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a b s t r a c t

Brain–computer interfaces (BCIs) can be used for communication in writing without muscular activity or
for learning to control seizures by voluntary regulation of brain signals such as the electroencephalogram
(EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG)
signals derived from motor-related areas within only one or two training sessions. Imagery of finger or
tongue movements was classified with support-vector classification of autoregressive coefficients
derived from the ECoG signals. After training of the classifier, binary classification responses were used
to select letters from a computer-generated menu. Offline analysis showed increased theta activity in
the unsuccessful patients, whereas the successful patients exhibited dominant sensorimotor rhythms
that they could control. The high spatial resolution and increased signal-to-noise ratio in ECoG signals,
combined with short training periods, may offer an alternative for communication in complete paralysis,
locked-in syndrome, and motor restoration.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

During the last decade, there has been rapid progress in re-
search on brain–computer interfaces (BCIs). The number of studies
published increases almost exponentially. For acquisition of brain
signals for BCI control, primarily different types of noninvasive
recording systems, such as the electroencephalogram (EEG) [1–
3], the magnetoencephalogram (MEG) [4], and functional magnetic
resonance imaging (fMRI), have been used [5,6]. Learning to con-
trol epileptic seizures through voluntary regulation of EEG signals
such as slow cortical potentials [7,8] and sensorimotor rhythms [9]
also has a long tradition (for a review, see Birbaumer and Cohen
[10]). Invasive techniques allowing for single-neuron recording
using implanted microelectrodes were tested first in primates by
Nicolelis [11] and Donoghue [12], and then in human tetraplegic
patients by Hochberg et al. [13] and Donoghue et al. [14]. Recently,
the electrocorticogram (ECoG) recorded with implanted subdural
electrode grids was successfully applied to control of a BCI in pre-
surgical patients with epilepsy [15–21].
ll rights reserved.
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Most noninvasive approaches to communication using the EEG
suffer from a very slow communication speed of only about one to
five letters per minute. Therefore, BCI applications have been devel-
oped mainly for patients with neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS), a disease that can lead to a state
of complete motor paralysis with intact sensory and cognitive func-
tions. One of the most terrifying aspects of this ‘‘locked-in syn-
drome” is that the loss of muscle control prevents the expression
of even the most basic needs. However, because perceptual and cog-
nitive functions are usually unaffected, direct interaction between
brain and computer may offer a unique communication channel
for locked-in patients. This was the goal of a BCI named the thought
translation device (TTD), which was developed to reestablish com-
munication with severely paralyzed patients [1,22,23]. It was the
first BCI that enabled several patients with ALS to communicate ver-
bally using their slow cortical potentials only [1]. The limited signal-
to-noise ratio in the EEG is one reason for the slow communication
speed and the extremely long training periods in neurofeedback of
epilepsy [24]. In an attempt to increase the signal-to-noise ratio
for EEG algorithmically, spatial or spatiospectral filtering methods
[25,26] or knowledge from previous BCI sessions [27] has been used.
A more direct approach to improving the signal-to-noise ratio is the
use of subdural electrodes that detect the ECoG signal directly from
the cortex. ECoG signals have up to 10 times higher amplitudes with
a broader frequency range (0 to approximately 300 Hz) from more
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focused locations than EEG signals. All these features lead to an in-
creased signal-to-noise ratio and, therefore, potentially to an in-
creased rate of information transfer in a BCI. Studies investigating
ECoG discrimination of hand and tongue movements, carried out
by Leuthardt et al. [21], support our approach to the use of those
tasks. Here, we report on actual brain–computer communication
via ECoG signals of imagined movements within very short training
periods using a modern signal processing and classification
approach.

