
Journal of
www.elsevier.com/locate/yjsbi

Journal of Structural Biology 157 (2007) 56–63

Structural
Biology
SPIRE: The SPIDER Reconstruction Engine

William T. Baxter a, ArDean Leith a, Joachim Frank a,b,*

a Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
b Howard Hughes Medical Institute, Health Research Inc., Empire State Plaza, Albany, NY 12201-0509, USA

Received 31 March 2006; received in revised form 11 July 2006; accepted 29 July 2006
Available online 25 August 2006
Abstract

SPIRE is a Python program written to modernize the user interaction with SPIDER, the image processing system for electron micro-
scopical reconstruction projects. SPIRE provides a graphical user interface (GUI) to SPIDER for executing batch files of SPIDER com-
mands. It also lets users quickly view the status of a project by showing the last batch files that were run, as well as the data files that were
generated. SPIRE handles the flexibility of the SPIDER programming environment through configuration files: XML-tagged documents
that describe the batch files, directory trees, and presentation of the GUI for a given type of reconstruction project. It also provides the
capability to connect to a laboratory database, for downloading parameters required by batch files at the start of a project, and upload-
ing reconstruction results at the end of a project.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Cryo-electron microscopy; Single-particle reconstruction; Graphical user interface
1. Introduction

The SPIDER software package, an image processing
system developed by Joachim Frank and his colleagues,
has been in use by the electron microscopy community
for nearly three decades (Frank and Shimkin, 1978; Frank
et al., 1981). SPIDER has operations for 3D reconstruction
of cryo-EM macromolecules, multivariate statistical classi-
fication, and electron tomography (Frank et al., 1996;
Frank, 2006). These operations may be entered individual-
ly in a command line interface, or executed collectively in
scripts (known as procedures or batch files). In 2005, SPI-
DER became freely available under the terms of the GNU
General Public License. The most current documentation is
at the SPIDER home page: http://www.wadsworth.org/
spider_doc/spider/docs/spider.html.
1047-8477/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jsb.2006.07.019

* Corresponding author. Fax: +1 518 486 2191.
E-mail address: joachim@wadsworth.org (J. Frank).
1.1. SPIDER commands

SPIDER has over 450 commands (www.wadsworth.
org/spider_doc/spider/docs/operations_doc.html), which
include standard image processing operations, many of
which have been extended to work on 3D data, as well as
many operations specialized for cryo-electron microscopy
(cryoEM), such as alignment and reconstruction com-
mands for single-particle reconstruction and tomography.
Many of the specialized EM commands are actually sets
of commands—for example, alignment operations have
the ’AP’ prefix, while reconstruction commands have the
’BP’ prefix. These implement a variety of algorithms for
each process, giving users the ability to try different align-
ment and reconstruction approaches with their data. In
addition, new algorithms are constantly being incorporated
into SPIDER.

Commands may be entered one line at a time at the SPI-
DER prompt. This lets users interactively try out individu-
al operations, and provides maximum flexibility at the
lowest level. However, complex tasks may use dozens or
hundreds of SPIDER operations in sequence, requiring

http://www.wadsworth.org/spider_doc/spider/docs/spider.html
http://www.wadsworth.org/spider_doc/spider/docs/spider.html
http://www.wadsworth.org/spider_doc/spider/docs/operations_doc.html
http://www.wadsworth.org/spider_doc/spider/docs/operations_doc.html
mailto:joachim@wadsworth.org


W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63 57
them to be run in batch mode. SPIDER commands may be
typed into a text file just as they are entered at the SPIDER
prompt, and passed to SPIDER on the operating system
command line. Such SPIDER scripts are called batch files,
or procedures—the terms are often used interchangeably
(although technically, a batch file is the top-level script,
while a procedure is a called subroutine).

1.2. SPIDER batch files

SPIDER’s procedural language is a full-fledged pro-
gramming language with control structures (such as condi-
tionals and iteration), variable assignments, and subroutine
calls with controllable scoping rules. Batch files typically
encapsulate an identifiable step in single-particle or tomo-
graphic processing, such as calculation of power spectra
from micrographs, or an automated particle picking proce-
dure. Hundreds of operations are often ‘‘chunked’’ togeth-
er in a single file.

