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lc. Evaluate §; 2 Y 05'LY where j =
1L,2,...,2(N —1).

Step 2: Forming a new simplex
2a. Determine the worst case vertex L' where W £
argmin, ;coy_1)9; and the second worst case
vertex L™ where w = argmin, < <o(y_1), ;2w 9i-
2b. Compute the reflection vertex, r = ((1 +

)T — aL") of the worst case vertex L" where
T 2 (/RN-1D)-1)ZE5 T and
o = 05.Ifr;, > M;;1 < i < N — 1, then set
r, = M.

2c. Find the new vertex IN as follows:

1) If r satisfies constraint (12), proceed to 2¢ 2) in
Step 2. If not, setr = ((1/2)(T + r)) and redo
this step.

) Xy > S0 LY, then set N = r. Oth-
erwise, setr = {((1/2)(T + r)), and then go back
to 2¢ 1) in Step 2.

2d. Replace L" with N.

2e. If the values of S forall 1 < j < 2(N — 1) are
identical, the optimum vertex is chosen as any one of
the vertices in the simplex and the optimization proce-
dure terminates. Otherwise, go back to Step 2 and start
a new round to evolve the simplex.
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Compressive Sensing Reconstruction With Prior
Information by Iteratively Reweighted Least-Squares

Cristiano Jacques Miosso, Ricardo von Borries, M. Argaez,
L. Velazquez, C. Quintero, and C. M. Potes

Abstract—TIteratively reweighted least-squares (IRLS) algorithms have
been successfully used in compressive sensing to reconstruct sparse signals
from incomplete linear measurements taken in nonsparse domains. The un-
derlying optimization problem corresponds to finding the vector that solves
the £, minimization while explaining the measurements, and IRLS allows
to easily control the used value of p, with effect on the number of required
measurements. In this paper, we propose a weighting strategy in the recon-
struction method based on IRLS in order to add prior information on the
support of the sparse domain. Our simulation results show that the use of
prior knowledge about positions of at least some of the nonzero coefficients
in the sparse domain leads to a reduction in the number of linear measure-
ments required for unambiguous reconstruction. This reduction occurs for
all values of p, so that a further reduction can be achieved by decreasing p
and using prior information. The proposed weighting scheme also reduces
the computational complexity with respect to the IRLS with no prior infor-
mation, both in terms of number of iterations and computation time.

Index Terms—Compressive sensing, iteratively reweighted least-squares,
prior information, sensor networks, sparsity.

I. INTRODUCTION

This paper addresses compressive sensing to show how prior infor-
mation on the support region of the sparse domain of a signal can be
added to the reconstruction procedure using the iteratively reweighted
least-squares (IRLS) method. The use of the additional prior infor-
mation is shown to have advantages in terms of number of required
measurements, convergence time and number of iterations. We start
by briefly describing the sparsity condition and how it is exploited in
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the context of compressive sensing to allow the reconstruction of sig-
nals from limited linear measurements. We then exploit two important
points that can be used to improve the reconstruction procedure: prior
information and a particular weighting scheme in the IRLS method.

Prior information on the positions of nonzero coefficients in the
sparse domain allows the number of initially taken measurements to
be reduced without leading to ambiguity during the reconstruction
stage [1], [2]. In addition, an iterative procedure based on IRLS allows
the reconstruction problem to be tackled in a computationally efficient
way, with the possibility of easily reducing the value of p in the ¢,
minimization, which affects the number of iterations, the computation
time and the number of required measurements [3]. Using these two
results, we show that prior information on the support region of the
sparse domain can be added to the basic framework of IRLS, by
conducting a modification in the weights used at each iteration. This
information leads to a particular strategy for the choice of weights in
the IRLS, which we describe and evaluate.

Compressive sensing allows discrete-time signals having a sparse
representation in some domain to be unambiguously represented by a
limited number of linear measurements [4], [5]. While sparsity is the
only signal characteristic that is usually assumed during reconstruction
from a set of linear measurements, other forms of prior information
about the signal’s structure have been investigated as a way to improve
reconstruction. In [6] and [7], for instance, a connected tree structure
is assumed in the wavelet domain, which restricts the class of signals
that can be reconstructed to be piecewise smooth.