2. Methods

2.1. Approach

In the predominant approach to realizing a BCI, oscillatory EEG components,
such as motor-related mu rhythms or sensorimotor rhythms (SMRs), are used. Dur-
ing movement or imagination of a movement, the SMR decreases over the corre-
sponding area, which is referred to as event-related desynchronization (ERD), and
resynchronizes afterward, which is referred to as event-related synchronization
(ERS). Pfurtscheller and Aranibar trained the regulation of the ERD/ERS [28]. In
the 1990s, Pfurtscheller et al. developed BCIs based on detecting ERD and ERS of
mu and beta rhythm bands during imagined left and right hand movements
[3,29,30]. In parallel, Wolpaw’s group developed a mu rhythm-controlled BCI
[2,31]. Müller and co-workers introduced machine learning methods for application
in SMR BCIs [32,33]. Another EEG component that can be voluntarily controlled is
the slow cortical potential (SCP). SCPs are slow potential shifts located in the fre-
quency range below 1 Hz. Birbaumer and colleagues first used self-regulation of
SCPs with neurofeedback to reduce seizures in patients with drug-resistant epilepsy
[7,34]. With the development of the TTD, voluntary control of SCPs has been used as
an alternative form of communication for completely paralyzed patients [1,35]. In
this study, the TTD was used for direct brain–computer communication with oscil-
lations extracted from ECoG signals in patients with epilepsy.

Here, we emphasize three important issues for realization of an ECoG-driven
BCI: (1) rapid training of the BCI system by use of an autoregressive feature extrac-
tion and an efficient support-vector machine classifier (SVM) with embedded fea-
ture selection for automatic channel selection (all methods have been
implemented for online use in our BCI); (2) immediate introduction of a spelling
application; (3) an offline analysis that delivers predictive information about the
conditions for successful applications in the future.

2.2. Subjects and clinical environment

The BCI experiments were performed in the Department of Epileptology of the
University of Bonn. All five patients aged between 21 and 46 years had focal epi-
lepsy. To localize the epileptic focus prior to surgery, grids or strips of electrodes
were placed under the dura, onto the surface of the cortex, to record the ECoG
[36]. In some patients, additional electrodes were placed in deeper regions of the
brain such as the hippocampus. The platin electrodes on the grids were arranged
at a distance of 1 cm and had an electrode diameter of about 4 mm. All patients
had 64 to 84 surface electrodes, which at least partly covered the primary motor
and premotor area. Four patients had a 64-electrode grid arranged in an 8 � 8 ma-
trix over the left or right motor cortex, and one patient had a 5 � 4 electrode grid
covering the left central motor and premotor cortex, including the hand and foot
area, plus four 16-electrode strips covering most of the frontal cortex without
reaching the temporal cortex (see Table 1).

The ECoG was continuously recorded over a period of 5 to 14 days. BCI exper-
iments could be carried out in only a short time frame of a few days between clin-
ical examinations before the operation when the electrodes were removed again.
Therefore, control of ECoG and communication with a BCI had to be achieved with
Table 1
Overview of the training procedure, classification, and BCI outcome for five patients

Gender/ age/
handedness

Location of grid
electrodes

Classifier training

% Correct No. of t

Patient 1 M/21/right 64 right
Session 1 74b 210
Session 2 87b 150

Patient 2 F/22/right 20 left central + 4 � 16 frontal 63b 100
Patient 3 F/41/right 64 right 62b 200
Patient 4 F/34/right 64 left 74b 200

Patient 5 M/46/left 64 left 69b 150

Note. The percentage of correct responses was defined as the number of correctly classifie
performance of the classifier training runs was the cross-validation result of the SVM clas
and online test data, a one-tailed binomial test was used to calculate the probability of
very little training. Furthermore, the cognition and attention of most of the patients
were restricted because of epilepsy, medication, and surgical stress. Most of them
could not concentrate for longer periods, which limited our experiments to a short
duration per session.

To record every epileptic seizure, the data had to be recorded continuously
without interruption. Therefore, it was not possible to replace the standard ECoG
recording and analysis software (Stellate) with the BCI for the experiments. More-
over, a program had to be developed interfacing the connection between the ECoG
amplifier hardware and the Stellate recording software that branched off the data
stream and sent it via socket connection to the BCI, which is a specially developed
version of the TTD [37] (Fig. 1a). The ECoG signal was sampled at 1 kHz and re-
corded with a bandwidth of 0.016 to 300 Hz.

