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Abstract
The link between object perception and neural activity in visual cortical areas is a problem

of fundamental importance in neuroscience. Here we show that electrical potentials from

the ventral temporal cortical surface in humans contain sufficient information for spontane-

ous and near-instantaneous identification of a subject’s perceptual state. Electrocortico-

graphic (ECoG) arrays were placed on the subtemporal cortical surface of seven epilepsy

patients. Grayscale images of faces and houses were displayed rapidly in random

sequence. We developed a template projection approach to decode the continuous ECoG

data stream spontaneously, predicting the occurrence, timing and type of visual stimulus. In

this setting, we evaluated the independent and joint use of two well-studied features of brain

signals, broadband changes in the frequency power spectrum of the potential and deflec-

tions in the raw potential trace (event-related potential; ERP). Our ability to predict both the

timing of stimulus onset and the type of image was best when we used a combination of

both the broadband response and ERP, suggesting that they capture different and comple-

mentary aspects of the subject’s perceptual state. Specifically, we were able to predict the

timing and type of 96% of all stimuli, with less than 5% false positive rate and a ~20ms error

in timing.
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Author Summary

We describe a new technique for decoding perception from electrical potentials measured
from the human brain surface. All previous attempts have focused on the identification of
classes of stimuli or behavior where the timing of experimental parameters is known or
pre- designated. However, real world experience is spontaneous, and to this end we
describe an experiment predicting the occurrence, timing, and types of visual stimuli per-
ceived by human subjects from the continuous brain signal. In this experiment, human
patients with electrodes implanted on the underside of the temporal lobe were shown pic-
tures of faces and houses in rapid sequence. We developed a novel template-projection
method for analyzing the electrical potentials, where, for the first time, broadband spectral
changes and raw potential changes could be contrasted as well as combined. Our analyses
revealed that they carry different physiological information, and, when used together,
allow for unprecedented accuracy and precision in decoding human perception.

Introduction
How does a two-dimensional pattern of pixels measured by our retina get transformed into the
percept of a friend’s face or a famous landmark? It is known that the ventral temporal cortex
represents different classes of complex visual stimuli within distinct regions. For example, cate-
gory-selective areas have been established unambiguously at scale of several millimeters using
functional imaging and macroscale field potentials [1–4]. Similar results have also been dem-
onstrated at the single-unit level in epileptic human patients [5] and non-human primates [6].
More recently, high frequency electrocorticographic (ECoG) changes from these same ventral
temporal regions have been shown to increase while viewing images of faces, places, and other
objects [7–10]. However, rather than reflecting a discrete range of frequencies, >40Hz ECoG
changes have been shown to instead be a reflection of broadband fluctuations across the entire
frequency domain [11,12], and these broadband changes show robust increases across ventral
temporal cortex during object perception [13].

Object-category specific responses in inferotemporal cortex were initially identified using
event-related potentials (ERPs) in ECoG [14,15] or functional magnetic resonance imaging
(fMRI) [1–4] although little spatial overlap was found between the ERP and the fMRI response
[16]. In contrast, increases in high-frequency broadband power in cortical surface potentials
recorded using ECoG matched well with the category-specific fMRI responses in the inferior
temporal cortex [17,18]. The ERP and broadband signals show distinct, and partially overlap-
ping, responses to faces [13,19] (Fig 1), but it is unclear whether the information content is
itself distinct between the two. While both the ERP and the raw ECoG potential have previ-
ously been used to classify object categories [20–22], these studies required knowledge about
the time of stimulus onset, rather than determining them spontaneously. Furthermore, the
ability of the algorithms to establish object category from neural data was well below that of
human performance (both in terms of accuracy and temporal fidelity).

A significant methodological obstacle to this type of macroscale physiology has been the dif-
ficulty interpreting heterogeneity in response morphologies. As illustrated in Fig 1, face-selec-
tive ERPs may have wide structural variation, with “peaks” and “troughs” that are very
different in shape, latency, and duration, even when measured from brain sites separated by
only 1cm. It remains unclear what the ERP shape actually corresponds to. Furthermore, meth-
odology has not previously been developed to naively place morphologically-diverse ERPs in a
common feature space. In contrast, broadband spectral changes in the ECoG signal have been
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shown to correlate with neuronal firing rate [23,24], although it has been unclear how ERPs
relate to this, or what the best way to attempt such a comparison is [19]. Our work begins by
describing a template-projection technique, where templates of averaged raw potentials (ERPs)
and broadband changes (ERBB) from a training period are projected into the data from a test-
ing period. This places ERP and ERBB features from different brain sites into a common fea-
ture space, where they can be directly compared with one another, and used together for
decoding brain function.

