/phase relationships of the mu and beta rhythms in a compact fashion and, therefore, are suboptimal. By extracting the characteristic mu rhythm for a user, the exact morphology can be characterized and exploited as a matched filter. A simple, parameterized model for the characteristic mu rhythm is proposed and its effectiveness as a matched filter is examined online for a one-dimensional cursor control task. The results suggest that amplitude/phase coupling exists between the mu and beta bands during event-related desynchronization, and that an appropriate matched filter can provide improved performance.

}, keywords = {Algorithms, Cerebral Cortex, Cortical Synchronization, Electroencephalography, Evoked Potentials, Humans, Imagination, Pattern Recognition, Automated, User-Computer Interface}, issn = {0018-9294}, doi = {10.1109/TBME.2006.886661}, url = {http://www.ncbi.nlm.nih.gov/pubmed/17278584}, author = {Krusienski, Dean J and Gerwin Schalk and Dennis J. McFarland and Jonathan Wolpaw} } @article {2172, title = {The BCI competition III: Validating alternative approaches to actual BCI problems.}, journal = {IEEE Trans Neural Syst Rehabil Eng}, volume = {14}, year = {2006}, month = {06/2006}, pages = {153-9}, abstract = {

A\ brain-computer interface\ (BCI) is a system that allows its users to control external devices with\ brainactivity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user{\textquoteright}s\ brain, which produces\ brain\ activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual\ online\ use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.

}, keywords = {Algorithms, Brain, Communication Aids for Disabled, Databases, Factual, Electroencephalography, Evoked Potentials, Humans, Neuromuscular Diseases, Software Validation, Technology Assessment, Biomedical, User-Computer Interface}, issn = {1534-4320}, doi = {10.1109/TNSRE.2006.875642}, url = {http://www.ncbi.nlm.nih.gov/pubmed/16792282}, author = {Benjamin Blankertz and M{\"u}ller, Klaus-Robert and Krusienski, Dean J and Gerwin Schalk and Jonathan Wolpaw and Schl{\"o}gl, Alois and Pfurtscheller, Gert and Mill{\'a}n, Jos{\'e} del R and Schr{\"o}der, Michael and Niels Birbaumer} } @article {2177, title = {The Wadsworth BCI Research and Development Program: At Home with BCI.}, journal = {IEEE Trans Neural Syst Rehabil Eng}, volume = {14}, year = {2006}, month = {06/2006}, pages = {229-33}, abstract = {

The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive,\ electroencephalography\ (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. We have also improved P300-based BCI operation. We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the\ complexity\ of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people{\textquoteright}s homes.

}, keywords = {Animals, Brain, Electroencephalography, Evoked Potentials, Humans, Neuromuscular Diseases, New York, Research, Switzerland, Therapy, Computer-Assisted, Universities, User-Computer Interface}, issn = {1534-4320}, doi = {10.1109/TNSRE.2006.875577}, url = {http://www.ncbi.nlm.nih.gov/pubmed/16792301}, author = {Theresa M Vaughan and Dennis J. McFarland and Gerwin Schalk and Sarnacki, William A and Krusienski, Dean J and Sellers, Eric W and Jonathan Wolpaw} }