Other forms of prior information used in signal reconstruction are
also found in the literature. Garcia—Frias and Esnaola show that if a
signal is a realization of a stochastic process, prior information about
this process (such as second order statistics) can improve the signal’s
reconstruction from a limited number of measurements [8]. The prior
information used in this approach refers to a statistical description of
the source that generates the analyzed signals.

In all these contexts, a sparse representation is assumed, and some
form of prior information on this representation is used to improve
signal reconstruction. Elad and Aharon, on the other hand, exploit
sparse and redundant representations of images, and define global
image priors that force sparsity over patches in images, to develop a
method for image denoising [9], [10].

We exploit a different type of prior information, represented by po-
sitions of the support of the signal’s sparse representation, in order to
reduce the required number of measurements and the computational
complexity during the reconstruction stage.

In different applications where sparse signals must be reconstructed
from limited linear measurements, incomplete or complete prior infor-
mation on the support of the sparse domain may be available, and this
information can be used to reduce the computation time and the re-
quired number of measurements. As an example, in X-ray medical to-
mographic imaging, if a sparse representation is given by the gradient
of the image to be reconstructed, as in [11], some of the positions of
the nonzero values of the sparse domain can be made available from
the regions of highest derivatives in images in a corresponding medical
record. Also, if several successive slices are being analyzed using a to-
mographic technique, to reconstruct a tridimensional structure, prior
information on the support of the domain of a slice can be obtained
from the highest gradient values of the previously reconstructed slice.

Another condition in which prior information on the support of the
sparse representation can be made available is through the analysis of
the intermediary results of the iterative reconstruction algorithm. In [5],
a procedure is described by which the highest iterates obtained in a
single reconstruction stage are used to determine some of the positions
of the support. The next stages then use the information on these posi-
tions to improve the reconstruction.

The purpose of this paper is then to show how this prior informa-
tion on the support of the sparse domain can be efficiently used in
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the IRLS reconstruction procedure. We first pose the reconstruction
problem using prior information to restrict the class of signals that
can be reconstructed, thus allowing less linear measurements to rep-
resent a signal without generating ambiguity. Next, we show how the
reconstruction problem can be tackled using the IRLS and how the
prior information can be added to this method through an appropriate
weighting scheme. Finally, we show that the resulting algorithm leads
to a reduction in the number of required measurements to attain recon-
struction, as well as a reduction in the total number of iterations and
computation time.

The remaining of the paper is organized as follows. Section II
briefly reviews the basic concepts of compressive sensing and presents
the idea of adding prior information on the support of the sparse
representation to the reconstruction procedure. Following, Section III
presents the problem formulation using IRLS, and specifically
proposes a weighting strategy for adding prior information. The
corresponding reconstruction procedure is described, leading to the
algorithm proposed in Section IV. Section V presents the numerical
results we obtained by applying this algorithm to discrete-time signals
having a sparse representation in an arbitrary, random domain. Finally,
Section VI presents our conclusions.

II. COMPRESSIVE SENSING AND PRIOR INFORMATION

The compressive sensing framework allows the efficient represen-
tation of discrete-time signals that are sparse in some known domain.
The main characteristic common to these signals is that their projec-
tions on the basis functions of the sparse domain are mostly zero. This
distinguishing property ultimately means that a signal of length N can
be unambiguously represented by < N values by taking an appro-
priate transformation and coding both the nonzero coefficients and their
positions.

An important discovery in compressive sensing was that random
linear measurements are generally valid for the reconstruction of sig-
nals that are sparse in some domain [4], [12]. In this context, let x rep-
resent an [V -dimensional signal with an n-sparse transform X (n < N
coefficients of x are nonzero) and T represent the transformation ma-
trix, meaning

x =Tx.

Then, if M¢xn, with £ < N, is a random matrix with normal inde-
pendent identically distributed entries, then the linear measurements
defined by

b = Mx ey

allow the determination of all the N components of x provided that
the amount ¢ of measurements taken is high enough compared to the
sparsity of x [12].

Although the ¢ linear measurements defined by (1) unambiguously
represent the original /V samples of x, a problem still remains on how to
compute these samples from the available measurements. This problem
is commonly referred to as signal reconstruction; it is approached by
finding the sparsest vector X such that its inverse transform T~ ' gen-
erates the same given measurements. The key idea is to indirectly solve
the minimization problem

min ||%[|,, subjectto MT 'k =b 0))

where ||Xo|| corresponds to the number of nonzero components of the
vector X.