Fig 1. The basic face and house discrimination task, and the polymorphic nature of the electrophysiologic response. (A) Subdural
electrocorticographic (ECoG) electrode strips were placed through burrholes in the skull onto ventral temporal brain surface. 4 adjacent sites are shown for
subject 1. (B) Simple luminance- and contrast-matched grayscale faces and houses that were displayed in random order for 400ms each, with 400ms blank
gray screen inter-stimulus interval between each picture. Subjects were asked to report a simple target (an upside-down house, which was rejected from
analyses). From the raw potential, the time course of broadband spectral change was extracted from each brain site (here sites 1&4 from (A)). Blue = faces;
pink = houses. (C) The averaged raw potential (ERP) following face (blue) and house (pink) stimuli for the 4 sites in (A). (D) The averaged broadband power
following different stimuli (ERBB–a reflection of averaged neuronal firing rate), from sites 1–4 in (A). (E-G) ERBB and ERP for 2 sites over fusiform gyrus in
subjects 2–4. Note that the responses are highly polymorphic for the event-related potentials, and that there are ERP face-selective sites that do not have the
classic N200 shape. As seen for site 2 in Subject 4, the classic N200, when present, does not guarantee face-selectivity in the ERBB.

doi:10.1371/journal.pcbi.1004660.g001
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To date, decoding of perceptual content has relied upon designated information about
external stimuli, where the frequency of occurance and precise timing are known to the
decoder. We propose that in addition to identifying the perceptual content (e.g. image type),
decoding of the brain state should evolve to spontaneously identify whether a perceptual event
has happened from the datastream, and, if so, predict the timing as accurately as possible. We
denote this practice as “spontaneous decoding”.

Here we show that the ECoG signal contains sufficient information to allow near-instanta-
neous identification of object categories with an accuracy comparable to that of human behav-
ioral performance. Our experiments measured ECoG recordings from several inferior
temporal visual areas simultaneously while subjects viewed randomly interleaved images of
faces or houses. We achieved the best results by combining broadband changes with raw poten-
tial changes (rather than with either independently), using a template projection approach.
This shows that the two types of signals capture complementary aspects of the physiology
reflecting a human subject’s perceptual state. With this combination, we were able to predict
96% of all stimuli correctly as face, house, or neither, with only ~20 ms error in timing.

Methods

Ethics statement
All patients participated in a purely voluntary manner, after providing informed written con-
sent, under experimental protocols approved by the Institutional Review Board of the Univer-
sity of Washington (#12193). All patient data was anonymized according to IRB protocol, in
accordance with HIPAA mandate. A portion of this data appears in a different context in [13].
All data and analyses are publically available at http://purl.stanford.edu/xd109qh3109.

Subjects and recordings
All 7 subjects in the study were epileptic patients (S1 Table) at Harborview Hospital in Seattle,
WA. Subdural grids and strips of platinum electrodes (Ad-Tech, Racine, WI) were clinically
placed over frontal, parietal, temporal, and occipital cortex for extended clinical monitoring
and localization of seizure foci. Lateral frontoparietal electrode grids were discarded from anal-
ysis, and only strip electrodes were further considered. The electrodes had 4 mm diameter (2.3
mm exposed), 1 cm inter-electrode distance, and were embedded in silastic. Electrode locations
relative to gyral surface anatomy were determined by projection of the post-implant CT to the
pre-operative axial T1 using normalized mutual information in SPM, and the CTMR package,
with Freesurfer-extracted cortical surface mesh reconstructions [25–28]. When the MRI or CT
was of insufficient quality, hybrid techniques were used [29].

Experiments were performed at the bedside, using Synamps2 amplifiers (Neuroscan, El
Paso, TX) in parallel with clinical recording. Stimuli were presented with a monitor at the
bedside using the general-purpose BCI2000 stimulus and acquisition program [30]. The elec-
trocorticographic potentials were measured with respect to a scalp reference and ground, sub-
jected to an instrument-imposed bandpass filter from 0.15 to 200 Hz, and sampled at 1000 Hz.

To reduce common artifacts, the potential, V0
nðtÞ, measured at time t in each electrode n,

was re-referenced with respect to the common average of all N electrodes,

VnðtÞ ¼ V0
nðtÞ � 1

N

XN
i¼1

V0
i ðtÞ. Electrodes with significant artifact or epileptiform activity were

rejected prior to common averaging. There was no rejection of epochs of time within the data.
Ambient line noise was rejected by notch filtering between 58–62 Hz using a 3rd-order Butter-
worth filter [31].
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Face-House discrimination task
Subjects performed a basic face and house stimulus discrimination task. They were presented
with grayscale pictures of faces and houses (luminance- and contrast-matched) that were dis-
played in random order for 400ms each, with 400ms blank screen inter-stimulus interval (ISI)
between the pictures. The 10cm-wide pictures were displayed at ~1m from the patients while
they were seated at the bedside (Fig 1). There were 3 experimental runs with each patient, with
50 house pictures and 50 face pictures in each run (for a total of 300 stimuli). In order to main-
tain fixation on the stimuli, patients were asked to verbally report a simple target (an upside-
down house), which appeared once during each run (1/100 stimuli). There were few errors in
reporting the upside-down target house in any run (approximately 2–3 across all 21 experi-
mental runs).

Power spectral analysis, and decoupling the dynamic power spectrum to
obtain the timecourse of broadband spectral change (fully detailed in the
Supplemental material, S1 Text and S2 Text)
Following previously described methodology [11,32,33], we perform discrete estimates of the
windowed power spectrum, as well as a time-frequency approximation of the dynamic power
spectrum from Vn(t). We then perform a “decoupling process” to identify underlying motifs in
power-spectral change, isolating the timecourse of broadband spectral change, Bn(t). This pro-
cess was originally described and illustrated in full detail for ECoG recordings from motor cor-
tex [11], and later illustrated specifically for this face-house context [12]. Broadband changes
have been shown to robustly characterize the magnitude and latency of cortical dynamics from
ventral temporal cortex, in single trials, during this face and house viewing experiment [13].
Generically, the broadband power time course is meant to function as a time-varying estimate
of changes in a multiplicative factor of the population firing rate [11,24].

