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SUMMARY: Given a spatial filtering algorithm that
has allowed us to identify task-relevant EEG sources,
we present a simple approach for monitoring the activ-
ity of these sources while remaining relatively robust to
changes in other (task-irrelevant) brain activity. The
idea is to keep spatial patterns fixed rather than spa-
tial filters, when transferring from training to test ses-
sions or from one time window to another. We show
that a fixed spatial pattern (FSP) approach, using a
moving-window estimate of signal covariances, can be
more robust to non-stationarity than a fixed spatial
filter (FSF) approach.

INTRODUCTION

Since EEG data are highly spatially blurred, it is often
beneficial to apply a spatial filtering algorithm such as
Independent Component Analysis (ICA) or the Com-
mon Spatial Pattern (CSP) method. Either method
may return a (let’s assume, square) matrix W such
that sources S are estimated from data matrix X (s sen-
sors by t time samples) by premultiplication S = WX.
Each row of W gives us a spatial filter , i.e. a vector of
sensor weightings for estimating one source signal. We
refer to the columns of the mixing matrix A = W−1

as spatial patterns: each one shows, for a given source,
that source’s relative amplitude as received at the s
different sensors.

It is common practice to obtain spatial filters on one
set of data X1 (computing W from the training trials
only, using ICA or CSP), infer which sources are rel-
evant to the task, and then apply the corresponding
rows of W to some new test data X2 (perhaps from a
subsequent feedback session). A potential drawback is
that an optimized spatial filter can only be guaranteed
to remain optimal for estimating a given source as long
as the spatial patterns of the other sources remain con-
stant: changing any column of A may easily affect all

rows of A−1. So a spatial filter optimized for listening
to a particular part of the motor cortex in the presence
of, say, prominent frontal-cortex activity may look dif-
ferent from a spatial filter optimized for listening to
the same source in the presence of prominent occipital
activity. It seems reasonable to hypothesize that, over
the course of a motor-imagery BCI experiment, the
spatial patterns for relevant sources will change rela-
tively little (we will assume that the positions of the
sources in the motor cortex, and the spectral content
of the signals they generate, are relatively constant).

By contrast we might expect the spatial patterns in
the rest of the decomposition to change more signif-
icantly, particularly in transfer between training and
feedback sessions (when conditions of visual stimula-
tion and general arousal change), but also perhaps with
regard to other factors like tiredness, hunger, thirst or
cognitive activity. For this reason, we outline a simple
approach based on fixed spatial patterns (FSP) rather
than fixed spatial filters (FSF).

FIXED SPATIAL PATTERN (FSP) DEMIXING

Both ICA and CSP can be seen as performing a whiten-

ing or decorrelation, followed by a rotation, in the s-
dimensional space of sensors:

S = WX = RPX
X = AS = P−1R−1S.

The whitening matrix P can be any matrix such that
P>P = Σ−1, where Σ is the sensor covariance ma-
trix. The rotation matrix R is optimized according to
some criterion (class difference in projected variance
for CSP, independence of outputs for ICA). Let us as-
sume that we have used one of these methods to esti-
mate P1 and R1 from training data X1, and have parti-
tioned the mixing matrix A1 into two sets of columns,

A1 = [A
[r]
1 : A

[i]
1 ] corresponding to the task-relevant

and irrelevant sources respectively. We then observe
test data X2 and estimate a new P2 from it. We now
want a new R2 that will best separate our sources, but
under the constraint that the relevant columns of the
resulting A2 be the same as they were in A1.
As in the spatially constrained ICA (SCICA) approach
described in [1], we partition R−1

2 into constrained and
unconstrained columns, [C : U]. The FSP constraint

gives us C = P2A
[r]
1 . Since it is unlikely that P1 = P2,

we cannot assume that columns C are orthonormal.
However, like [1] we will assume that C and U occupy
orthogonal subspaces. This allows us to write R2 as a
vertical concatenation of pseudoinverses, to obtain:

W2 = R2P2 = [C : U]
−1

P2 =

[

(C>C)
−1

C>

(U>U)
−1

U>

]

P2.