Note that a direct approach to (2) leads to combinatorial complexity,
which is not viable even for moderately sized signals. An approximate
solution that is largely used is the minimization of the 1-norm instead
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of the objective function ||Xo || previously defined, so the reconstruction
problem in this case is

subjectto Ax = b 3)

min [[%]],
where A = MT .

The solution to (3) leads to polynomial complexity and it is possibly
the most common approach to signal reconstruction in compressive
sensing. A second approach is the {, minimization of X, with 0 < p <
1 or, equivalently,

min %||>%| P, subjectto AXx=b 4)
X

and it has been shown that, by reducing the value of p, it is possible to
reduce the number of required linear measurements ¢ with respect to
that attained for p = 1 [3]. In [13], the minimization of the p-norm-like
diversity measures, for p < 1, as well as of the Gaussian and Shannon
entropies, is used also to compute sparse solutions to underdetermined
systems, in the problem of optimal basis selection; the approach in-
cludes the {,, minimization case when p > 0.

A possible approach to (4) is based on IRLS, as we will discuss in
Section III. An advantage of this method over interior point methods
is that it allows the reduction of p in the {, minimization in a straight-
forward manner, so that the same algorithm implemented for a certain
value of p can be used for a different one by changing a single param-
eter. A different approach is presented in [13], based on a factorization
of the gradient of the Lagrangian function and on the successive relax-
ation of this function.

In this paper, we propose a particular weighting strategy in the IRLS
approach in order to add prior information on the support region of the
sparse representation. As it has been shown in [1] and [2], if such in-
formation is available it is possible to reduce the amount of taken mea-
surements and still unambiguously reconstruct the underlying signal.
In fact, let ¢ be the subset of positions in {1,2,..., N} which are
known to belong to the support region of X, meaning

in#£0YE € ®. )

It was shown in [1] that the information represented by (5) can be
added to the reconstruction procedure based on the minimization of
the 1-norm, by solving, instead of (3),

N
min Z |Zx|, subjectto Ax = b. (6)
iz

In [1] and [2], problem (6) is solved by using an interior point method
approach. The corresponding simulation results show that, for a pre-
specified frequency of correct reconstructions, (6) leads to a reduction
by ¢ in the number of required measurements, where ¢ = |®| is the
number of known positions of nonzero coefficients of %.

Note that the reason why (3) can be replaced by (6) when the prior
information (5) is available comes from the fact that the minimization
of the 1-norm in (3) is actually aimed at finding the sparsest solution
that explains the measurements: the 1-norm is minimized in order to
find the vector x with most null components that satisfies Ax = b. If
the positions in ¢ are known to contain nonzero components of X, then,
during the search for a sparse solution to Ax = b, the alternative is to
minimize the number of nonzeros in the other positions only (those
which do not belong to ®). The improvement of (6) over (3) is then
related to trying to minimize the number of nonzeros only outside the
region where x is already supposed to be nonzero; hence, (6) gives
preference to a solution with more zeros outside the specified set ®.
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This paper shows that the prior information represented by (5) can
also be added to the IRLS approach to the reconstruction. The corre-
sponding minimization problem, with the prior information, is refor-
mulated as

N
.1 N . N
min 3 E |2%|”, subjectto Ax =Db. )
igo

Our results show that the prior-information weighting scheme, which
allows the reconstruction based on (7), leads to a reduction in the
number of required measurements with respect to (4). This occurs
for all used values of p, so a further reduction with respect to (3) and
(4) can be attained by simultaneously using prior information and
reducing p.

An important characteristic of (7) is that a solution X is not explic-
itly constrained to be nonzero in the locations specified by ®; rather, the
corresponding values are determined from the equality constraint and
the minimization of the objective function associated to the remaining
positions. This is specially important in the cases in which the prior
information is not perfectly reliable, so that some positions in ¢ can
actually not belong to the support (in this case, the reconstruction pro-
cedure should allow the computation of null elements inside ®). By
solving (7), we can still reconstruct the underlying signals, but more
measurements may be required compared to the case when no wrong
locations are present. In fact the X components in the positions P are
removed in (7) from the minimization function, so if some zero com-
ponents’ locations are mistakenly attributed to ® the local sparsity of
those components is not exploited during the reconstruction (we em-
phasize that the possibility of reconstructing signals from limited mea-
surements in compressive sensing is based on exploiting the sparsity).
Even in this case, however, we observed that if most of the compo-
nents of ® belong to the support, our proposed method provides an im-
provement in the reconstruction, in terms of computational cost and of
number of required measurements. More details on this are presented
in Section V.