Decoding
Cross-validation. Prior to further analysis, the data were divided into thirds temporally

(e.g. divided into experimental runs). Subsequent analyses were then performed in a 3-fold
fashion. In each cross-fold, two thirds (two runs) of the data were assigned to a “training” set,
and the remaining third was assigned to a “testing” set (In bold throughout for emphasis). In
this way, all data could be used for both testing as well as training, but never at the same time
(to maximize use without “double-dipping”, which is simultaneously testing and training on
the same data). However, the spectral decoupling process was performed only once, across all
data, rather than cross-folded (the decoupling process is ignorant of class-labels, or timepoint
selection).

Template projection technique. Stimulus triggered averaged raw potential and broadband
template: In each electrode n, stimulus-triggered averages of the training data were obtained
for the common-averaged electric potential for the face (S! F) and house (S! H) stimuli
independently (tks denotes the k

th of NS total instances of stimulus type S in the training set):

hVnðt0Þi0S ¼
1

NS

XNS

ks¼1

Vnðtks þ t0Þ:

This quantity is only calculated on the peri-stimulus interval −199< t'� 400 ms (where t'
denotes time with respect to stimulus start). It is then re-centered by subtracting the average
potential peri-stimulus baseline on the interval −199< t'� 50, (50ms post-stimulus is chosen
to correspond with ERP and broadband ECoG latency to primary visual cortex [33,34]) to
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obtain hVn(t')iS :

hVnðt0ÞiS ¼ hVnðt0Þi0S �
1

250

X50
t}¼�199

hVnðt}Þi0S

We perform the same averaging over the training data for the broadband signal to obtain
hBn(t')iS. Examples of these response templates, hVn(t')iS and hBn(t')iS are illustrated through-
out the manuscript.

Projection of templates into pre-defined times of stimuli onset (illustrated in Fig 2).
hVn(t')iS and hBn(t')iS were generated from the training period.

Training feature points were obtained by back-projecting hVn(t')iS and hBn(t')iS into the
training period to obtain sets GV

n;SðqÞ and GB
n;SðqÞ for each event q at time τq:

GV
n;SðqÞ ¼

X400
t0¼�199

hVnðt0ÞiSðVnðtq þ t0Þ � Vb
nðtqÞÞ, where Vb

nðtqÞ represents an “instanta-

neous” baseline surrounding time τq: Vb
nðtqÞ ¼

X50
t¼�199

Vnðt þ tqÞ. GB
n;SðqÞ were obtained in the

same fashion. The training event types q were face picture stimulus onset (q! F), house pic-
ture stimulus onset (q! H), or randomly chosen points during the inter-stimulus interval
(ISI, q! o), with 4 during each ISI period, at least 100ms from stimulus offset/onset and 50ms
from one another.

Fig 2. Decoding the stimulus class in single trials when the onset of a stimulus is known, subject 3. (A) Squared cross-correlation values at each
electrode. Training feature pointswere obtained by back-projecting the event triggered broadband, hBn(t')iF (see Methods), into the training data and
comparing projected face, GB

n;Fðq ! FÞ, and inter-stimulus interval (ISI), GB
n;Fðq ! oÞ, points. These r2n values are scaled by color, and plotted on an axial MRI

slice with scaling shown in the colored bar beneath. The electrodes meeting acceptance criteria r2n > 0:05 were selected as features for classification for the
face template. (B) As in (A), but for house stimuli from the training period. (C) Event-triggered broadband templates from the training period for face, hB1(t')iF,
and house, hB1(t')iH stimuli, from the electrode noted with a green arrow in (A-B). (D) As in (C), but from the electrode noted with an orange arrow. (E)
Projection of event-triggered face template from (C) into testing data: The top black trace shows a portion of the broadband time course from the electrode
noted with a green arrow, during the testing period, B1(t). The hB1(t')iF face template is shown in light blue at each stimulus time, irrespective of class, at event
testing times τp. The result of projecting the face template hB1(t')iF to B1(t) is shown in the green background trace, GB

1;FðtÞ, with testing points at defined face

stimulus times, GB
1;Fðp ! FÞ, shown with blue circles, and defined house stimulus times, GB

1;Fðp ! HÞ, shown with red circles. (F) As with (E), but for the

orange-arrow electrode, B2(t), and using the house template from (D), hB2(t')iH. (G) The subspace GB
1;F vs G

B
2;H, is used to illustrate discrete classification

approach. Here the back-projected training points GB
n;SðqÞ are shown with dots (blue for q! F and red for q! H), along with the testing feature points GB

n;SðpÞ
shown with circles. One may see that a simple decision line (purple) in this subspace would result in only 1 error.

doi:10.1371/journal.pcbi.1004660.g002
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Testing feature points for discrete classification, GV
n;SðpÞ and GB

n;SðpÞ, were similarly

obtained by forward-projecting hVn(t')iS and hBn(t')iS into the testing period for pre-defined
times of face or house picture stimuli onset events, p, at times τp. These results are illustrated in
Fig 3.

