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for the correct direction in which to zoom in. DASHER leverages this
high-bandwidth inward communication channel to the user in order to
improve the efficiency of the low-bandwidth outward channel. Whether
these visual tasks will impede functioning of a BCI system remains to
be discovered. This problem would be largely avoided in the discrete
control case outlined above. In discrete mode, the DASHER interface
moves only during brief zooming events. The system could alternate
between periods in which the user studies DASHER in order to decide
which section of the screen to zoom in on, and periods during which
the BCI signal is measured in order to determine which target the user
has chosen.

In contrast, a BCI user is less likely to become frustrated or inatten-
tive when using DASHER than when using more repetitive paradigms
such as the standard P300 speller. Trials with gazetrackers indicate that
DASHER is considerably more fun, and less stressful, than on-screen
keyboards.

IV. CONCLUSION

We wish to make the best possible use of the bits of information
content that can be generated by severely disabled people. DASHER
offers a paradigm for efficiently converting these bits to communication
symbols. DASHER has proved its effectiveness for people able to use
a gazetracker or make other motor actions. We believe that DASHER
will be equally useful to users who retain functioning vision but are
limited to communication through a BCI.
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ECoG Factors Underlying Multimodal Control of a
Brain–Computer Interface
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Abstract—Most current brain–computer interface (BCI) systems for hu-
mans use electroencephalographic activity recorded from the scalp, and
may be limited in many ways. Electrocorticography (ECoG) is believed
to be a minimally-invasive alternative to electroencephalogram (EEG) for
BCI systems, yielding superior signal characteristics that could allow rapid
user training and faster communication rates. In addition, our preliminary
results suggest that brain regions other than the sensorimotor cortex, such
as auditory cortex, may be trained to control a BCI system using similar
methods as those used to train motor regions of the brain. This could prove
to be vital for users who have neurological disease, head trauma, or other
conditions precluding the use of sensorimotor cortex for BCI control.

Index Terms—Brain–computer interface (BCI), electrocorticography
(ECoG), sensorimotor cortex.

I. INTRODUCTION

Brain signals recorded from the electrocorticogram (ECoG) have
many potential advantages for use with brain–computer interface (BCI)
systems when compared to electroencephalogram (EEG). Our research
is exploring the use of ECoG recorded from motor and nonmotor cortex
to control a BCI. This paper presents preliminary evidence in support
of this technique and describes further studies of ECoG-based BCI sys-
tems.

The potential advantages of using ECoG for BCI control are: 1) in-
creased spatial resolution; 2) increased signal bandwidth; and 3) larger
signal amplitude. Therefore, it may be possible to differentiate inde-
pendent signals over a wide range of frequencies, on neighboring elec-
trodes, using multiple strategies incorporating both motor and sensory
imagery.

The control methodology used is based on the ability of subjects to
voluntarily modulate one or more brain rhythms using imagery. Tra-
ditionally, motor imagery has been used because it was presumed to
be the most accessible and reliable EEG signal. However, we propose
that the advantages of ECoG will enable subjects to learn to use mul-
tiple modalities, including motor and sensory imagery, to control a BCI
application. This would enable individuals with damage to the motor
cortex due to stroke or other neurological disease to benefit from BCI
systems.

We have the opportunity to evaluate this hypothesis because many of
oursubjectshaveelectrodesplacedovermultiplenonmotorareas.There-
fore, we are investigating the possibility of using non-motor imagery,
focusing on auditory illusion combined with the more typical motor im-
agery task, while studying and utilizing unique ECoG principles.
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Fig. 1. MRI showing electrode grid location and electrode numbers. Electrodes 8, 9, 10, 13, and 17 showed responses for auditory screening, and electrodes 14,
15, 18, 19, and 20 showed responses for facial and tongue motor imagery screening. Gray electrodes were recorded from, but showed no response, and black
electrodes were not recorded from. Note that the electrode spacing for this grid is 1 cm center-to-center. Selected r calculations are shown for channels 10, 15,
and 20.

II. METHODS

A. Subject Pool and Electrode Placement

The current subjects consisted of patients with either intractable
epilepsy or chronic pain in which an electrode grid was implanted
subdurally for monitoring and localization purposes. The implanted
electrodes were most commonly an 8 � 8 grid, with a 2.3-mm contact
diameter and a 5-mm center-to-center distance, or a series of 4 � 1
strips of electrodes with a 4-mm-diameter and 1-cm center-to-center
distance.

Most epilepsy patients are monitored for approximately one week,
while chronic pain patients have electrodes implanted for two weeks
during which time cortical areas are stimulated to test for pain inhibi-
tion. Fig. 1 shows a brain magnetic resonance imaging (MRI) with an
electrode grid superimposed at the location approximated from a post-
operative computerized tomography (CT) image.