III. PROBLEM FORMULATION

The IRLS method for reconstructing sparse signals from linear mea-
surements is based on iteratively solving (4) with a modified objective
function, that at each iteration function approaches Z;?:l |2%|”. More
specifically, consider the optimization problem

N

. 1 p—2 2
min — Wy  Tp,

Py k

% 2

k=1

subject to Ax = b ®)

where w;. is a weighting parameter [3]. Note that (8) can be solved in
just one iteration, as we will describe, but if the problem is repeatedly
solved changing the values of wy, at each time, so that w; approaches
21, the objective function in (8) will approach that of (7). In fact, let

w(™ = |gm—D

where w(™ = [w{™ w1 is the value of the

weighting vector to be used in the mth iteration and %™~V is
the (m — 1)th iterate. After convergence, ™ " will be suf-

ficiently close to %) according to a specified tolerance, so

N (i plmiyz = 5N b= T G2 i pe

wgn)

p—2
k=1 k=1 |
N |am) [P S .. L .
closeto Y ,_, wg‘f") ‘ , which is the original objective function.
Now, in order to add the prior information on the positions of nonzero
coefficients in the sparse domain, we must do the ¢, minimization over

the vector components in the remaining positions only [1], [2]. Also,
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since the sparse signal must still match all the linear measurements, the
equality constraint is the same, and the new minimization problem is

N
1 . . .
min 5 E |#,|”, subjectto Ax = b. )
i

Now, a local solution to (9) can be obtained by iteratively solving

N

1 p—2 42

min = wh ™28y,
n > k ;
X &

k=1
kg

subject to Ax = b (10)

and changing w;, at each iteration so that w,’;_zié % 1s sufficiently close
to |2x|” Vk ¢ @ after convergence.
By defining
wr,=0Vked (11)
the minimization in (10) is posed in the form of (8), which has a closed-
form solution as indicated below. Since wy must approach & for k& ¢
&, we then define

L (m—1)

il . ifk¢d

a(m—1)
&) ,

w 2 m) —

(12)

T otherwise

where 7 is a specified small constant. Note that for 7 = 0, the second
expression in (12) reduces to 0 as required by (11), but a small 7 > 0
is necessary for obtaining a closed solution based on the procedure
described next.

A signal x with sparse representation X can then be reconstructed
from a sufficient amount of linear measurements b by solving for m =
1,2,... and until convergence

1
min —

k=1

(m) p—2 A2 . N
W %y, subjectto Ax=Db (13)

where w'™ is given by (12).

Our approach to (13) using (12) leads to the IRLS with prior infor-
mation. Note that (13) corresponds to the minimization of a quadratic
form with a linear equality constraint, which leads to the solution

N =1
}/sc(WL) — Q(7“)AT (AQ('”)AT) b (14)
where
Q = diag(q1,q2,-..,9n) (15)
with
2
igc'rn—l) P , lfk é @
qr = 5 (m—1) 2—p (16)
Pl P , otherwise.

In summary, the sparse representation X can be reconstructed from
sufficient linear measurements b by solving (14) for m = 1,2,...,
until convergence.

IV. IRLS WITH PRIOR INFORMATION

We now summarize the basic steps needed to reconstruct sparse sig-
nals with the weighting strategy with prior information in the IRLS.
Note that a regularization procedure is needed when defining the com-
ponents of the main diagonal of Q™ according to (16). Because of
the matrix inversion in (14), we must guarantee that these components
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do not approach zero, so a constant y is added to |#x| when defining
the weights. With this regularization, (16) becomes

2
e T ik ¢ ®
o (17)

+ p1,  otherwise

qdk =

7_'2_77 i)};:rz—l:)

where we used 727% = 1072, Our numerical experimentations show
the proposed method to be stable regarding the choice of values for 7
and the resulting factor 7>~ *_ In fact, different orders of magnitude of
T were tested, with a large range of values allowing equivalent results.
More details on the behavior of the algorithm with respect to this pa-
rameter are presented in Section V.