Projection of templates into continuous data stream (illustrated in Figs 4–6). To quan-
tify how well the averaged raw potential hVn(t')iS is represented in the voltage time series of the
testing data at time t, it is directly forward-projected onto the continuous time series at each

millisecond: GV
n;SðtÞ ¼

X400
t0¼�199

hVnðt0ÞiSðVnðt þ t0Þ � V t
nðtÞÞ, where V t

nðtÞ was obtained in the

same fashion as above. The same projection is performed for the broadband template hBn(t')iS,
to obtain GB

n;SðtÞ.
Generation of a projection feature space. The full feature space for classification, consist-

ing of the union of projections of the stimulus triggered average raw potentials (V) or broad-
band (B) across all electrodes (n), for faces (F) and houses (H) independently, is the
combination of GV

n;F , G
V
n;H , G

B
n;F , and G

B
n;H . For notational brevity, we can combine the notation

to denote each feature as Γm, wherem represents a unique combination of electrode n, V or B,
and F or H. Many of these features will not be particularly informative about when and how
the brain is processing these visual stimuli, and reduce classification in the setting of a limited
number of training measurements [35]. Therefore, features were individually downselected by
independently assessing their squared cross-correlation between events of each stimulus type
(e.g. face or house) and events drawn from the ISI during the training period, and rejecting
those which fell beneath a pre-defined threshold r2m < 0:05. For example, for projections of the
face event-related feature, Γn,F (V / B label dropped here) we can denote the average of face sti-

muli as r2n;F ¼ ðGn;F ðq¼FÞ�Gn;F ðq¼oÞÞ2
s2n;Fo

NF � No
N2
Fo

, where σn,Fo is the standard deviation of the joint distribu-

tion for face and ISI events Γn,F(q = F,o), NF is the number of face events, No is the number of

Fig 3. Classification accuracy when the onset of a stimulus is known, using ERP, ERBB, or both
template types. In some subjects, 100% accuracy was reached. All accuracies were above 90%when both
raw potential and broadband templates were used.

doi:10.1371/journal.pcbi.1004660.g003
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Fig 4. Decoding stimulus class and onset time from a continuous data stream in single trials: Illustration of two electrodes and the continuous
classifier using 2 broadband features (subject 2). (A) Two cortical sites (3 cm from one another) on the fusiform (green) and lingual (orange) gyri are
examined. (B) Broadband training templates from the green electrode for faces (blue, hB1(t')iF) and houses (pink, hB1(t')iH) are shown on the axes to the left.
Testing time course of green electrode broadband spectral change, B1(t), is shown to the right in black, with the projection of the face template hB1(t')iF into
B1(t) to produce GB

1;FðtÞ, shown in the green trace beneath. (C) As in B, but for the orange electrode site, using projections of a house template hB2(t')iH to

produce GB
2;HðtÞ. (D) The classification feature subspace is defined by back-projection of the templates on the left in (B-C), to obtain training points GB

n;SðqÞ for
face, house, and ISI events at training times τq shown. (E) In order to illustrate the multi-dimensional trajectory of the brain state that emerges when different
channels and features are brought into a common space, the 2D trace of GB

1;FðtÞ from the green electrode (B) versus GB
2;HðtÞ from the orange electrode (C), are

shown in black in the same subspace as D. The predicted onsets for face (blue) and house (red) stimuli are shown as plus symbols while actual onsets are
shown as open circles. Note that the classifier was applied to the entire broadband feature space, not just this 2D subspace. (F) The trajectory of the face
onset posterior probability from the classifier Pr{Γ(t)|q! F} (blue) is shown alongside Pr{Γ(t)|q! H} (pink), with predicted (plus symbols) and actual (open
circles) times shown.

doi:10.1371/journal.pcbi.1004660.g004
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ISI events, and NFo = NF + No. In this study, we consider feature spaces consisting of projec-
tions of all types (e.g. ERP and ERBB together), and also selectively assess B(t) and V(t) inde-
pendently. Example feature (sub)spaces are illustrated in Figs 2G and 4D and 4E and 5C and
6H–6L.

Classifier type and relation to feature space. We begin with the feature set of training
points (q, drawn from only the training period), Γm(q), where eachm is a dimension in the fea-
ture space, and represents a particular combination of electrode, broadband or raw potential
time series, and face or house template. For the sake of simplicity, Fisher linear discriminant
analysis (LDA) was used for classification [36]. This characterizes the full distribution and the
training period sub-distributions Γm(q! F), Γm(q!H), Γm(q! o), by their means and
covariances only (i.e., as if they are normally distributed). LDA assumes that the covariances of
the sub-distributions are the same. Given these training distributions, data from the testing set
can be assigned a posterior probability of belonging to each distribution. While we used simple
LDA, one could, in principle, apply more sophisticated kernel-based or non-linear methods.
Our choice of LDA was meant to simplify interpretation of our approach, which is centered on
the generation of “projection feature spaces”, and provide a clear demonstration of how one
may decode a continuous datastream spontaneously, rather than exploring the library of exist-
ing machine learning and classifier techniques, which is deferred to future study.

Classification of discrete events with known onset time (Fig 3). We began with the case
where we identify the timing of testing visual stimuli, and attempt to classify whether a face or
a house picture was shown. Only the face and house training point distributions (e.g. Γm(q! F)
and Γm(q! H)) were used to train the classifier for this discrete case. For each testing point, p,
the assigned class was whichever posterior probability Pr{Γ(p)|q! F}, or Pr{Γ(p)|q! H}, was
higher.