2.3. Experimental procedure

The subjects were seated in their bed or in an armchair facing a computer
screen at a distance of 1–2 m. They were asked to repeatedly imagine one of two
different movements. The experiment consisted of a BCI training phase and a com-
munication phase. During the BCI training phase, ECoG data from a few hundred tri-
als of the two tasks were collected. These data were then fed into the algorithms for
autoregressive (AR) modeling, channel selection, and classification (see below and
Fig. 1b and c). The resulting channel subset and the trained classifier were used
in the second part of the experiment to classify the brain signals online. Here the
classifier output of each trial was used as a control signal for a spelling application.
To demonstrate the control of the BCI, the patients were asked to write their name
using the two imagery tasks.

Motion imagery tasks were chosen for controlling the BCI because of the loca-
tion of the grid near and over motor regions. ‘‘Imagining finger or hand movements”
and ‘‘imagining tongue movement’ were chosen as the two conditions to be dis-
criminated. Both tasks are expected to exhibit well-localized signals in a relatively
large area of the motor cortex. In a frequency analysis, the ERD/ERD of the mu
rhythm should be a discrimination feature.

To match the situation of BCI use in completely paralyzed patients, actual
movements were avoided. Therefore, patients were supervised with a video system
to ensure that no actual movements were made. Recording of EMG for more precise
control of muscular activity was not possible for technical reasons. It might be pos-
sible that some muscular activity did occur; however, there should have been no
actual movement artifacts. Even by controlling motor response with the EMG, it
is not possible to generalize to paralyzed patients because of the high interindivid-
ual variability of remaining motor functions.

At the bottom of Fig. 1b a screenshot of the projection screen is shown in which
a subject wrote the word ANGELO. The lower left box contained the spelled letters
ANGEL. On each trial the subject imagined a movement to navigate within a binary
spelling tree. In the present situation, in Fig. 1, the next letter ‘O’ to write is not con-
tained in the letters in the right box. Therefore, the subject had to reject this subset
of the alphabet by imagining finger movements indicated by the thumbnail picture
added underneath as a reminder. The subject had to wait for a letter set that con-
tained the ‘O’ and then select it by imagining a tongue movement. After each selec-
tion the selected letter set was split into two halves, which were subsequently
presented during the following trials for either selection or rejection. This process
continued until a single letter was presented that could be selected and thereby
added to the spelled text in the left box. A letter set consisting of 32 letters used
here would require five levels leading to selection of a letter, with a minimum of
5 to 10 trials including options for corrections. For a detailed description of the
spelling paradigm, see Perelmouter et al. [38].

2.4. BCI training paradigm

Depending on the patients’ availability, 100 to 378 trials of imagery were col-
lected for training of the classifier. After each run of 50 trials, the patient was of-
fered a short break. During the first second of each trial, a fixation cross was
Online test of classification Copy spelling

rials % Correct No. of trials % Correct No. of trials Text written

94b 128 – – –
80b 98 64 157 ANGELO
87b 27 73 244 MOMO
– – – – –
– – 77 164 SUSANNE

88 73 surname
72a 50 64 350 –

d finger and tongue movements imagined divided by the total number of trials. The
sifier on the data of the training procedure (offline result in italics). For the training
a nonchance result indicated by aP < 0.01 and bP < 0.001.



Fig. 1. Modules of the ECoG-driven BCI: (a) ECoG data acquisition software records the signals continuously. A socket connection was programmed to branch off the signal to
feed the TTD. (b) After preprocessing, the data from each trial were subject to calculation of AR coefficients, which were then classified by a SVM. The classification results
were used to operate the communication interface for letter selection. (c) In an early stage of the experiments, calculation of the AR coefficients as well as the SVM classifier
was not implemented in the TTD. A TCP/IP socket connection between the TTD and the Matlab application allowed for real-time data exchange and online classification using
Matlab. After successful tests, the algorithms were inserted into the TTD without Matlab.
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displayed in the center of the screen. The following 4-second imagination phase
started with a cue that was presented in the form of a picture showing either Ein-
stein’s tongue or a hand with an outstretched little finger. The task sequences were
balanced in pseudo-randomized order. The trial ended with 2 seconds of rest. The
structure is illustrated in Fig. 2.