Then, the values of x are updated according to (14), starting from
an initial value X(*) and until the relative change between the norms
of two consecutive iterates is below a specified tolerance. After this,
the regularization parameter is then reduced and the iterations in (14)
are again conducted until convergence. The process is repeated until
1 becomes sufficiently small. In our simulations, the initial value %(©)
is computed by finding the minimum 2-norm solution to the equality
constraint (least squares solution), so

%9 = QWAT(AQWAT) b (18)
with the initial inverse weight matrix given by QW =
diaﬂg((éo)a qg))a rre qfw(?))’ where

o _ 1, ifk ¢ @ 19
T { 727P, otherwise. (19

In defining the convergence criterion for each iteration stage, our re-
sults have shown that the iterative procedure with prior information
given by (14) can follow the same strategy proposed in [3]. In this
scheme, (14) is repeated, first with ¢ = 1, until

s(m) _ A(nz—‘l)H

X X

L1 I | R Aal
1+ ||x(m=1)| 100

(20)

After (20) is attained, p is reduced by a factor of 10, and the iterative
procedure is repeated until . < 107% [3].

Algorithm 1 summarizes the procedures for reconstructing a sparse
transform x from the linear measurements b with prior information on
the support domain, by solving (7). Note that A = MT™'; also, the
signal x, from which the measurements are taken, can be reconstructed
by taking the inverse transform x = T~ '%.

Algorithm 1. IRLS Method for Signal Reconstruction in Compressive
Sensing With Prior Information

Inputs: p > 0, A, b, D, u, 7.
Step 1. Initialize % and Q(D) using (18) and (19).
Step 2. Do the inner loop:
2.1 Initialize m = 1.
2.2 Update Q™ using (15) and (17).
2.3 Compute %™ using (14).
2.41f (20) is satisfied, go to Step 3; otherwise, let m := m+1
and go to Step 2.2.
Step 3. Update the regularization parameter, v := p/10.
Step 4. If 1 < 107, finish; else, go to Step 2.

V. SIMULATION RESULTS

Algorithm 1 was first evaluated in different conditions using 500
test signals with length 256 (larger signals are also considered later).
We used a procedure to guarantee that each of these signals, although
randomly generated, is #-sparse in some specified domain. First, for
generality, we defined a random orthogonal transformation matrix T
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Fig. 1. Numerical results obtained using Algorithm 1 with 1-norm, as a
function of the number of samples taken in the nonsparse domain and for
different values of known positions (¢) in the support region of the sparse
domain: (a) Percentage of correct reconstructions; (b) average number of
iterations; (c) average time to convergence. All 500 test signals are of length
IN = 256 and sparsity 7 = 16 in an arbitrary, randomly determined
transformed domain.

using Givens decomposition [14]. Each signal was then generated first
in the corresponding desired sparse domain; with this purpose, n = 16
nonzero values were determined using a Gaussian pseudo-random gen-
erator, while their positions were assigned by a generator with uni-
form distribution. From the sparse vector x thus obtained, the time-do-
main signal was finally computed by taking the inverse transform x =
T 'x.

Each test consisted on taking an specific number of linear measure-
ments, £, from each of the 500 signals, and applying IRLS method with
prior information to reconstruct it using different amounts of known
positions ¢ belonging to the support of the sparse domain. For each
possible combination of £ and , we then evaluated if the signal was
correctly reconstructed. In this classification, we considered as correct
reconstructions only the cases for which the normalized energy of the
error between the original signal and the solution to (9) was below a
prespecified tolerance of 1072,
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Fig. 2. Numerical results obtained using Algorithm 1 with p = 0.1, as
a function of the number of samples taken in the nonsparse domain and for
different values of known positions (¢) in the support region of the sparse
domain: (a) Percentage of correct reconstructions; (b) average number of it-
erations; (c) average time to convergence. All 500 test signals are of length
IN = 256 and sparsity 7 = 16 in an arbitrary, randomly determined trans-
formed domain.

In Figs. 1 and 2, we show the results using Algorithm 1 withp = 1
and p = 0.1, respectively. The percentages of correct reconstructions
are shown in Figs. 1(a) and 2(a) as functions of ¢ and . While these
percentages generally increase with the amount of available measure-
ments, as expected, they also increase with . Indeed, as the number
of known support positions increases by 4, the resulting curve for the
percentage of correct reconstructions is shifted to the left, showing that
for the same fixed percentage, the number of required measurements
is reduced. This shows that the information represented by the ¢ posi-
tions is appropriately used by the IRLS method through the weighting
scheme given by (12).