A typical SPIDER reconstruction project involves doz-
ens of scripts and anywhere from hundreds to hundreds
of thousands of data files. For example, tomographic
reconstruction requires approximately 400 SPIDER com-
mands in 12 batch files, while single-particle reconstruction
currently uses over 1600 commands in about 50 scripts (see
www.wadsworth.org/spider_doc/spider/docs/techs/recon/mr.
html).

Over the years, SPIDER batch files for accomplishing
various reconstruction tasks have been written by the cryo-
EM community, encapsulating a tremendous amount of
accumulated algorithmic knowledge. The sum of SPIDER,
therefore, is not just the over 400 operations that constitute
its command-level interface, but also the collection of batch
files in laboratories using SPIDER around the world, par-
ticularly the collection at the Wadsworth Center in Albany,
NY (see a listing of techniques at www.wadsworth.org/spi-
der_doc/spider/docs/techniques.html). SPIDER thus gives
scientists access to many specialized tasks for cryo-EM; it
is also a programming environment for users who wish to
try variations on the existing themes, or to write their
own procedures from scratch.

This tremendous flexibility comes at the price of com-
plexity, in terms of the number of operations required
and the interconnectedness of procedures. Some users
who are new to SPIDER have found it difficult to master
the old-fashioned interface. Because SPIDER is run from
the command prompt, some familiarity with the operating
system is required to understand the layout of the files and
directories that are generated by the batch files during a
reconstruction project. In contrast, more recent systems
for single-particle reconstruction, such as EMAN (Ludtke
et al., 1999), offer simpler interfaces with programs that
perform fewer, but higher-level, tasks. Students and new
users are often more comfortable with this latter type of
interface. Once scientists gain a deeper understanding of
the processes occurring during reconstruction, however,
they often wish to ’get their hands dirty’ and make signifi-
cant changes to the operations being applied, or even to
write new ones. However, the programs behind the simpler
interfaces are essentially ’black boxes’, that present a signif-
icant hurdle to this level of user participation: one must
either write code in a low-level programming language,
or contact the authors of the software. For that matter,
SPIDER operations are also ’black boxes’.

2. SPIRE

2.1. The concept of the ‘‘Reconstruction Engine’’

To facilitate the execution of batch files, and to provide
a graphical user interface (GUI) for executing SPIDER
batch files and other programs, a ‘‘Reconstruction Engine’’
was envisaged. Such a utility would simplify carrying out
reconstruction projects in SPIDER, while still allowing
more advanced users to write their own scripts. This new
interface would not require any radical redesign of the SPI-
DER software (which comprises some 180,000 lines of For-
tran), but would act as a higher-level ‘‘shell’’ around
SPIDER, keeping the SPIDER command structure and
syntax in place.

SPIRE (the SPIDER Reconstruction Engine) is
designed to simplify running projects that consist of
numerous SPIDER batch files, as well as to manage and
organize the many output files created during a reconstruc-
tion project. Users who are new to SPIDER can quickly
start processing electron micrographs without having to
learn the command-line interface. SPIRE provides a conve-
nient environment for running, testing, and debugging
batch files. SPIRE was primarily designed to be used with
batch files written for a specific problem, such as single-
particle reconstruction. These are typically a well-debugged
set of batch files used on a regular basis in a laboratory,
although SPIRE permits users to tailor the procedures to
suit the particular needs of their project.

SPIRE is written in Python, and uses the Tkinter graph-
ics package (www.python.org). The SPIRE distribution
also includes numerous other graphical tools. It requires
the following versions (or higher): SPIDER 13, Python
2.3, Python megawidgets 1.1 (Pmw), and Tcl/Tk 8.4. More
detailed documentation, including a tutorial, may be found
at the SPIRE home page: www.wadsworth.org/spider_doc/
spider/docs/spire/index.html