A BCI session was subdivided into four steps: (1) a training phase in which the
patient was asked to imagine the tasks in a sequence predefined by the computer
without receiving feedback; (2) training of a classifier using the ECoG data of the
training phase while the patient could take a break and rest; (3) an online classifi-
cation test run in which the patient received feedback about the classification result
after each trial (after each correctly classified trial, a smiley face was presented for 1
second); (4) a copy spelling phase in which the patient was asked to spell his or her
name by following the aforementioned spelling procedure. The computer assisted
the patient in getting used to the letter selection procedure by highlighting the tar-
get necessary for a correct selection or rejection response.

2.5. Data processing

The basic procedure in signal processing of a BCI comprises two steps. First, a
feature selection algorithm is applied to the acquired data (i.e., the ECoG) to reduce
the highly dimensional multichannel sampled data stream into a few meaningful
feature values only. In the present study this was done using an AR model and a
channel selection algorithm (see below). Second, those feature values are fed into
a classification algorithm that learns how to discriminate ECoG signals of the two
imagery classes (here, either finger or tongue movement imagination). Once the
classifier has been trained in an offline procedure, it can be used to discriminate fea-
ture values from new, unseen signals in an online application. The SVM is a classi-
fication algorithm that has been proven to perform very well on a large range of
Fig. 2. Trial structure during the data collection phase. Each trial started with a 1-seco
Einstein’s tongue or a hand was shown as a cue to imagine hand or tongue movement.
ended with a 2-second resting period.
problems. In the standard formulation, the SVM is able to deal with overlapping
class distributions. For our results, we used a linear SVM. For its training, the feature
values of 100 or more trials were used. The feature values of one trial were taken
from data from selected electrodes in a window of 3.5 seconds’ duration, starting
half a second after visualization of the task cue, as displayed in Fig. 2. Thus, for each
trial and electrode, an ECoG sequence consisting of 3500 samples was obtained. The
linear trend from every sequence was removed.

For feature selection, an AR model was fitted to each sequence according to Lal
et al. [39], Haykin [40], and Pfurtscheller et al. [3]. A model order of M = 3 was found
to give the lowest offline cross-validation error. The concatenated model parameters
(M = 3 per channel) of all k ECoG channels, together with the descriptor of the imag-
ined task (i.e., y = +1 for finger and y = –1 for tongue imagination) form one training
point. A training point (x; y) is therefore a point in RMk � {–1, 1}. The model vector x
consisted of 3 � 64 coefficients when recording from a 64-electrode grid.

Each training point was then classified by a SVM classifier. The SVM is a classi-
fication technique developed by Vapnik [41] and colleagues (see [42,43]) which has
been demonstrated to perform well in a number of real-world problems, including
the BCI e.g., [39,44]. The central idea is to separate the n training trials x(i)e Rd

(i = 1. . .n) into two classes by finding a weight vector w e Rd and an offset b e R of
a hyperplane in the d = Mk dimensional parameter space,

H : Rd ! f�1;1g; x! signðw � xþ bÞ;

with the largest possible margin (i.e., distance between the hyperplane and the near-
est training point). The SVM has been shown to provide theoretical advantages in
terms of generalization ability [41].

For this analysis, we used a linear SVM as described by Lal et al. [39]. Via 20-fold
cross-validation within the training set, we estimated the regularization parameter
of the SVM (the trade-off between the exact fit to the data and the simplicity of the
nd resting period. During the following 4-second imagination phase, a picture of
The period used for classification started 0.5 second after the cue onset. Each trial
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fitted model—see Schölkopf and Smola [43]) as well as the optimal subset of chan-
nels (see below). We then trained a single SVM on the training data using these esti-
mated hyperparameters, and this SVM was applied to the test data, that is, the
signals subsequently recorded for classification during the online test phase and
the online copy spelling phase. For offline evaluation of the classification perfor-
mance of the system, we used a double cross-validation scheme: 20 times, the
available data were split randomly into a training set (90%) and a test set (10%)
and the aforementioned procedure was carried out—cross-validation for hyperpa-
rameter selection is therefore carried out multiple times, once within each training
subset.