B. ECoG-Based BCI Control

The methodology for ECoG-based BCI control is based on the uti-
lization of sensorimotor rhythms. The primary sensorimotor rhythms
present are the � (8–12 Hz), � (18–26 Hz),  (35–45 Hz), and high-
(80–100+ Hz) frequency bands. The power in the frequency bands is
known to change magnitude in correlation with real or imagined move-
ments [1]–[4]. A screening task is used to identify electrodes which
show signal amplitude changes in response to changes in behavior.
Specifically, subjects are shown visual cues on the monitor that prompts
the subject to imagine a movement or sound.

The cue is presented for 2 s and interstimulus interval of 2 s. Using
the general-purpose system BCI2000 [5], 2–3 min of data are acquired
for each imagined movement or sound, and an r2 analysis is performed
by comparing the power content of the signals during the task versus
a rest condition. The r2 calculation gives the proportion of signal vari-
ance that can be accounted for by the task. Typical r2 calculations yield
results in the 0.2–0.3 range for BCI screening tasks. See Schalk et al.
for typical results and a detailed description of the r2 calculation [6].
One or more channels with high r2 values in several frequency bands
are chosen as control signals in an online BCI cursor control task. A
high r2 value indicates that there is a measurable difference in signal
amplitude between conditions.

TABLE I
SELECTED MULTIMODAL IMAGERY SCREENING AND CONTROL r RESULTS

Example results from multimodal screening and cursor-control in one sub-
ject. For the screen task, the subject was presented with two visual cues which
appeared at either the top or bottom of the screen. For the top cue, the instruc-
tions were to employ auditory imagery. For the bottom target, the instructions
were to relax. For control tasks, tongue imagery was used to move the cursor
up, and rest was used to move the cursor down. Data from nine cursor-control
runs is included; a hit-rate of 75% or greater was achieved for six of these
runs, and all runs had a hit-rate better than chance (50%). Refer to Fig. 1 for
electrode channel locations.

C. Principles of Multimodal BCI Control

Methods of eliciting the auditory illusion response involved imag-
ining one of several types of sounds for a period of time while a visual
cue is present. Common instructions include imagining hearing a voice,
a favorite song, or an environmental sound (e.g., a cell phone). The re-
sponse during this period is compared to a rest period of the same du-
ration, during which the subject is instructed to do nothing. The data is
then analyzed using the r2 analysis, which provides insight into which
electrodes can be voluntarily modulated via auditory imagery.

III. RESULTS

A. Multimodal Control

Results from several subjects have shown that motor and auditory
imagery can be modulated during a BCI task (Fig. 1), such as a one-di-
mensional cursor control task, in which changes in power in selected
frequency bands are translated into the movement of a cursor towards
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Fig. 2. MRI of a chronic pain patient with grid placement over sensorimotor cortex. Differing responses are seen on neighboring electrodes in multiple frequency
bands during a cursor control task. The r measures differences in power content between moving the cursor to a top target versus a bottom target. Facial and
tongue motor imagery were used to direct the cursor up.

one of several targets [7]. Recent studies have shown that responses
to auditory stimuli have similar characteristics with motor rhythms, in
that there is a suppression of the � and � rhythms, and an increase in
 and high- oscillations [8], similar to the response seen for real and
imagined motor tasks. In addition, several studies have been done in
which brain activity during auditory illusions is recorded via functional
imaging techniques, and show that there can be a strong response in
areas near the Sylvian fissure and parietal-temporal boundary [9]–[11].
Therefore, we trained subjects to use auditory imagery to elicit re-
sponses in multiple frequency bands to drive a BCI cursor task.

Detailed results for multiple subjects, including performance mea-
sures such as hit-rate are, are presented in a related study [12]. Data
from nine cursor-control runs is included from one subject in Table I;
a hit-rate of 75% or greater was achieved for six of these runs, and all
runs had a hit-rate better than chance (50%). Table I shows screening
and cursor-control results from a subject who used a combination of au-
ditory and motor imagery to perform a BCI task. Changes in frequency
content correlated with different target locations during both screening
and control were seen in several electrodes spanning motor cortex and
Sylvian fissure, for both auditory and motor imagery modalities.

B. ECoG Considerations

Fig. 2 illustrates several of the key advantages of ECoG for BCI.
Most importantly, independent signals are recorded with a 5-mm elec-
trode spacing, as shown on channels 6, 7, and 13 in Fig. 2. In addi-
tion, all of these electrodes are located over the same sulcus, precluding
anatomical separation to account for signal variability. This increased
spatial resolution permits the isolation of multiple BCI control modal-
ities, such as facial motor imagery, arm motor imagery, and auditory
imagery from neighboring electrodes. Furthermore, auditory attention
studies using the same electrode size and spacing have shown that in-
dependent responses to auditory stimuli are produced on adjacent elec-
trodes [13].