Spontaneous decoding of the continuous datastream (Fig 7). For the prediction of type
and timing of visual stimulus from continuous signal, we trained the classifier using the face
(Γm(q! F)), house (Γm(q! H)), and ISI (Γm(q! o)), training point distributions. Then, the
LDA posterior probability that a face or house stimulus has been shown at any point in time can
be measured from the testing data at each millisecond t as Pr{Γ(t)|q! F} or Pr{Γ(t)|q!H}.
We then smooth each of these posterior probabilities with a σ = 80ms Gaussian filter, for well-
behaved estimation of local maxima. From this, we assign predicted times for stimuli onset as fol-
lows: The posterior probability must be a local maximum, with value>0.51. There must be at
least 320 ms between any point and the nearest assigned point (of either stimulus type–the larger
posterior probability ‘wins’). A guess is considered correct if it lies within 160ms of an event. The
probability of the null case, Pr{Γ(t)|q! o} = 1 − Pr{Γ(t)|q! F} − Pr{Γ(t)|q! H}, is>0.50 at all
other times, signifying that a picture has not just been shown.

While no information was given about the frequency of the stimuli, it was assumed that
visual events were neuronally and behaviorally separable and a minimum difference of 320 ms
was used. We picked 320ms as the “collision time” because we expect the neuronal response to

Fig 5. Decoding the single trial stimulus class and onset time from a continuous data stream using ERP: Illustration of three electrodes and the
continuous classifier using 3 ERP-templates-to-voltage-timeseries projections (subject 4). (A) Three cortical sites are shown for illustration (purple,
orange, and green). The axes on the right show the r2n;F (blue asterisk, r2 of faces-vs-ISI) and r2n;H (pink box, r2 of houses-vs-ISI) of ERP-voltage training
projections show that these purple/orange/green sites are highly selective for faces or houses during the training period (from the 1st cross-fold). Features
falling below the black line were not used for decoding. (B) Averaged face and house ERPs, hVn(t')iF & hVn(t')iH, from each site are shown on the left axes.
These are projected into the raw voltage traces from the testing period (Vn(t), black) to obtain continuous projection weight traces (GV

n;F=H; green–face
projection from green electrode, orange–house projection from orange electrode, and purple–face projection purple electrode). These traces are fed into a
feature space and classified continuously to obtain posterior probability of a face, Pr{Γ(t)|q! F} (blue), or house stimulus, Pr{Γ(t)|q! H} (pink) (bottom plot).
(C) A 3-dimensional subspace (from the sites in A and B) is illustrated, with training points from the training period shown with dots, and the subspace
trajectory of the brain state, Γ(t), shown with a black line. Predicted and actual timing and type of stimulus are shown along this trajectory.

doi:10.1371/journal.pcbi.1004660.g005
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Fig 6. A combined ERBB-broadband and ERP-voltage projection feature space for classification (subject 5). (A) Two cortical sites (orange and green
dots) are examined. (B) The axes show the r2n;F (blue asterisk) and r2n;H (pink box) for ERP-voltage training projections show that these orange and green
sites are highly selective during the training period (from first cross-fold). (C) r2n for ERBB-Broadband training projections. (D) Averaged face and house
ERP templates from the green site are shown on the left axes (olive green). The face-ERP templates are projected into the raw voltage trace (black) to obtain
continuous a projection weight trace (olive green trace). (E) As in (D), but for ERBB-broadband templates in the green electrode site (neon green). (F&G) As
in (D&E), except for the orange electrode site in (A), using house ERP (brown) and ERBB (burned orange) templates. (H)Green electrode, face ERP vs
ERBB subspace projections. (I)Orange electrode house ERP vs ERBB subspace projections. (J) ERBB projection subspace (orange-electrode house-
template projection vs green-electrode face-template projection). (K) As in (J), for ERP projection subspace. (L) A 3-d subspace projection (features from D,
E,G). (M) Posterior probability of a face, Pr{Γm(t)|q! F} (blue), or house stimulus, Pr{Γm(t)|q! F} (pink), having been presented (wherem! ERP, ERBB or
both features for the projection space).

doi:10.1371/journal.pcbi.1004660.g006

Fig 7. Classification accuracy for decoding stimulus class and onset in a continuous data stream.
When both features were used (red bars), approximately 96% of all stimuli were captured correctly in every
subject, with 15–20 ms error. An average of 4% of predictions using both features were incorrect (i.e.,
predicted stimuli at the wrong time, or as the wrong class). One should not confuse the fraction of guesses
incorrect with the fraction of stimuli that were not captured (the bars on the top and bottom axes do not sum to
1)–it is a coincidence that also 4% of stimuli were missed.

doi:10.1371/journal.pcbi.1004660.g007

Spontaneous Decoding of Human Object Perception

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004660 January 28, 2016 12 / 20



take approximately that long [37], it makes for a random hit rate of 20% (e.g. 2.5 guesses per
800ms stimulus-to-stimulus interval, with 2 stimulus classes), and it roughly correlates with
the mean broadband latencies-to-peak across single trials in these brain areas, which were
found in other studies to be 269±52ms for face-selective ventral temporal sites and 299±66ms
for house-selective sites [13]. This threshold for the classifier is also based in the following
known aspects of the time scales of neuronal responses and face perception. First, when visual
stimuli are shown in rapid order, it becomes impossible to visually distinguish each stimulus at
specific rates for different stimulus classes [38,39]. For face perception this behavioral rate lies
around 5–10Hz [40]. At faster rates, backward masking and temporal integration become
issues. Second, the duration of a neuronal response in higher order visual areas is around
300 ms [41]. When stimuli are presented at faster rates than 300 ms each, neuronal responses
from these brain areas would be expected start overlapping. Supporting information (S1 Fig)
empirically shows that this choice of 320ms does not inform the classifier about frequency of
stimuli shown.