2.2. The graphical interface

SPIRE presents a graphical environment for executing
SPIDER batch files (Fig. 1). The interface is organized
around dialogs (Fig. 2), which list a set of conceptually
related batch files, such as procedures for alignment or par-
ticle picking. Each batch file is associated with an execution
button, an Edit button, and a brief descriptive label (since
it is sometimes difficult to tell a batch file’s function from
its name). After running a batch file, SPIRE checks which
outputs have been generated, and adds them to an internal

http://www.wadsworth.org/spider_doc/spider/docs/techs/recon/mr.html
http://www.wadsworth.org/spider_doc/spider/docs/techs/recon/mr.html
http://www.wadsworth.org/spider_doc/spider/docs/techniques.html
http://www.wadsworth.org/spider_doc/spider/docs/techniques.html
http://www.python.org
http://www.wadsworth.org/spider_doc/spider/docs/spire/index.html
http://www.wadsworth.org/spider_doc/spider/docs/spire/index.html


Fig. 1. The main window of SPIRE. The configuration shown is for a
single-particle reconstruction project. When a SPIDER batch file is
executed, its outputs are displayed in the window. File numbers are
specified in the white entry box at the bottom.

Fig. 2. A dialog in SPIRE, listing a set of SPIDER batch files. Each batch
file has a brief descriptive label, an execution button with the batch file
name (such as power.spi), and an Edit button that opens up a batch file
edit form (see Fig. 6). Other programs can also be launched from the
interface (such as Web or CTFmatch).

Fig. 3. The Project Viewer. Individual batch runs (see text) are displayed
in the upper panel. Selecting a batch run (shown in yellow) displays its
output files in the lower panel. Clicking an output file name displays that
file; image files are shown in a viewer such as JWeb, while text files are
shown in a text viewer or editor (the specific viewers and editors are
specified in the Options section).

Fig. 4. The Project Form, for starting up new projects or editing previous
projects. The user must enter project information such as a title, data
extension, directory, etc. This information may be entered manually or
retrieved from an external laboratory database. The configuration is
selected at this point, which specifies batch files for tomography or single-
particle work or the user’s own batch files. When the user clicks ’OK’,
project directories are created and batch files are copied into the
appropriate locations.

58 W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63
database of the project. The current state of the project can
be viewed in the Project Viewer, which displays all batch
files that have completed successfully, as well as output files
generated by each one (Fig. 3). Output files can be easily
reviewed: with a click of the mouse, contents of text files
are displayed in a text viewer, while images are displayed
in an image viewer. In short, SPIRE lets the user edit
and run his or her SPIDER batch files, keep track of the
current state of the SPIDER project, and easily view SPI-
DER data files, all in a simple graphical interface. Addi-
tional features include a set of graphical tools for data
analysis, links to local documentation web pages, and
interaction with a laboratory database for downloading
parameters pertinent to the project and uploading recon-
struction results.
2.3. Management of projects in SPIRE

When a new project is started, the Project Dialog win-
dow opens (Fig. 4). The user must fill in required informa-
tion, including a title specific to this project, the data
extension, the location of project data files (e.g., micro-
graphs), and a configuration file (see below). This informa-
tion is saved to the project file; it may be edited at a later
date. Once some batch files have been run and their data
files generated, the project file also contains lists of execut-
ed batch files and their outputs. The project file is a Python
shelve object, an external file that stores objects in a Unix-
style database (see the Python documentation).

Typically, a laboratory using SPIDER has a core set of
batch files in a central repository that it relies on for typical
reconstruction projects. When a user starts a new project,
these core batch files are copied to the user’s local data



W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63 59
directory. Users can then make changes to their local cop-
ies without affecting the core set. SPIRE relies on this idea
of a core set of batch files, specified in a configuration,
which users may tailor to suit their specific needs.

2.4. Configuration files

A project in SPIRE requires the core set of batch files
used for a specific reconstruction project, and the directory
organization required for such a project. These are speci-
fied in project templates called configurations. Configura-
tions are text files with XML tags that describe where to
find the core set of batch files, and the target directories
they should be copied to.

