@article {2137, title = {Voluntary brain regulation and communication with electrocorticogram signals.}, journal = {Epilepsy Behav}, volume = {13}, year = {2008}, month = {08/2008}, pages = {300-6}, abstract = {

Brain-computer interfaces\ (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of\ brain\ signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals. After training of the classifier, binary classification responses were used to select letters from a\ computer-generated menu. Offline analysis showed increased theta activity in the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals, combined with short training periods, may offer an alternative for communication in complete paralysis, locked-in syndrome, and motor restoration.

}, keywords = {Adult, Biofeedback, Psychology, Cerebral Cortex, Communication Aids for Disabled, Dominance, Cerebral, Electroencephalography, Epilepsies, Partial, Female, Humans, Imagination, Male, Middle Aged, Motor Activity, Motor Cortex, Signal Processing, Computer-Assisted, Software, Somatosensory Cortex, Theta Rhythm, User-Computer Interface, Writing}, issn = {1525-5069}, doi = {10.1016/j.yebeh.2008.03.014}, url = {http://www.ncbi.nlm.nih.gov/pubmed/18495541}, author = {Hinterberger, T. and Widman, Guido and Lal, T.N and Jeremy Jeremy Hill and Tangermann, Michael and Rosenstiel, W. and Sch{\"o}lkopf, B and Elger, Christian and Niels Birbaumer} } @article {2143, title = {Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects.}, journal = {IEEE Trans Neural Syst Rehabil Eng}, volume = {14}, year = {2006}, month = {06/2006}, pages = {183-6}, abstract = {

We summarize results from a series of related studies that aim to develop a motor-imagery-basedbrain-computer interface\ using a single recording session of electroencephalogram (EEG) or electrocorticogram (ECoG) signals for each subject. We apply the same experimental and analytical methods to 11 nonparalysed subjects (eight EEG, three ECoG), and to five paralyzed subjects (four EEG, one ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the nonparalyzed subjects, it proved impossible to classify the signals obtained from the paralyzed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.

}, keywords = {Algorithms, Artificial Intelligence, Cluster Analysis, Computer User Training, Electroencephalography, Evoked Potentials, Female, Humans, Imagination, Male, Middle Aged, Paralysis, Pattern Recognition, Automated, User-Computer Interface}, issn = {1534-4320}, doi = {10.1109/TNSRE.2006.875548}, url = {http://www.ncbi.nlm.nih.gov/pubmed/16792289}, author = {Jeremy Jeremy Hill and Lal, T.N and Schr{\"o}der, Michael and Hinterberger, T. and Wilhelm, Barbara and Nijboer, F and Mochty, Ursula and Widman, Guido and Elger, Christian and Sch{\"o}lkopf, B and K{\"u}bler, A. and Niels Birbaumer} }