Independent spectral content up to 150 Hz and higher are shown on
adjacent electrodes for both Figs. 1 and 2. Multiple responses from a

single channel are also demonstrated, including activity in the low-fre-
quency�=� bands as in EEG, high-frequency  bands unique to ECoG,
and components of both low and high frequency bands occurring simul-
taneously.

IV. DISCUSSION

Our focus is determining the concepts of nonmotor combined with
motor control of a BCI system. In doing so, we have found that most
concepts of ECoG-based BCI are applicable to both multiple control
modalities, including motor and auditory based systems. The remainder
of this paper discusses the implications and remaining questions con-
cerning multimodal control, and also the characteristics of ECoG which
are common to multiple imagery types and cortical areas. Finally, we
discuss future directions for ECoG systems.

A. Implications of Multimodal Control

There are several parameters that need to be studied to find optimal
conditions for a sensory imagery task, such as the length of the cue pre-
sentation for imagined activity, the number of trials needed to obtain
an acceptable signal-to-noise ratio (SNR), and most importantly, ascer-
taining exactly what the subject is imagining during a trial. There are
potentially several different ways to interpret the instruction “imagine
hearing a word;” the subject may imagine hearing someone else say the
word, imagine hearing himself saying it, or imagine the motor activity
in the mouth and tongue that would allow him to produce the word.
Conversely, a prevailing theory in BCI research is that, with training,
the subject will stop using imagery to elicit changes in brain states to
drive the BCI, and will simply think about moving the cursor [14], [15].
If the ultimate goal is to train a user to control a BCI system, then the
precise thought process used for control is not as important, and may
ultimately be analogous to asking a person how they move an arm to
reach for an object. However, if the goal is to understand brain func-
tion, then a more precise methodology is likely necessary to extract
information from differing behavioral experiments, such as imagining
hearing a word versus imagining producing that word.
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B. ECoG Characteristics

ECoG signals are superior to EEG signals for BCI purposes in
several respects. First, because the electrodes are closer to the signal
source, the amplitude of the signal is in the 50–100 �V range,
compared to the 5–10 �V range obtainable with scalp electrodes,
resulting in a much higher SNR and better artifact rejection. Second,
EEG bandwidth is limited to about 50 Hz by several tissue layers
(the meninges, blood, bone, and skin) that the signal must travel
through before reaching the scalp. ECoG is placed on the surface of
the cortex, and can, therefore, record at a much higher bandwidth,
and does not suffer spatial blurring. Leuthardt et al. have shown that
there is significant information in the high gamma (>80 Hz) power
bands strongly correlated with movement direction [2]. Third, the
spatial resolution achievable with ECoG is in the millimeter range,
compared to centimeter with EEG, allowing very accurate signal
source localization. Last, ECoG does not suffer from EMG or EOG
interference, because the electrodes are under the skull; however, the
reference electrode may still record EMG activity if it is placed on the
surface of the skull.

Figs. 1 and 2 and Table I illustrate the concepts central to ECoG-
based BCI systems. Large r2 values in high- frequency bands demon-
strate that significant information is present in these bands of the ECoG
signal during both screening tasks and BCI cursor control. Further-
more, these signal characteristics are present only on individual chan-
nels, even with an electrode spacing of 5 mm as in Fig. 2 (even within
the same sulcus). Therefore, it should be possible to extract indepen-
dent features from neighboring electrodes using imagery of multiple
body parts with training. Most current ECoG studies have been done
with grids with 1-cm spacing [2] (see Fig. 1 for an example), and it
was unclear how fine a spatial resolution could be achieved without
signal characteristics overlapping on neighboring channels. This study
has shown that resolution on the mm scale is possible with ECoG.

Table I shows an increase in � and high- activity on several chan-
nels when the subject is provided with visual feedback of performance.
Results from this and other ongoing studies suggest that providing
real-time feedback performance is crucial for eliciting high- activity,
which has been shown to be somatotopically specific for different body
parts [4], and thus could provide fine discrimination of multiple motor
and sensory imagery modalities for BCI control. This, coupled with the
fact that the ECoG amplitude is intrinsically larger and yields a higher
SNR, allows subjects to be trained to high levels of proficiency in a
much shorter period of time when compared to EEG, often within the
first session [2].