There is additional information that controls the presen-
tation of the graphical interface, and any documentation
URLs. For example, part of a configuration file is shown
in Fig. 5. The tags in this section describe how the top
two buttons in the dialog in Fig. 2 should appear. Config-
urations thus provide a way to describe standard, frequent-
ly used projects. For example, at Albany, there are
configurations for single-particle reconstruction using ref-
erence projections, single-particle reconstruction using ran-
dom conical data collection, and single- and double-tilt
tomography, each with its own batch files and layout of
files and directories. Variants on these approaches can be
created by editing the XML files or by using the SPIRE’s
Configuration Editor. Users can create their own configu-
rations to suit their processing needs. Configurations
enable SPIRE to provide solutions for many different
reconstruction strategies, and to manage the complexity
of the SPIDER programming environment.

2.5. Running SPIDER batch files in SPIRE

A batch file can be launched interactively in several ways
within SPIRE:

(1) by clicking its button in a dialog window (Fig. 2), or
(2) by selecting it under the Batch files menu, or
(3) by clicking the ‘‘Execute’’ button in the batch form.
Fig. 5. Part of a SPIRE configuration file, with XML tags for 2 batch file
buttons (see Fig. 2). The <proc> tag specifies the batch file to be run by
SPIDER.
SPIRE executes SPIDER in an operating system sub-
shell. The executed command appears in SPIRE’s main
window, along with standard output and any error messag-
es from SPIDER. A small window opens with some infor-
mation about the process, indicating whether it is still
active, and allowing the user to check the progress of the
process by displaying the last few lines of the Results file.
If necessary, the user can elect to terminate the process
from this window.

When the batch file has finished successfully, SPIRE
determines which new files were created, and adds their
file names to the project file. If there is an error, usually
the first place to look when trying to diagnose a batch
file problem is the SPIDER Results file, which is conve-
niently printed in the main window. If a batch file is run
outside of SPIRE, at the operating system prompt, then
the output files cannot automatically be added to the
project file. However, even in this circumstance, SPIRE
does provide a manual method to add data files to the
project.

Finally, a series of batch files can be saved in a list,
called a sequence. Execution of a sequence automatically
runs each batch file in the list, one after another, unless
an error halts the process. All activities are noted in a
log file; all generated outputs are saved to the project
file.

2.6. Editing batch files

SPIRE can present a batch file in a graphical form, with
entry boxes for the user to enter or verify values (Fig. 6B).
However, this only works if the batch file has a proper
batch file header (Fig. 6A). After the user makes the desired
changes to the form, and hits the Save button, the new val-
ues are written into the batch file.

SPIRE can run any SPIDER batch file. But in order to
present a batch file in the graphical batch form, the file
must have a header following certain rules:
Fig. 6. (A) A header from a SPIDER batch file. Filenames are set using
SPIDER’s FR commands. (B) How SPIRE interprets the header and
displays the batch file to user. Comments in the header appear as labels in
the batch file form, or are used to delineate sections of the form (‘Input
files’, ‘Output files’). The user may edit the filenames in the white entry
boxes, which are then written to the batch file.



60 W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63
• All register and symbolic filename assignments should
be in the header.

• These assignments should have a one-line comment on
the same line.

• Registers, input files, and output files should be enclosed
in sections with section headings.

• Each section should start with a comment of the form
‘‘- - input files - -’’. That is, there should be at least 2
hyphens before and after the title.

• The header ends with a final comment line containing
the text ‘‘END BATCH HEADER’’.

If the batch file does not have a properly written header,
SPIRE will inform the user about the errors it encountered.
A header conforming to these rules is shown in Fig. 6A; the
resulting graphical form is shown in Fig. 6B. Registers may
be assigned using the new named format available starting
with SPIDER version 14, or using the older ‘‘x11’’ format.
Filename variables (‘‘symbolic parameters’’ in SPIDER)
must be created via the operations ‘FR G’ and ‘FR L’
(see the SPIDER documentation). In the resulting window,
the labels to the left of the filename entries also act as
‘‘Browse’’ buttons, allowing the user to search the file sys-
tem for the desired inputs (Fig. 6B).

While the use of a header does impose a constraint, it
makes perfectly logical programming sense, whether or
not one uses SPIRE. A header makes explicit the common
organizing principle of having a set of user-changeable
variables at the top of a program, followed by code that
the user does not normally alter (and is in fact discouraged
from doing so). Any set of commonly used batch files
should have header structures to make them more readable
and maintainable. If the user does wish to make alterations
to the batch code following the header, then the batch file
can be opened in a text editor via the ‘‘Editor’’ button, and
SPIRE will incorporate any changes thus made. The partic-
ular editor is specified in the Options section.