2.5.1. Reduction to relevant channels
Automated selection of relevant recording channels can increase the classifica-

tion performance of a BCI system [45], but the problem of how to rate the relevance
of a recording channel in the presence of possible nonlinear interactions between
channels is not trivial. As the number of training trials is small compared with
the number of channels and as the signals are noisy, the overall accuracy is not nec-
essarily monotonic in the number of channels used. Some feature selection meth-
ods try to overcome this problem by optimizing the feature selection for
subgroups of fixed sizes (e.g., plus-l-take-away-r search) or by implementing float-
ing strategies (e.g., floating forward search). For an application of ECoG channel
selection that delivers a spatial interpretation of the selection results, it is necessary
to treat some features homogenously: numerical values belonging to one and the
same channel have to be dealt with in a congeneric way. Generic algorithms, for
example, can choose subgroups of arbitrary size during the feature selection pro-
cess. They have successfully been used for the offline selection of EEG channels
[46,47] in BCI applications, but proved too slow for online use during an experi-
ment. For this reason, we adapted the SVM-based feature selection method recur-
sive feature elimination (RFE) to implement these specific requirements. The use
of this method could reduce the number of relevant ECoG channels to about 10%
of the original channels without loss in classification accuracy and even with in-
creased performance.

2.5.2. The correct response rate as performance measure
During the experiment the correct response rate was defined as the percentage

of correctly classified trials in a run or session. Runs from the initial training phase
were classified directly afterward using the SVM cross-validation procedure. In the
binary task paradigm, 50% correct responses would be expected by chance. For the
online test and copy spelling phases, the correct response rate was directly avail-
able. In Table 1 the correct response rates of all trials in each phase are reported.
However, for successful navigation through the letter selection tree in copy spelling,
the ratio of correctly classified finger and tongue imaginations (selections and rejec-
tions) is relevant dependent on the number of letters or words to spell. Therefore,
for the spelling task, the correct response rate provides a rough estimate of perfor-
mance only, whereas for the training and online runs, the significance of results can
be estimated with a significance test. Therefore, additional significance measures—
one-tailed binomial tests—are reported for the training and online tests only.

2.6. Offline analysis

Although the three coefficients of the AR model reflect the amplitude of the pre-
dominant oscillatory activity of the signal, they do not tell us directly the frequen-
cies that were most useful for classification. Closer inspection of the data sets was
therefore necessary to identify the physiological responses driving the system. In an
offline analysis, a fast Fourier transform (FFT) was applied to each channel, each
condition (tongue or finger), and several time windows during a trial. The color
map in Fig. 4 represents the squared correlation r2 between target and spectral
amplitude at a certain frequency, electrode, and time window. The r2 value is a
rough measure of the separability of the features of the two conditions under the
assumption of a normal distribution. For analysis of the time course of ECoG re-
sponse, a trial was subdivided into six time frames each 2 seconds wide. Each frame
was windowed by a Hamming window before calculation of the FFT which there-
fore reflected predominantly the 1 second in the middle of the window. The first
window started 1 second before cue onset. For calculation of r2, the FFTs of all trials
were averaged separately for each task condition, time, and frequency.

3. Results

3.1. Subjects and online results

Five subjects (two male, three female) with an implanted elec-
trode grid over the brain region covering the hand and/or tongue
area participated in BCI training. The procedure was approved by
the ethics committee of the Faculty of Medicine of the University
of Tübingen. For patients 1 and 4, the location of the hand or ton-
gue was verified with electrical stimulation, which was carried out
during grid implantation. All patients were instructed to imagine
either tongue movement or movement of the fingers of the contra-
lateral hand without actually moving the tongue or any finger.