In the case of spontaneous decoding of the continuous timeseries, if one were to make ran-
dom guesses for events at the maximum permissible temporal density of guesses (using the
rules we picked in the methodology), each guess would have a 20% chance of being correct,
and 50% of stimuli would be deemed “captured”, with an 80% false positive rate, and an aver-
age temporal error of 80ms. Instead, 96% of stimuli (300 per subject) were captured, with a 4%
false positive rate, and an average temporal error of 20ms.

When examining timecourses of the projections (Γn(t)), as well as the resulting posterior
probabilities (Pr{Γ(t)|q}), it is important to keep in mind that the templates (hVn(t')iS and
hBn(t')iS) contain temporal information up to ~400ms later (illustrated in Figs 2–6). The local
maximum of the posterior probability is the assumed to be roughly the time at which the tem-
plates align with the average response in such a way that the average response would be at the
time of stimulus presentation. The portion of the signal that contributes the most to the cross-
correlation is likely to be in the 150–350ms following the timepoint, t (based upon visual
inspection of the templates and raw timecourses in Figs 1–6, as well as measured latencies in
[13]).

Results
ECoG signals were measured in seven subjects from electrodes implanted on the inferior tem-
poral visual areas for the purpose of epilepsy monitoring. Subjects were presented with pictures
of faces and houses (similar to those in Fig 1). We attempted to spontaneously identify the tim-
ing of face and house visual stimuli.

Signal features for decoding: Event-related broadband (ERBB) and
event-related potential (ERP)
To test whether the ERBB and ERP provide useful information to decode whether, when and
which class of stimulus was presented, we extracted the ERBB and ERP for all electrodes. Some
electrodes show a classical face-specific N200 response [13–15]. Other electrodes show face-
specific ERPs with very different shapes (Fig 1).

Decoding the stimulus class in single trials when the onset of a stimulus
is known
We first investigated whether the stimulus class could be decoded in single trials when the
onset of the stimulus is given. We calculated template ERBB and ERP responses from training
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data, which consisted of 2/3 of the recorded data (two experimental runs). The test data (for
the classifier) consisted of the other 1/3 (the remaining experimental run; i.e., 3-fold cross vali-
dation, or “leave-one-run-out” cross-validation). Fig 2 shows examples of the template ERBB
responses for a face- and a house-specific site. Even in a two-dimensional subspace of the full
feature space, a simple line serves as a good classification boundary between the two classes of
stimuli (Fig 2G).

Using either the ERP or the ERBB feature, stimuli could be robustly and reliably categorized
in all cases. The average prediction accuracy using the ERBB alone was 97% across all 7 sub-
jects, while using the ERP alone, it was 90% (Fig 3). Using a combination of the two features,
97% of stimuli could accurately be classified as face or house. It is important to note that, in
subjects 1 and 3, the addition of the ERP feature actually resulted in a decrease in classification
accuracy, when compared with the ERBB alone, and subject 7 shows no change. This is because
of what is known as the “bias-variance tradeoff” [42,43]. For a finite number of datapoints in a
training set, the inclusion of features with higher amounts of noise (ERP features in this case)
can hurt overall classification. The classifier overfits noise in the mediocre features (ERP), at
the expense of a tight fit to high-yield (lower noise) features (e.g. ERBB), while simultaneously
expanding the size of the feature space.

Spontaneous decoding of stimulus class and onset from a continuous
cortical data stream
Figs 2 and 3 demonstrate that our analyses can accurately determine the stimulus class when
given the timing of stimulus presentation. However, this type of decoding has been employed
before in other experimental settings, albeit with less accuracy [20–22]. The more interesting
technical question is: Can one spontaneously determine both the class and the onset of the sti-
muli from a continuous stream of ECoG signal features?

Our approach to the continuous decoding problem is illustrated in Figs 4–6, where template
responses from a training period were applied to a period of testing data. The result of plotting
the projection timeseries trajectory in a 2-dimensional subspace, ΓB(t), can be seen alongside
training points GB

n;SðqÞ in Fig 4. Even in this 2-dimensional subspace projection, the furthest

excursions of ΓB(t) into the face or house training clouds, GB
n;SðqÞ, correlate with the times of

predicted stimulus onset. Fig 5 shows an example similar to that in Fig 4, but for the ERP
feature. Fig 6 shows an example of the synthesis between ERP and ERBB features when used
together.