If, like [1, 2], we were using this technique to correct the

EEG for artifacts with known spatial patterns A
[r]
1 , we

would then have to proceed to optimize the U (making
the further assumption that columns U are orthonor-
mal) in order to estimate the remaining sources. How-
ever, since we have already decided that the remaining

1



sources are irrelevant, we can ignore the lower rows of
W2 and hence U. Substituting for C, we obtain:

W
[r]
2 = (A

[r]
1

>Σ−1
2 A

[r]
1 )

−1
A

[r]
1

>Σ−1
2 (1)

This simple formula requires only the fixed spatial pat-

terns A
[r]
1 and a new estimate Σ2 of the covariance of

the sensor signals from which we want to extract the
corresponding sources.

DEMONSTRATION

We present a preliminary illustration that this ap-
proach can make motor-imagery BCI classification
more robust to changes in task-irrelevant brain activ-
ity. We use 7 two-class data sets. The first is the
118-channel EEG dataset IVc from BCI Competition
III: we took the 500–1500 msec interval of each trial in
both training and test set, with the 0 class removed,
resulting in 210 training trials and 280 test trials of
left-hand/foot motor imagery. The other 6 are imag-
ined left/right hand movement data sets from our lab,
each consisting of 400 trials of 39-channel EEG. We
use the first 200 as training and the second 200 as test
points.
First, we perform ordinary CSP on the training trials
with a wide-band (7–30 Hz) temporal filter. We invert
the full s-by-s filter matrix and keep the first 4 and

last 4 spatial patterns as our A
[r]
1 . Next, we track the

activity of the sources associated with these 8 patterns
throughout the whole data set (training and test tri-
als). For each trial i, we obtain spatial filters Wi using
equation (1) with a moving estimate of the covariance:
each Σi is obtained from the last n trials including the
current one, i.e. trials (i − n + 1) . . . i. After applying
the spatial filter, we compute the log amplitude spec-
trum using the Welch’s short-time Fourier transform
method. We then normalize the vector of amplitude
features for each trial and source. Using this feature
set, we then classify using a linear Support Vector Ma-
chine, finding the regularization parameter by 10-fold
cross-validation within the training set.
The one hyperparameter that needs to be set is the
size of the moving window, n. In practice this could
be found by cross-validation, or perhaps by adding a
known artificial signal to the data, in a known artificial
spatial pattern, and empirically determining the value
of n that allows it to be recovered most accurately.
Here, we simply present the results for each of a range
of values, to see its effect on test set performance.
In Figure 1, filled symbols show the results for data set
IVc (circles) and for the average of the 6 subjects in
the other study (triangles)—the individual subject re-
sults were broadly consistent with the average, but we
do not have space to show them individually here. The
dashed lines show, for comparison, the performance of
a fixed spatial filter approach analogous to ordinary
CSP-based methods: the Wi were simply the original
filters found using the training trials, held constant for
all trials. We can see that, for a sufficient window size,
say n ≥ 20, the moving-window FSP approach does

not perform significantly better or worse than the FSF
approach.
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Figure 1: Performance of FSP and FSF methods.

At this preliminary stage we cannot say whether the
algorithm is not sensitive enough to non-stationarities
in the data to improve performance, or whether these
particular data sets do not suffer from a significant
non-stationarity problem in the first place (our six data
sets were all single-session without feedback). How-
ever, we can demonstrate the moving-window FSP ap-
proach’s robustness to non-stationarity by introducing

non-stationarity into the data. In a second set of tests,
we added two Gaussian noise sources to the test tri-
als only. This introduces a difference in the training
and test distributions, resulting in clear problems for
the FSF method (dotted lines). Both artificial noise
sources had fixed spatial patterns (chosen randomly),
but their amplitudes drifted over time: one increased
linearly from a/2 to 2a over the course of the entire
test set, and the other decreased from 2a down to a/2,
with a chosen such that the FSF method suffered about
a 10–15% degradation in performance. Open symbols
show performance on the noisy data. Comparison of
the filled and open symbols shows that the introduction
of non-stationary noise into the test set did not greatly
affect the moving-window FSP method’s performance
(hardly at all for some subjects, like IVc), and hence it
performed better than the FSF approach for nearly all
values of n. This suggests that it is a promising candi-
date for dealing with non-stationarities in EEG data,
although a wider range of data sets will be required in
order to see whether it is effective at coping with the
kind of non-stationarities that occur in reality.
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