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Abstract—Brain–computer interface (BCI) research at the Wadsworth
Center has focused primarily on using electroencephalogram (EEG)
rhythms recorded from the scalp over sensorimotor cortex to control
cursor movement in one or two dimensions. Recent and current studies
seek to improve the speed and accuracy of this control by improving the
selection of signal features and their translation into device commands, by
incorporating additional signal features, and by optimizing the adaptive
interaction between the user and system. In addition, to facilitate the
evaluation, comparison, and combination of alternative BCI methods, we
have developed a general-purpose BCI system called BCI-2000 and have
made it available to other research groups. Finally, in collaboration with
several other groups, we are developing simple BCI applications and are
testing their practicality and long-term value for people with severe motor
disabilities.

Index Terms—Augmentative communication, brain–computer interface
(BCI), conditioning, electroencephalography (EEG), mu rhythm, rehabili-
tation, sensorimotor cortex.

I. INTRODUCTION

In awake people, primary sensorimotor cortical areas often display
8–12-Hz electroencephalographic (EEG) activity when not engaged
in processing sensory input or producing motor output [1]–[3], (re-
viewed in [4]). This idling activity—called mu rhythm when focused
over somatosensory or motor cortex, and visual-alpha rhythm when
focused over visual cortex—is thought to be produced by thalamocor-
tical circuits [4], [5]. Mu-rhythm activity comprises a variety of dif-
ferent 8–12-Hz rhythms and is usually associated with 18–26-Hz beta
rhythms [6]–[9]. Mu and beta rhythms wax and wane in association
with actual movement or imagination of movement [9]–[12].

In our brain–computer interface (BCI) studies, people with or
without motor disabilities (e.g., amyotrophic lateral sclerosis, cerebral
palsy, spinal cord injury) learn to control mu- and/or beta-rhythm
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amplitudes to move a cursor in one or two dimensions to choices on a
computer screen [13]–[15]. Fig. 1(a) illustrates the basic phenomenon.
In this example, the user controls vertical cursor movement by
controlling the amplitude of a 12-Hz mu rhythm focused over left
sensorimotor cortex. The frequency spectra indicate that control is
focused in the mu-rhythm band and to a lesser extent in a beta-rhythm
band.

In our standard protocol, a linear equation translates mu-rhythm or
beta-rhythm amplitude from one or several scalp locations into cursor
movement 10 times/s. Users learn over a series of 40-min sessions to
control the cursor. They participate in 2–3 sessions per week, and most
demonstrate significant control within 2–3 weeks. In initial sessions,
users typically employ some form of motor imagery (e.g., imagination
of hand movements, whole body activities, relaxation, etc.) to control
the cursor. As training proceeds, imagery usually becomes less im-
portant, and users report that they move the cursor just as they per-
form normal movements, that is, without thinking about the details of
performance.

While EEG from only one or two scalp locations control the cursor
online, data from 64 locations over the entire scalp (recorded with an
electrode cap) are stored for subsequent offline analysis. This anal-
ysis defines the full topography of EEG changes associated with target
position, detects non-central nervous system (CNS) artifacts such as
electromyographic (EMG) or electrooculographic (EOG) activity, and
helps guide improvements in online operation. It relies largely on the
measurer2, the proportion of the total variance in mu- or beta-rhythm
amplitude that is accounted for by target position and thereby reflects
the user’s level of EEG control. For example, ther

2 topographical anal-
ysis in Fig. 1(a) shows that control is sharply focused over left senso-
rimotor cortex and in the mu- and beta-rhythm frequency bands. This
measure correlates well with the accuracy of target selection, and, thus,
can be used in offline analysis to identify alternative signal features that
are likely to improve performance [16].

With this control, users can move the cursor to answer spoken
yes/no questions with accuracies>95% [17], [18]. They can also
achieve independent control of two different mu- or beta-rhythm
channels and use that control to move a cursor in two dimensions [19].
Recent work has concentrated on developing precise one-dimensional
control, and on applying it to choosing among up to eight different
selections. Users have achieved information transfer rates up to
20–25 b/min [20], [21].

II. CURRENT AIMS

Our research has concentrated on defining the topographical, spec-
tral, and temporal features of mu- and beta-rhythm control and on op-
timizing the mutually adaptive interactions between the user and the
BCI system. Our central goal is to improve the speed and accuracy of
BCI communication and to show that it can serve the practical needs of
people with severe motor disabilities. In accord with this goal, we are
focusing on four major aims.

