@article {2208, title = {Proceedings of the Second International Workshop on Advances in Electrocorticography.}, journal = {Epilepsy Behav}, volume = {22}, year = {2011}, month = {12/2011}, pages = {641-50}, abstract = {

The Second International Workshop on Advances in Electrocorticography (ECoG) was convened in San Diego, CA, USA, on November 11-12, 2010. Between this meeting and the inaugural 2009 event, a much clearer picture has been emerging of cortical ECoG physiology and its relationship to local field potentials and single-cell recordings. Innovations in material engineering are advancing the goal of a stable long-term recording interface. Continued evolution of ECoG-driven brain-computer interface technology is determining innovation in neuroprosthetics. Improvements in instrumentation and statistical methodologies continue to elucidate ECoG correlates of normal human function as well as the ictal state. This proceedings document summarizes the current status of this rapidly evolving field.

}, keywords = {Brain, Brain Mapping, Brain Waves, Diagnosis, Computer-Assisted, Electroencephalography, Epilepsy, Humans, United States, User-Computer Interface}, issn = {1525-5069}, doi = {10.1016/j.yebeh.2011.09.028}, url = {http://www.ncbi.nlm.nih.gov/pubmed/22036287}, author = {A L Ritaccio and Boatman-Reich, Dana and Peter Brunner and Cervenka, Mackenzie C and Cole, Andrew J and Nathan E. Crone and Duckrow, Robert and Korzeniewska, Anna and Litt, Brian and Miller, John W and Moran, D and Parvizi, Josef and Viventi, Jonathan and Williams, Justin C and Gerwin Schalk} } @article {2182, title = {Decoding two-dimensional movement trajectories using electrocorticographic signals in humans.}, journal = {J Neural Eng}, volume = {4}, year = {2007}, month = {09/2007}, pages = {264-75}, abstract = {

Signals from the brain could provide a non-muscular communication and control system, a brain-computer interface (BCI), for people who are severely paralyzed. A common BCI research strategy begins by decoding kinematic parameters from brain signals recorded during actual arm movement. It has been assumed that these parameters can be derived accurately only from signals recorded by intracortical microelectrodes, but the long-term stability of such electrodes is uncertain. The present study disproves this widespread assumption by showing in humans that kinematic parameters can also be decoded from signals recorded by subdural electrodes on the cortical surface (ECoG) with an accuracy comparable to that achieved in monkey studies using intracortical microelectrodes. A new ECoG feature labeled the local motor potential (LMP) provided the most information about movement. Furthermore, features displayed cosine tuning that has previously been described only for signals recorded within the brain. These results suggest that ECoG could be a more stable and less invasive alternative to intracortical electrodes for BCI systems, and could also prove useful in studies of motor function.

}, keywords = {Adult, Algorithms, Arm, Brain Mapping, Cerebral Cortex, Electroencephalography, Evoked Potentials, Motor, Female, Humans, Male, Movement}, issn = {1741-2560}, doi = {10.1088/1741-2560/4/3/012}, url = {http://www.ncbi.nlm.nih.gov/pubmed/17873429}, author = {Gerwin Schalk and Kub{\'a}nek, J and Miller, John W and Nicholas R Anderson and Leuthardt, E C and Ojemann, J G and Limbrick, D and Moran, D and Lester A Gerhardt and Jonathan Wolpaw} } @article {2179, title = {Electrocorticographic Frequency Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex.}, journal = {Neurosurgery}, volume = {60}, year = {2007}, month = {04/2007}, pages = {260-70; discussion 270-1}, abstract = {

OBJECTIVE:\ 

Electrocortical stimulation (ECS) has been well established for delineating the eloquent cortex. However, ECS is still coarse and inefficient in delineating regions of the functional cortex and can be hampered by after-discharges. Given these constraints, an adjunct approach to defining the motor cortex is the use of electrocorticographic signal changes associated with active regions of the cortex. The broad range of frequency oscillations are categorized into two main groups with respect to the sensorimotor cortex: low and high frequency bands. The low frequency bands tend to show a power reduction with cortical activation, whereas the high frequency bands show power increases. These power changes associated with the activated cortex could potentially provide a powerful tool in delineating areas of the motor cortex. We explore electrocorticographic signal alterations as they occur with activated regions of the motor cortex, as well as its potential in clinical brain mapping applications.

METHODS:\ 

We evaluated seven patients who underwent invasive monitoring for seizure localization. Each patient had extraoperative ECS mapping to identify the motor cortex. All patients also performed overt hand and tongue motor tasks to identify associated frequency power changes in regard to location and degree of concordance with ECS results that localized either hand or tongue motor function.

RESULTS:\ 

The low frequency bands had a high sensitivity (88.9-100\%) and a lower specificity (79.0-82.6\%) for identifying electrodes with either hand or tongue ECS motor responses. The high frequency bands had a lower sensitivity (72.7-88.9\%) and a higher specificity (92.4-94.9\%) in correlation with the same respective ECS positive electrodes.

CONCLUSION:\ 

The concordance between stimulation and spectral power changes demonstrate the possible utility of electrocorticographic frequency alteration mapping as an adjunct method to improve the efficiency and resolution of identifying the motor cortex.

}, keywords = {Adult, Biological Clocks, Brain Mapping, Electric Stimulation, Electrodes, Implanted, Electroencephalography, Female, Hand, Humans, Male, Middle Aged, Motor Cortex, Oscillometry, Signal Processing, Computer-Assisted, Tongue}, issn = {1524-4040}, doi = {10.1227/01.NEU.0000255413.70807.6E}, url = {http://www.ncbi.nlm.nih.gov/pubmed/17415162}, author = {Leuthardt, E C and Miller, John W and Nicholas R Anderson and Gerwin Schalk and Dowling, Joshua and Miller, John W and Moran, D and Ojemann, J G} } @article {2173, title = {Electrocorticography-based brain computer interface--the Seattle experience.}, journal = {IEEE Trans Neural Syst Rehabil Eng}, volume = {14}, year = {2006}, month = {06/2006}, pages = {194-8}, abstract = {

Electrocorticography (ECoG) has been demonstrated to be an effective modality as a platform for brain-computer interfaces (BCIs). Through our experience with ten subjects, we further demonstrate evidence to support the power and flexibility of this signal for BCI usage. In a subset of four patients, closed-loop BCI experiments were attempted with the patient receiving online feedback that consisted of one-dimensional cursor movement controlled by ECoG features that had shown correlation with various real and imagined motor and speech tasks. All four achieved control, with final target accuracies between 73\%-100\%. We assess the methods for achieving control and the manner in which enhancing online control can be accomplished by rescreening during online tasks. Additionally, we assess the relevant issues of the current experimental paradigm in light of their clinical constraints.

}, keywords = {Cerebral Cortex, Electroencephalography, Epilepsy, Evoked Potentials, Humans, Therapy, Computer-Assisted, User-Computer Interface, Washington}, issn = {1534-4320}, doi = {10.1109/TNSRE.2006.875536}, url = {http://www.ncbi.nlm.nih.gov/pubmed/16792292}, author = {Leuthardt, E C and Miller, John W and Gerwin Schalk and Rao, Rajesh P N and Ojemann, J G} }