Patient 1 participated in two sessions, whereas patients 2 to 5
attended one session only. The percentage of correct responses
defined by the number of correctly classified imagined finger
and tongue movements, divided by the total number of trials,
served as the performance measure. Patient 1 could reach a per-
formance level of 94% correct responses during the online test
period, which was far better than the 74% classification result of
the training runs. Unfortunately, he was too tired and exhausted
to continue with the spelling task that day. After starting the sec-
ond session the day after with three training runs classified with
87%, he achieved 80% correct responses in the test runs, whereas
his performance was only 64% in the spelling condition. However,
he managed to spell his name Angelo in 157 trials requiring
18:19 min. With 100% accuracy, he could have written his name
within 39 trials, as one letter can be selected in 5 to 10 trials
which would have taken 4:33 min or 1.32 letters/minute. Patient
2 had 4 � 16 frontal electrodes and only a smaller grid with 20
electrodes left centrally, which probably did not cover the hand
area very well. After 100 trials of poor classification performance
in training, we tried an online test in which she performed excel-
lently (87%). This encouraged us to proceed to the spelling imme-
diately. With this very short period of practice, she achieved an
overall copy spelling performance of 73% and needed 28:28 min-
utes to spell her four-letter nickname. Patient 3 did not improve
after 200 runs of training, and therefore, we did not continue
with further testing. Comparable to our BCI training with
locked-in patients, an accuracy of 70% was defined as prerequisite
to introduction of a spelling application [38]. Patient 4 was
directly confronted with the copy spelling task after 200 trials
of training with an average accuracy of 74%. She managed to spell
her seven-letter first name in 164 trials (19:08 minutes) and her
seven-letter surname in only another 73 trials (8:31 minutes or
0.82 letter/minutes). This increase in performance suggests a very
rapid learning process. Although the communication rates do not
exceed those of some excellent EEG-driven BCIs in healthy peo-
ple, a comparable result within the first session was never
reached by patients to our knowledge [14,48]. Patient 5 with a
very low IQ of 58 was confused by the procedure. He was not able
to spell his first name despite a basic performance level of 72%
during the online classification test. Table 1 provides an overview
of the patients and their performance.

3.2. Offline analysis

Fig. 3 illustrates a representative r2 time course during the clas-
sification test runs for patient 1, showing a peak activation about
2 seconds after target presentation that slowly decayed to the
end of trial. The most discriminative frequency was 11 Hz. A sec-
ond peak at around 20 Hz, the so-called beta peak, is sometimes
also present in healthy subjects [49]. The most significant activa-
tions were found between 1 and 3 seconds in all participants.
Sometimes, this was delayed by 1 second in the final copy spelling
task, which could easily be explained by the cognitive load of the
novel and complex spelling task.

The maps in Fig. 4 illustrate the discriminative effect size be-
tween the imagery tasks for all patients. The color coding reflects
the effect size defined by the difference between tasks referred
to the pooled SD. Subtraction of the amplitude in the finger move-
ment imagination task from that of the tongue movement imagi-
nation task led to a positive effect size depicted in red for ERD
over the hand area; blue reflects either an ERD during the tongue
movement imagery task or an ERS during finger movement imag-
ery. The larger spectral maps within a frequency range of 0 to
70 Hz are shown for those three patients who could spell their



Fig. 3. Discriminative power in the frequency range 0 to 30 Hz for all electrodes and for six time windows during a trial. One hundred fifty trials were averaged.

Fig. 4. For the three patients who successfully spelled their names, these detailed spectral activation maps illustrate the frequency range from 0 to 70 Hz for all electrodes. For
all five patients, grid mapping indicates the location of the grids and the differentiation in the most predominant frequency band. Red indicates an ERD during finger
movement imagery, and blue, an ERD during tongue movement imagery.
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names successfully. At some electrodes, the first two patients
showed high effect sizes in the mu rhythm band (around 10–
11 Hz). Patient 4 also showed a highly specific local 15-Hz peak
at the area of the finger, which was verified by electrostimulation.
Additionally, she could control the broadband activity below 8 Hz
that was of unknown origin. Patients 3 and 5, who did not succeed
in spelling their names, had their largest effect sizes around 7 Hz
(also at 23 Hz in the case of patient 5).