An important observation regarding the reductions in required mea-
surements when using Algorithm 1 with prior information is that they
occur for both values of p (0 and 0.1). This result is also verified for
different values of p in the range 0 < p < 1, as will be shown. In fact,
in Figs. 1(a) and 2(a), the percentage curves are shifted by the same
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amount to the left for increasing values of ¢. This indicates that, with
respect to IRLS with no prior information, a more significant reduction
in the amounts of measurements can be attained by reducing p and at
the same time using prior information.

We emphasize that the evaluated amounts of correct reconstructions
are based on the defined criterion of error (normalized energy of the
difference below 10™?), and that the amounts of measurements taken
correspond to this criterion. A less strict criterion shifts the curves in
Figs. 1(a) and 2(a) to the left, meaning less measurements being taken,
but the distances between the curves corresponding to different values
of ¢ are preserved. Furthermore, without prior information (¢ = 0)
the required number of measurements to attain reconstruction in our
simulations matches the results we achieve using the algorithm in [3]
for the same reconstruction error.

We have also observed that, by using prior information, Algorithm 1
allows a reduction in both the number of iterations and the total time to
convergence. These aspects are illustrated, respectively, in parts (b) and
(c) of Figs. 1 and 2. The number of iterations is counted as the number
of times (14) is executed. Note that, as ¢ is increased, the curves corre-
sponding to both the number of iterations and the convergence time are
shifted to the bottom, meaning a consistent reduction in those quanti-
ties for all values of (.

Note that the results in Figs. 1 and 2 follow from Algorithm 1 when
the given prior information is correct for all given locations. This means
that all the components of the given set P really belong to the support of
the sparse domain, or at least to the set of points that are counted as pos-
sibly nonzeros when establishing the signals’ sparsity. This could be
the case, for instance, of signals that were bandpass filtered, so that the
locations corresponding to the passband contain the potentially nonzero
coefficients; in this condition, the set ¢ corresponds to the passband.

As stated in Section II, however, it may be the case that the prior
information is not perfectly reliable, meaning that some of the com-
ponents of the considered set ® belong to the support but others are
misplaced, and thus actually associated to null components. In this sit-
uation, Algorithm 1 can still reconstruct the underlying signals (the
computed components are not constrained to be zero anywhere—even
inside the given set ®), but more measurements may be required com-
pared to the case when no wrong locations are present. In fact, ac-
cording to (9), the elements of ¢ are removed from the minimization
function, so if some zero components are mistakenly attributed to ®
the local sparsity of those components is not exploited during the re-
construction. Indeed, in our experiments we observed an improvement
in performance that depends on the difference between the number of
correct positions and wrong positions in P.

In Fig. 3, we exemplify cases in which & contains both correct prior
information (¢ locations belonging to the support) and incorrect prior
information (w locations that do not belong to the support). Algo-
rithm 1 was applied to 500 signals with length N = 256 and sparsity
1 = 16, and for different combinations of ¢ and w < c. Note that the
percentages of correct reconstructions in the cases (c = 14,w = 2),
(c=11,w = 3), (¢ = 8, w = 4) are, respectively, greater than in the
cases (c =12,w =0), (c =8, w =0), (¢ =4, w = 0), suggesting
that it is better to have ¢ correct positions and w wrong positions than
to have ¢ — w correct positions only. Similarly, in all these conditions
the results indicated an improvement with respect to the case with no
prior information at all (¢ = 0, w = 0), provided that most of the ele-
ments in ® really belong to the support (¢ > w).