A combination between ERP and ERBB projections can be used to predict the onset timing
and class of stimuli more accurately than either independently. The spontaneous classification
of onset time and stimulus class was robust: 92% of stimuli were captured using the ERBB, 92%
when using the ERP, and 96% of all stimuli were captured spontaneously when using a combi-
nation of both ERP and ERBB (Fig 7, top row). Furthermore, timing of stimulus onset could be
predicted with approximately 20ms error when the ERP or a combination between the ERP
and ERBB was used (Fig 7, middle row). The portion of incorrect predictions (e.g. false positive
rate) was smallest (4%) when we used a combination of both the ERP and ERBB (i.e., predicted
stimuli occured at>160ms from stimulus onset, or as the wrong class; Fig 7, bottom row).

In order to evaluate whether using both features together (ERP and ERBB) was significantly
better than either independently, the labels of mean values (ERP vs ERBB vs ERP+ERBB) were
randomly reshuffled (within each subject) 104 times to obtain a surrogate distribution of differ-
ence in means averaged across all subjects. The 96% of events captured using both features was
significantly greater than the 92% when using either independently (p = 0.0015). The timing
error for correct predictions was not significantly different for both features (19ms) vs ERP
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(20ms, p = 0.17), but was significantly better than ERBB alone (32ms, p<0.0001). The false
positive rate using both features (0.04) was significantly less than either independently (ERP
0.11; ERBB 0.09; p = 0.0012). The fact that the overall best prediction performance was reached
by a combination of ERBB and ERP suggests that these two cortical features convey comple-
mentary information about a subject’s perceptual state.

Note that our 20ms estimate of the temporal fidelity of the signals may actually be an under-
estimate. There may be instrumentation temporal error introduced due to frame-jitter on the
refresh rate of the amplifiers, sample jitter during alignment to the stimulus, and/or the granu-
larity of sample block size of the signals imported to BCI2000 program [30]. Furthermore,
there are known variations in the magnitude and timing broadband responses that are related
to semantic properties (such as novelty [13]), that are disregarded in this manuscript.

We designate this technique as “Spontaneous decoding” of the ECoG datastream. Our tech-
nique processes the data, without foreknowledge of the frequency of external stimuli, nor their
timing, nor their content. It then produces predictions about the occurrence, timing, and con-
tent of external stimuli, based upon a simple set of internal rules. “Spontaneous” is defined as
[44]: “performed or occurring as a result of a sudden inner impulse or inclination and without
premeditation or external stimulus”, and so we feel that this term is the most specific way to
describe this analysis approach. While “endogenous” or “intrinsic” decoding might also have
been chosen, since these are used to describe internal brain states (which is an aspect of we are
actually decoding), we chose not to use them–we feel that these terms convey assumptions
about the role of the temporal lobe which have yet to be proven.

Discussion
In human experience, environmental stimuli arrive continuously, producing a sequentially
evolving perceptual state. It has remained unknown whether the brain surface electrical poten-
tial has sufficient spatiotemporal fidelity to capture this dynamically changing perceptual state.
Our results demonstrate that a sparse sample of the cortical surface potential contains sufficient
information to reliably predict whether and when a particular stimulus occurred, with approxi-
mately the fidelity of conscious perception. It has also remained unknown whether the meso-
scale neurophysiologies of event-related potentials and broadband spectral changes reflect the
same information.

Previous studies aimed at decoding perception have all pre-defined the onset time of each
stimulus [6,20–22,45,46]. In the first-stage of our analysis, we performed this type of classifica-
tion using pre-defined onset time, with 97% accuracy (Figs 2 and 3). Similar prior studies
attained representative peak accuracies of 72% with MEG/fMRI [22], 89% with EEG [20], and
94% with MEG [21]. However, real-world perception rarely occurs at pre-defined times, and
approaches to decoding perceptual experience should be extracted spontaneously from contin-
uous cortical recordings.

We have developed a technique to do just this, applying a novel template projection tech-
nique that enabled us to capture some aspects of the neural response that have previously been
difficult or impossible to capture. First, the ERP in face-selective regions in the fusiform gyrus
is classically associated with a negative peak at ~200ms (“N200”). Our data show that the actual
shape of face-selective fusiform ERPs can vary widely, even at fusiform sites 1 cm from one
another (Fig 1). The template projection technique captures these diverse response patterns,
allowing them to be exploited for classification of perceptual state. Second, broadband
responses show variability in the pattern of response in every individual trial. The template
projection method relies on a superposition of the single trial characteristic shape and a proba-
bility density function for modeling different shapes, offering a robust prediction of perceptual
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state in spite of the variability across single trials. Examination of the features separately dem-
onstrated that broadband changes are more robust and reliable reflections of perceptual con-
tent than raw-voltage changes, but that projection of ERP into raw voltage changes produces
sharper temporal precision. Together, these two measures complement one another, providing
independent information that results in more accurate and temporally precise prediction of the
perceptual state than either measure on its’ own.