Fig. 5. Spectral power density at the best classifiable electrode for all patients. The
dots indicate the effect size at the best classifiable frequency, which ideally should
match the SMR frequency. The successful patients (1, 2, and 4) have both the best
effect size and peak frequency in the range 8 to 15 Hz, whereas for the unsuccessful
patients, theta waves were predominant.
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The three AR coefficients reflect the most dominant one to two
frequencies. Therefore, for optimal classification, those frequencies
should also be the most discriminative. This is the case for subjects
showing SMRs over sensorimotor areas. To prove this assumption
in patients with epilepsy who might have a more or less compro-
mised sensorimotor area, Fig. 5 shows the power spectrum over
the best classifiable electrode for each patient. Although for those
patients who successfully spelled their names, frequency peaked
in the range 8 to 15 Hz, for the unsuccessful patients, there was a
strong peak in the upper theta band at 6 to 7 Hz. For patient 5,
the strong theta activity was not reliably classifiable. Instead, he
showed 23-Hz activity that could be classified in the training ses-
sion but vanished during the spelling task.

4. Discussion

In three of five patients with epilepsy in whom electrode grids
were implanted over the motor area, we tested the hypothesis that
with the increased signal-to-noise ratio of ECoG and the use of an
advanced feature selection and classification algorithm, voluntary
control of ECoG oscillations and spelling of letters are possible
within the first few training sessions. The results suggest that in
BCI training using subdurally implanted electrodes in combination
with the SVM classification of AR coefficients, rapid training suc-
cess is possible, even though the training procedures reported pre-
viously (mostly in patients with ALS) using surface EEGs [7,9,34]
required extremely long periods, up to 100 sessions.

The question arises why patient 1 could easily spell his name
with a performance rate of only 64%, while patient 5 could not de-
spite having the same total correct response rate. In fact, patient 1
achieved 89% correct selections with only 48% correct rejections.
This means that with a correct rejection rate of 50% (chance), one
is able to spell if selection responses are reliable and large enough.
Patient 5 also reached 89% correct selections but he succeeded in
only 20% of his rejections. Depending on the letters to select and
the erroneous paths he had to follow in the letter selection tree,
the performance of patient 5 was not sufficient. The low IQ of this
patient might have contributed to these problems. The power
spectrum of the unsuccessful patients uncovered a clear indication
for reduced awareness by showing a strong 6- to 7-Hz peak fre-
quency. One should also note that the most successful patient,
No. 4, was the only one who had the grid over the motor cortex
contralateral to the dominant hand. Imagining movement of the
dominant right hand should lead to better classification results in
the contralateral left motor cortex. Additionally, the left hemi-
spheric grid is supposed to support classification accuracy of ton-
gue movements because speech-related areas are located in the
left hemisphere close to the motor cortex.

A major problem in training people in one session with a BCI be-
comes obvious when comparing the activation patterns of the
three training stages, particularly online classification and copy
spelling. Most of the subjects showed large variations between
runs and sessions. One reason might be that they have not auto-
mated their task sufficiently. As they receive feedback in the last
two stages only, they might also be distracted by incorrect classifi-
cation results. A third reason is the complexity of the copy spelling
task. Despite the fact that patient 4 managed to spell her first name
and surname quite rapidly, the correct activation pattern was de-
layed in the spelling task by about 1 second compared with the
training condition. An improvement in classification could be
achieved by adapting the classification period to each individual’s
online spelling response curve instead of using the whole feedback
interval.

Final clarification of the superiority of ECoG over EEG can be
achieved only by simultaneous measurement. The impairment in
patients with epilepsy resulting from postsurgical pain, problems
with cognition caused by seizures, and the placement of electrode
grids always at the epileptic focus gives rise to the assumption that
better training results can be achieved. Comparison of performance
with the results of BCI training with students in the MEG, as carried
out by Lal et al. [39], in which 4 of 10 subjects could spell their
names with the same system after one session, suggests that the
ECoG should be superior to the MEG considering that all patients
with ‘‘normal” spectral distribution were able to spell their names
within one or two sessions.

In this study, the presence of normal sensorimotor rhythm
activity seemed to be a strong predictor of ability to learn brain–
computer control and communication. This also supports the
hypothesis that normal mu or sensorimotor rhythms are necessary
to operate a BCI with ECoG from the motor cortex. In further inves-
tigations of BCIs using ECoG signals, simultaneous measurement of
the EEG will be important. Here, we have presented a BCI device
that, within one or two training sessions, enabled three of five pa-
tients with epilepsy to regulate their sensorimotor rhythms and
use them for communication.
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