A. Optimizing Feature Selection, Extraction, and Translation

We are evaluating alternative methods for selecting and extracting
the signal features, that is, the mu- and beta-rhythm amplitudes that
control cursor movement. This evaluation includes assessments of ad-
ditional signal processing methods, recording locations, and frequency
bands. For example, we have found that the choice of spatial filtering
method is critically important. For mu and beta rhythms, a common
average reference or a large (6-cm interelectrode distance) Laplacian
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Fig. 1. (a) Sensorimotor-rhythm control. A trained BCI user controls vertical cursor movement to targets located at four possible vertical positions. Mu-rhythm
(12-Hz) amplitude from the scalp over left sensorimotor cortex controls the cursor. Left top: Voltage spectra over left sensorimotor cortex for the top target (solid
line), the next-highest target (long-dashed line), the third-highest target (short-dashed line), and the lowest target (dotted line). Left bottom: CorrespondingR
spectrum showing the proportion of variation in voltage accounted for by target height. The user has developed control that is sharply focused in the mu-rhythm and
beta-rhythm frequency bands. Right: Scalp topography (with nose at top) of the user’s mu-rhythm control (again expressed asR ). The user’s control is sharply
focused over sensorimotor cortex (modified from [16]). (b) Distinguishing sensorimotor-rhythm control from non-EEG artifacts. Left: Spectra of activity recorded
over sensorimotor cortex from a well-trained BCI user. In the top graph, she is using a 10-Hz mu rhythm to control cursor movement to top (solid) or bottom
(dashed) targets. In the middle graph, she is gritting her teeth (solid) or simply sitting quietly (dashed). In the bottom graph, she is blinking her eyes rapidly (solid)
or simply sitting quietly (dashed). The sharply focused EEG control evident in the top graph is easily distinguished from the non-EEG artifacts in themiddle and
bottom graphs [15]. Right top: AverageR scalp topographies (with nose at top) for 25 adults at 26 Hz for 15% frontalis muscle contraction versus relaxation and
15% temporalis contraction versus relaxation. (TheR scale shows significant effects: the lowest (i.e., white) values are significant atp < 0.01 and the highest (i.e.,
black) are significant atp < 0.00001.) These topographies of EMG artifact are focused on the periphery near the contracting muscle group, and are, thus, clearly
distinguishable from the topographies of actual sensorimotor-rhythm control [e.g., Fig. 1(a) right]. Right bottom: Average voltage spectra over left sensorimotor
cortex during relaxation (dotted line) and during weak (15% maximum) contraction of frontalis or temporalis muscles. The effect of EMG is broadly distributed
over the spectra, and is, thus, readily distinguished from the sharply focused effect of actual sensorimotor-rhythm control [e.g., Fig. 1(a) left, 1(b) left top] [30].
(c) Error potential associated with BCI operation. Average miss-minus-hit EEG traces at the vertex (electrode Cz) from 0.92 s before the end of a cursor-movement
trial to 1.08 s afterward (left), and scalp topographies for 40-ms periods (indicated by bars in the traces) near the positive peak of the error potentials (right), for
four users (A–D) and for all users together. The horizontal dashed lines indicate zero voltage. Each user shows a positive error potential focused at the vertex that
might be used online to help detect and cancel errors [27]. (d) BCI-2000 spelling program and user. The cursor moves steadily across the screen from left to right
with its vertical movements controlled by the amplitudes of mu and/or beta rhythms recorded from the scalp over sensorimotor cortex. With this vertical control,
the user selects among the four choices arrayed along the right edge. Each letter is chosen by a sequence of three selections [36].

filter is clearly superior to a monopolar or small (3-cm interelectrode
distance) Laplacian filter [22]. Other improvements include autoregres-
sive frequency analysis that gives higher resolution for short time seg-
ments and, thus, permits more rapid device control [15].

We are also assessing the value of combining amplitudes from dif-
ferent frequency bands and/or different locations. A model that in-
cludes an interaction between the components can be better than one
that includes only simple linear effects [23]. We are exploring the value
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of continual online adaptation of the weights accorded to amplitudes
in specific frequency bands at specific locations in the linear equations
that control cursor movements. Such adaptation can respond to changes
in the user’s EEG control, and hopefully both accommodate and en-
courage improvements in that control [21].