Our decoding fidelity approaches that of conscious thought, correctly capturing 96% of all
stimuli from a sparsely-sampled stream of cortical potentials. The missed 4% (as well as the
<5% false positive rate) approaches what might be expected for rates of inattention by hospital
patients viewing multiple stimuli each second (note that random guessing at the maximum
rate in this spontaneous decoding would result in a 20% chance of each guess being correct,
and 50% of stimuli deemed “captured”, with an 80% false positive rate). A temporal precision
of ~20ms (Fig 7, middle row) is of the same order as the post-retinal temporal granularity of
the visual system [47]. These ECoG measurements show that some electrodes in early visual
cortex already display some stimulus-selective responses (e.g., Fig 5, purple site). This agrees
with observations that fast eye movements can be made just based upon the Fourier spectrum
of the images of different classes [48], and that people saccade towards a scene containing an
animal or face within 140 ms [49,50]. By demonstrating that object categories can be decoded
from a continuous image stream with accuracies matching expected human behavior (e.g.
attentional lapses expected at a rate of approximately 5% in a task of this type [51]), our study
lays the groundwork for capturing human perceptual states in a natural environment.

Although we applied this template-projection technique to prediction, the framework may
be used in a wide variety of experimental settings. ERPs from adjacent cortical regions may be
highly polymorphic, complicating cross-comparison of timing and magnitude effects. In this
projection space, however, trial-to-trial ERP variations from different cortical sites may be
compared directly, opening a new family of analyses that might be applied to cognitive settings,
where image content and context are experimentally manipulated on single trials. Similarly,
one might optimize the differential strengths of each feature, such as broadband for magnitude
of response and ERP for timing of response, comparing these to stimulus properties to learn
about subtleties of functional specialization in each brain region.

An important feature of this template projection approach is that it provides a robust, con-
tinuous, measure that is a summary statistic for how well the brain state at every point in time
reflects the expected response (e.g. as if a perceptual event or action had occurred at that time–
note that the shape of the expected physiological response, however idiosyncratic, is built into
the method). This could be extremely useful in settings where the cortical dynamics and latency
differ by region, yet a global behavior of a distributed visual [52], auditory [53,54], motor [55],
or other network must be characterized. In emerging work, this technique is implemented in a
different way, to generate broadband ECoG templates from a low-noise localizer task, and
apply them to a visual discrimination task at the perceptual threshold, quantifying single trial
variation in cortical physiology (neuronal response magnitude and timing) [56].

Our results beg the question: What is the underlying neural basis for the increased accura-
cies obtained by combining ERPs with broadband activity? A direct connection between neuro-
nal population firing rate and broadband ECoG spectral change has been established with
experimental and modeling work [11,23,24]. Each clinical ECoG electrode averages over
approximately 5x106 neurons in the cortex beneath. Careful experimentation has shown that
the broadband changes follow a power law in the power spectral density, implying that it
reflects asynchronous spiking elements in the underlying population of neurons. The broad-
band measure may be loosely thought of as a real-time summation of this population’s firing
raster (i.e., intrinsically averaged across the population of neurons). Increases in spike
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transmission within neurons in the population add in quadrature (e.g., proportional to the
square root of the number of spikes), appearing as a “speeding up” of a random walk in the
electrical potential time series, are difficult to see when looking at the raw potential, but appar-

ent as broadband, P � 1
f w

.
power-law, changes when inspecting in the frequency domain

[24]. Recent work has shown that, in these data, the broadband timing is subtle enough to cap-
ture variational effects at the order of ~50ms due to context-dependent processing, such as
sequential novelty [13].

Synchronized inputs, by contrast, add linearly and can be easily seen in the raw tracing of
the electrical potential. Even if the synchronization is relatively weak, averaging across the neu-
ral population augments the synchronized portion, while the other aspects, such as broadband
spectral change, are relatively diminished. Event-locked inputs, from subcortical nuclei, or
other cortical regions, can trigger a synchronized physiologic cascade, evident at the macro-
scale as an ERP. It remains unclear whether the polyphasic ERP is a result of interplay between
coordinated excitatory pyramidal neuron depolarization followed by interneuronal lateral inhi-
bition, or whether it results from synaptic integration followed by characteristic depolarization
and repolarization of cortical laminar dipoles [57]. The polymorphic nature of different ERPs
from adjacent cortical regions may (perhaps) then relate to different pyramidal neuron mor-
phologies, different milieus of neuronal subtypes, or different laminar organization; our projec-
tion technique unfolds these polymorphic ERPs into a common space for comparison. In this
light, the improved decoding accuracy may be the result of multi-location timing information
conveyed by ERP during the initial feed-forward wave of neural activation [58], complemented
by the broadband response reflecting subsequent local recurrent and longer-range cortico-cor-
tical processing of the visual stimulus.

Supporting Information
S1 Table. Participant characteristics, and number of selected electrodes by r2<0.05 criteria
(from first fold only).
(PDF)

S2 Table. Correct classifications, when the timing of events is pre-designated. Sorted by
stimulus type (note that each number is out of a possible 150 correct).
(PDF)

S3 Table. Errors for Spontaneous Predictions.
(PDF)

S1 Text. Power spectral analysis.
(PDF)

S2 Text. Decoupling the cortical spectrum.
(PDF)

S1 Fig. Choice of collision time does not inform classifier about timing of events. Number
of false predictions as a function of the choice of maximum distance between predicted event
times (Collision time), for classification using both ERP and ERBB. The monotonic decay form
and lack of “dips” or “peaks” shows that the collision time chosen did not inform the classifier
about timing of stimuli. Of note, subject 5, who had the most early visual electrodes, was unaf-
fected by even very low collusion times. The number of events correctly predicted was the same
for every choice of collision time, so those data are not shown.
(TIF)
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