Regarding the reductions in the number of required measurements,
the amounts of iterations, and the computation time when using Al-
gorithm 1 with prior information, we observed that they occur for all
tested values of p in the objective function (30 values of p in the range
0 < p <1 were analyzed). In Fig. 4, we describe the results for all
the tested values of p in the range 0 < p < 1 and for a fixed number
of linear measurements, { = 2.51 = 160; these results correspond to
applying Algorithm 1 to 500 different signals with length N = 1024
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Fig. 3. Percentages of sparse signals that are correctly reconstructed using Al-
gorithm 1 with partially correct and partially incorrect prior information on the
support of the sparse domain. All 500 test signals are of length IN = 256 and
sparsity 7 = 16, and £ represents the number of linear measurements avail-
able for reconstruction. In each line, ¢ is the number of components of the given
set ® that really belong to the support (correct prior information), whereas w is
the number of components of @ that do not belong to the support (wrong prior
information).

and sparsity 7 = 64. In Fig. 4(a), we observe that, independently on the
used value of p, a higher value of known positions ¢ leads to an increase
in the percentage of correct reconstructions from the same amount of
measurements ¢, even when a lower value of p already provides an in-
crease with respect to p = 1 (the advantage of using the prior informa-
tion does not vanish when p is decreased to improve reconstruction).
Also, Fig. 4(b) and (c) shows that as ¢ increases, both the number of
iterations and the time to convergence decrease, for all tested values of
p. Note in Fig. 4(c) that decreasing p has the effect of increasing the
time required to reconstruct the signals from the same amount of mea-
surements, but the used prior information reduces both the number of
iterations and the convergence time.

Finally, it is important to evaluate the sensitivity of the proposed
method with respect to the parameter 772, used in (17). We conducted
a complete set of experiments in which we applied Algorithm 1 with
727P ranging from 1072 to 10? (although 7 should be less than 1,
according to Section III, we also included the range 1 < 7277 < 102
for illustration). These experiments show that a large range of values
can be used with equivalent results.

As an example, Fig. 5 shows the percentage of correct reconstruc-
tions, the total number of required iterations, and the normalized com-
putation time, as functions of the tested parameter when applying Algo-
rithm 1 with p = 0.01; the remaining parameters were kept as in Fig. 4.
As expected, 727P greater than 1 does not allow Algorithm 1 to recon-
struct the signals, as shown in the right side of Fig. 5(a). On the other
hand, too low values of the same parameter also lead to a reduction in
the percentage of correct reconstructions, due to the reduced stability of
the resulting linear system in (14). Note, however, that a large range of
values of 727, with orders of magnitude between approximately 10~°
and 1072, allow the reconstruction of the same percentage of signals
with equivalent computation times and numbers of iterations.

VI. CONCLUSION

This paper proposes a signal reconstruction scheme based on the
iteratively reweighted least squares (IRLS) method for compressive
sensing with prior information. The proposed method, related to the
definition of the weights matrix used at each iteration, allows the ef-
ficient use of information on the support of the sparse domain of the
underlying signal.

The simulation results show that by using prior information, a re-
duction occurs in the number of linear measurements required to attain
a prespecified percentage of correct reconstructions. This reduction is
directly related to the number of known positions, so that if > positions
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Fig. 4. Numerical results obtained using Algorithm 1, as a function of p and
for different values of known positions (¢) in the support region of the sparse
domain: (a) Percentage of correct reconstructions; (b) Average number of it-
erations; (c) Average time to convergence. All 500 test signals are of length
IN = 1024 and sparsity n = 64 in an arbitrary, randomly determined trans-
formed domain. In all cases, reconstruction is based on £ = 2.517 = 160
measurements.

are known, the number of required measurements is also reduced by ¢
with respect to the IRLS scheme.

A reduction in the number of iterations and computation time re-
quired for convergence is also verified when prior information is added
to the reconstruction procedure. This result was consistent, indepen-
dently on the number of linear measurements used for reconstruction.

An important observation regarding the IRLS with prior information
is that the reduction in the magnitudes of both the number of required
measurements and the computational cost when using prior informa-
tion occurs for all tested values of p in the /, minimization. Hence,
a further reduction can be attained by reducing p while at the same
time using prior information. Also, our experimentations show that if
the prior information is not perfectly reliable, meaning that some com-
ponents of the support are misplaced, there is still an improvement in
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Fig. 5. Numerical results obtained using Algorithm 1, as a function of the
used parameter 7>~ 7 and for different values of known positions (¢) in the
support region of the sparse domain: (a) Percentage of correct reconstructions;
(b) Average number of iterations; (c) Average time to convergence. All 500 test
signals are of length IN = 1024 and sparsity 7 = 64 in an arbitrary, ran-
domly determined transformed domain. In all cases, reconstruction is based on
£ = 2.5 = 160 measurements.

performance with respect to no prior information or to less correct posi-
tions being available. The final performance depends on the difference
between the numbers or correct and wrong locations.
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