In addition, we are also exploring other options for the translation al-
gorithm that converts these features into cursor movements. Up to the
present, we have used linear equations for two reasons. First, we have
as yet encountered no clear evidence that more complex methods pro-
duce better BCI performance. Second, the continual automatic online
adjustments in the translation algorithm that are essential for consis-
tent performance are much simpler for linear equations and generally
require fewer data [24]. In these evaluations (e.g., [25]), we use as the
primary measure of performance information transfer rate, or bit rate, a
standard measure of communication capacity that combines speed and
accuracy.

B. Incorporating Additional Signal Features and Avoiding Non-EEG
Artifacts

We are also exploring the benefits of using other EEG signal
features, in combination with or instead of mu and beta rhythms,
e.g., evoked potentials or other time-domain signals. Offline analyses
indicate that mu- and/or beta-rhythm cursor control is associated
with time-domain signals that are correlated with the position of the
target and might, therefore, be used to improve performance [26].
As illustrated in Fig. 1(c), in well-trained users, incorrect selections
are associated with an error potential, a positive potential centered at
the vertex, that might be used to identify and cancel mistakes [27].
Other error-related signals may be useful in initial user training [28].
Additional efforts are evaluating the possibilities for combining slow
cortical potentials with mu/beta rhythms to improve performance.
We are also investigating the use of P300 potentials [29].

With any of these features, it is important to ensure that the features
are not contaminated by EMG, EOG, or other non-CNS artifacts. As
shown in Fig. 1(b), we continue to address the issues of the identifica-
tion and elimination of EMG artifact in EEG signals. A recent study
defined in detail the topographical and spectral characteristics of EEG
contamination by EMG from frontalis and temporalis muscles [30].

C. A General-Purpose BCI Research and Development System

Up to now, BCI research has demonstrated that a variety of different
methods using different brain signals, signal analyses, and operating
formats can convey a person’s commands to a computer [31]. Future
progress that moves from this demonstration stage to systematic eval-
uation of a variety of BCI methods and ultimately to practical appli-
cations of long-term value to those with motor disabilities requires a
flexible general-purpose BCI system that can incorporate, compare,
and (if indicated) combine these different methods, and can support
generation of standard protocols for the clinical application of this new
communication and control technology. In response to this need, we
are developing, using, and providing to other labs a general-purpose
BCI system, called BCI-2000 [29], [32], [33].

BCI-2000 can implement alone or in combination any of the dif-
ferent possible BCI methods. It is based on a four-module framework
[i.e., Source (signal acquisition and storage), Signal Processing, User
Application, and Operator (control protocol)] that describes any BCI
system. It stores all data (e.g., raw brain signals and all events asso-
ciated with online operation) in a standard format. The four modules
communicate via a documented protocol and are independently modi-
fiable. The system has export capabilities to ASCII and Matlab. While
its main goal is to facilitate laboratory research studies, BCI-2000 also
supports actual practical applications of BCI technology. BCI-2000 can

currently use mu and beta rhythms, slow cortical potentials, P300 po-
tentials, and single-neuron activity in conjunction with a variety of user
applications. It is available with appropriate documentation to other re-
search groups free of charge [29], [32], [33].

D. Clinical Applications

The ultimate importance of BCI technology hinges on its clinical ap-
plications, that is, to what degree it can provide to people with motor
disabilities useful communication and control capacities. The first im-
portant applications are likely to be very simple communication tools
for those with the most severe motor disabilities, such as those locked in
by amyotrophic lateral sclerosis, brainstem stroke, or cerebral palsy. In
collaboration with investigators at Drexel University, Philadelphia,PA,
and at the University of Tuebingen, Tuebingen, Germany, we are de-
veloping and studying BCI operation in such potential users and plan
to evaluate the long-term value of simple communication applications
[34], [35]. We are focusing initially on simple letter/icon selection de-
vices that use mu/beta rhythms, slow cortical potentials, or P300 po-
tentials as the signal features that communicate the user’s intent [e.g.,
Fig. 1(d)].

III. CONCLUSION

The Wadsworth Center BCI Research and Development Program
now focuses on: 1) increasing BCI performance by broadening and
improving the selection and extraction of signal features and their
translation into device commands; 2) developing and distributing a
general-purpose BCI system that supports comparison and combina-
tions of alternative methods; and 3) validating the long-term value
of BCI applications for improving the communication and control
capacities and quality of life of those with severe motor disabilities.
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