C. Future Directions

In addition to the characteristics described here, ECoG may also have
other potential advantages for prosthetic applications. It has been pro-
posed that ECoG electrodes are more robust to inflammatory responses
and tissue encapsulation. Although this has not been explored in human
patients, there are related bodies of work that suggest that implanted
ECoG electrodes will be well tolerated and remain viable. In the case
of chronic pain patients, after the initial testing phase (described in the
methods), a subset of the ECoG grid, usually 4–8 electrodes, is im-
planted permanently over motor cortex. Chronic implantation and stim-
ulation is generally well tolerated and has a low incidence of procedure
related side effects [16]. We are performing ongoing experiments in
both epilepsy and chronic pain ECoG patients to look at acute inflam-
matory responses and impedance spectroscopy to characterize changes
in the electrode-tissue interface. There are several nonhuman primate
studies that suggest that local field potentials (LFPs) may be more ro-
bust to long-term inflammatory tissue changes than single unit neural
recordings. Anderson et al. have reported continuing to record LFPs

after losing single unit recordings from chronically implanted micro-
electrodes [17]. Additionally, the LFPs were found to have directional
specificity encoded in their signal patterns and were highly correlated
to simultaneously-recorded single units. Additional, long term studies
in nonhuman primates will be necessary to fully evaluate the long-term
safety and efficacy of ECoG electrodes for prosthetic applications.

Another potential benefit of ECoG over implantable microelectrodes
is in the development of supporting hardware for a completely im-
plantable system. There are a number of groups involved in developing
wireless technology for recording multichannel single unit neuron data
[18]. One of the major hurdles in these efforts is achieving the large
bandwidth required for single unit recordings (25–50 kHz/channel).
In contrast, the ECoG signal can be recorded at a much lower band-
width (200 Hz/channel) which would greatly reduce the overall wire-
less transmission rate needed for a fully implantable device.

Finally, the millimeter-scale resolution possible with ECoG eluci-
dates the need to study the effects of electrode size and spacing on the
ability to record independent signals on each channel. Therefore, we are
exploring the use of �-ECoG (defined as ECoG electrodes having con-
tacts and spacing on the scale of 100 s of micrometers) to study signal
characteristics on increasingly smaller scales. �-ECoG electrodes are
formed using thin-film polymers, resulting in a thinner, more flexible
device, and can include a fenestrated substrate that reduces the amount
of material in the body, and allows fluid perfusion through the device.

V. CONCLUSION

The concept of using motor imagery recorded from EEG for BCI
control is well established. However, motor areas constitute a relatively
small percentage of the entire brain, and may be deficient or underde-
veloped in those with neurological diseases, head trauma, or long-term
paralysis. Therefore, it is important to study the possibility of using
and training alternative brain areas to control a BCI application. Fur-
thermore, minimally invasive recording techniques such as ECoG show
much promise as a viable and improved alternative to EEG.
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Abstract—Human motor imagery (MI) tasks evoke electroencephalo-
gram (EEG) signal changes. The features of these changes appear as
subject-specific temporal traces of EEG rhythmic components at specific
channels located over the scalp. Accurate classification of MI tasks based
upon EEG may lead to a noninvasive brain–computer interface (BCI) to
decode and convey intention of human subjects. We have previously pro-
posed two novel methods on time-frequency feature extraction, expression
and classification for high-density EEG recordings (Wang and He 2004;
Wang, Deng, and He, 2004). In the present study, we refined the above
time-frequency-spatial approach and applied it to a one-dimensional
“cursor control” BCI experiment with online feedback. Through offline
analysis of the collected data, we evaluated the capability of the present
refined method in comparison with the original time-frequency-spatial
methods. The enhanced performance in terms of classification accuracy
was found for the proposed approach, with a mean accuracy rate of 91.1%
for two subjects studied.

Index Terms—Brain–computer interface (BCI), electroencephalography,
motor imagery, time-frequency analysis, time-frequency-spatial analysis.

I. INTRODUCTION

The ultimate goal of brain–computer interface (BCI) techniques is to
provide those people with severe motor disabilities alternative means of
communication and control [1], [2]. Typically, an electroencephalogram
(EEG)-based BCI system extracts, from scalp-recorded EEG, features
encoding human intention and conveys the resulting control signals to
the external world [1]–[7]. One type of BCI is based upon detection and
classification of the change of EEG rhythms during different motor im-
agery (MI) tasks, such as the imagination of left- and right-hand move-
ments. The performance and reliability of such BCI applications rely
heavily on the accuracy of classifying MI tasks, which in turn rests on
extraction and representation of MI-related EEG features.

However, experimental investigations by means of different imaging
modalities have revealed that MI may evoke neural activation extending
multiple brain regions, including primary motor area, supplementary
motor area, premotor area, and prefrontal area, etc. From the scalp
EEG signals, it has also been found that imagination of movement leads
to short-lasting and circumscribed attenuation (or accentuation) in mu
(8–12 Hz) and beta (13–28 Hz) rhythmic activities, known as event-re-
lated desynchronization (or synchronization) (ERD/ERS) [4]. The pre-
cise timing and frequency of ERD/ERS also vary among subjects. All
the above findings suggest the complexity of MI feature, since it spans
all the time, frequency, and spatial domains. Simply expressing MI fea-
tures in one (or two) domain(s) while disregarding the other(s) may
result in lose of information that may contribute to more accurate MI
classification.
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