2.7. SPIDER project files

Hundreds of thousands of data files can be generated
in the course of a modern cryoEM single-particle recon-
struction project, usually organized by some sort of direc-
tory structure. Dozens of batch files are executed in a
typical SPIDER project; some of them fail due to errors,
and need to be fixed and run again. Without some overall
system of organization, it is often difficult to determine
the current state of the project, in terms of which proce-
dures have been run, which data files were produced,
and, consequently, what needs to be done next. SPIRE’s
Project Viewer (Fig. 3) is a graphical management tool
that displays the batch files that have been run, along
with their location on disk, the date and time of execu-
tion, and which file numbers were included (see File Num-
bers, below).

A batch run refers to a successfully completed SPIDER
batch file execution whose results are added to the internal
project data base. Each batch run is given a unique Run ID
(a 12-digit number corresponding to the current date and
time). Thus, the same batch file can be executed repeatedly,
with different input files—each execution is considered a
separate batch run. For example, in Fig. 3, the procedure
power.spi was initially run with a single input file (first
row, file number 1). Satisfied with the correctness of the
output, the user then ran power.spi again with a larger
set of input files (2nd row, with file numbers
3,4,6,7,9,11,12).

Data files can be listed in the lower panel by clicking on
the batch file that generated them. SPIDER generally cre-
ates two types of data files: document files, which are text
files with columns of numbers, and binary files, which
include 2D images, 3D volumes, and their Fourier-trans-
formed counterparts. The data file display includes the file
name, file type, creation time, and an indication of the file
size: the number of lines for document files, or the dimen-
sions for binary files. If the list of files is very large, SPIRE
offers to display a subset. Clicking on a data file in the low-
er panel will bring up that file in some kind of display,
depending on the type of file. Text files are displayed in a
text viewer (usually an editor), while binary files are sent
to an image/volume viewer. The viewing programs them-
selves are outside of SPIRE, but the Project Viewer is asso-
ciated with text and image viewers in SPIRE’s Options
section. The default image/volume viewer is JWeb; clicking
on an image or volume data file will bring up the appropri-
ate display in JWeb.

A distinction should be made between data files listed in
a SPIRE project and those residing on the physical disk.
The Project Viewer lists data files that are in its internal
project database—there is no consistency checking between
the internal list of files and the physical files, but this fea-
ture may be added in later versions. SPIRE’s file browser
does allow one to see files on disk. Therefore, if a user
deletes files using the operating system command line,
SPIRE’s internal database will not reflect this. Similarly,
if a batch file is executed outside of SPIRE, its outputs will
not be included in the project file. Therefore, once a project
is started, it behooves the user to manage the file system
through SPIRE, so that the project remains consistent
and up-to-date. However, even if this stipulation is not rig-
orously followed, SPIRE does provide the ability to
manually add or delete files from the internal project
database.

Finally, SPIRE lets the user write the project file to disk
in HTML format, so that the user (and others) can use a
web browser to find out which batch files were run and
which data files were generated in the course of a project.
This is best done at the end of a project, since the HTML
files may not reflect the most recent processing. Due to
space considerations, only a relatively few results from a
typical project are saved to the laboratory database, and
the remainder of the intermediate data files are deleted at
the end of a project. The project HTML files thus represent
a convenient review of the project’s history (Fig. 7).



Fig. 7. Main HTML page of a SPIRE project viewed in a web browser
(partial view). Batch files are listed in the order they were run—each
provides a link to a page with information specific to that particular batch
file.

Fig. 8. The parameter file form. The parameter file is simply a SPIDER
document file with comments for each line. The comments appear as labels
in the form. Parameter values may be changed by editing the values and
saving to the parameter file.

