@article {2204, title = {Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex.}, journal = {J Neurosci}, volume = {31}, year = {2011}, month = {02/2011}, pages = {2091-100}, abstract = {

High-gamma-band (\>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca{\textquoteright}s area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform\ trends\ across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics.

}, keywords = {Acoustic Stimulation, Adolescent, Adult, Analysis of Variance, Brain Mapping, Brain Waves, Cerebral Cortex, Cognition Disorders, Electroencephalography, Epilepsy, Evoked Potentials, Female, Humans, Male, Middle Aged, Neuropsychological Tests, Nonlinear Dynamics, Photic Stimulation, Reaction Time, Spectrum Analysis, Time Factors, Vocabulary}, issn = {1529-2401}, doi = {10.1523/JNEUROSCI.4722-10.2011}, url = {http://www.ncbi.nlm.nih.gov/pubmed/21307246}, author = {Charles M Gaona and Sharma, Mohit and Zachary V. Freudenberg and Breshears, Jonathan and Bundy, David T and Roland, Jarod and Barbour, Dennis L and Gerwin Schalk and Leuthardt, E C} } @article {2196, title = {Electrocorticographic frequency alteration mapping for extraoperative localization of speech cortex.}, journal = {Neurosurgery}, volume = {66}, year = {2010}, month = {02/2010}, pages = {E407-9}, abstract = {

OBJECTIVE:\ 

Electrocortical stimulation (ECS) has long been established for delineating eloquent cortex in extraoperative mapping. However, ECS is still coarse and inefficient in delineating regions of functional cortex and can be hampered by afterdischarges. Given these constraints, an adjunct approach to defining motor cortex is the use of electrocorticographic (ECoG) signal changes associated with active regions of cortex. The broad range of frequency oscillations are categorized into 2 main groups with respect to sensorimotor cortex: low-frequency bands (LFBs) and high-frequency bands (HFBs). The LFBs tend to show a power reduction, whereas the HFBs show power increases with cortical activation. These power changes associated with activated cortex could potentially provide a powerful tool in delineating areas of speech cortex. We explore ECoG signal alterations as they occur with activated region of speech cortex and its potential in clinical brain mapping applications.

METHODS:\ 

We evaluated 7 patients who underwent invasive monitoring for seizure localization. Each had extraoperative ECS mapping to identify speech cortex. Additionally, all subjects performed overt speech tasks with an auditory or a visual cue to identify associated frequency power changes in regard to location and degree of concordance with ECS results.

RESULTS:\ 

Electrocorticographic frequency alteration mapping (EFAM) had an 83.9\% sensitivity and a 40.4\% specificity in identifying any language site when considering both frequency bands and both stimulus cues. Electrocorticographic frequency alteration mapping was more sensitive in identifying the Wernicke area (100\%) than the Broca area (72.2\%). The HFB is uniquely suited to identifying the Wernicke area, whereas a combination of the HFB and LFB is important for Broca localization.

CONCLUSION:\ 

The concordance between stimulation and spectral power changes demonstrates the possible utility of EFAM as an adjunct method to improve the efficiency and resolution of identifying speech cortex.

}, keywords = {Acoustic Stimulation, Adolescent, Adult, Brain Mapping, Cerebral Cortex, Chi-Square Distribution, Electroencephalography, Epilepsy, Female, Humans, Male, Mass Spectrometry, Middle Aged, Photic Stimulation, Speech, Verbal Behavior, Young Adult}, issn = {1524-4040}, doi = {10.1227/01.NEU.0000345352.13696.6F}, url = {http://www.ncbi.nlm.nih.gov/pubmed/20087111}, author = {Wu, Melinda and Wisneski, Kimberly and Gerwin Schalk and Sharma, Mohit and Roland, Jarod and Breshears, Jonathan and Charles M Gaona and Leuthardt, E C} }