W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63 61
2.8. SPIDER–SPIRE interaction

How does SPIRE obtain the list of output files gener-
ated by a batch file? This brings up the question of how
SPIDER and SPIRE are interfaced. SPIRE was designed
as a very ‘‘light’’ wrapper around SPIDER, requiring a
minimum of changes to the SPIDER code. When a
batch file is executed from within SPIRE, SPIDER is
called with the syntax (spider bat/dat SPIRE@procfile)
to produce a special output file for SPIRE, called spire-

out, which lists the newly created data files. SPIDER
runs as an independent subprocess, while SPIRE moni-
tors this process. Upon completion of the SPIDER pro-
cess, SPIRE reads the spireout file to obtain the list of
output files.

2.9. Parameters and file numbers: special SPIDER document

files

Some special document files have been incorporated
into SPIRE: the parameter file and the file numbers file.
They are not inherent to any SPIDER project or set of
batch files, but rather represent an additional feature per-
mitting authors to write batch files that are simpler to use
and less error-prone. A parameter file makes the use of
variables across batch files more consistent and thereby
reduces errors. A file numbers file circumvents the prob-
lem of using nonconsecutive file numbers in a SPIDER
DO loop. SPIRE expects the parameter and file numbers
files to have specific names (usually params.[ext] and file-

nums.[ext], respectively). The default name of these files,
and the means to change them are in the Options section
of SPIRE.

2.9.1. The parameters file

Some parameters are used by many batch files. For
example, if a register containing the pixel size occurs in sev-
eral procedures, the user must remember to set this register
to the correct value in every file. It makes more sense to col-
lect such global variables in a central location where all
batch files may access them. The parameter file is simply
a single-column SPIDER document file, which SPIRE pre-
sents in a graphical interface (Fig. 8). Descriptive labels
must be supplied in the form of document file comment
lines. Alternatively, the Parameters section of the configu-
ration file can specify labels as well as default values. Use
of parameters within batch files is not enforced by
SPIRE—it is entirely up to the batch file authors to use this
construct. SPIRE simply offers default parameters in the
configuration, a graphical form to conveniently change
parameters, and the opportunity to fetch parameters from
an external database.

2.9.2. The file numbers file

The iteration construct in SPIDER’s procedure lan-
guage consists of the DO command:

DO LB1 x11 ¼ 1; 10

..

.

LB1



62 W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63
Since data files are usually numbered, it is convenient to
use the file number as the loop variable when processing
many files. However, in the course of a project, many can-
didate files are rejected, leaving one with a set of noncon-
secutively numbered files. The file number cannot then be
used as the loop variable, as the DO command requires
regular increments in this variable. The answer is to use a
file numbers file: a single-column document file with con-
secutive keys and file numbers in the first data column.
As with the parameter file, use of such files is not inherent
to the batch language, but is simply a sensible, commonly
used construct.

The SPIRE interface to the file numbers file is simply an
entry box on the lower left corner of the Main window
(Fig. 1). When the user types file numbers into this box,
and hits the ‘‘Enter’’ key, these values are written to the file
numbers file. Consecutive numbers may be represented by
hyphens: typing ‘‘3-8’’ will write the values 3,4,5,6,7,8 to a
doc file (with keys numbers 1-6). This is very convenient for
interactively testing batch files with one or a small number
of inputs. Alternatively, the File Numbers label in the main
window acts as a browse button, which will read the select-
ed file and load its contents into the file numbers entry box.

SPIRE searches the batch file header for a symbolic var-
iable called [FILENUMS]. To be recognized, it must be
capitalized, and inside square brackets. If such a variable
is found, SPIRE will replace the contents of the designated
document file (‘‘../filenums’’ in Fig. 6B) with the num-
bers in the File Numbers entry box.

2.10. Connecting to an external database

If a laboratory already has a database of reconstruction
projects, SPIRE can connect to this external database to
obtain or upload project information. This generally
occurs at the beginning and end of a reconstruction project.
At the start of a project, SPIRE can download some pro-
ject parameters (e.g., voltage, magnification, and scanning
resolution) from the database. At the end of a project,
results (such as resolution curves, volumes, etc.) can be
uploaded into the database.

SPIRE does not know which database is being used, nor
anything about the internal organization of that database.
Instead, it provides an application interface, which specifies
the types of methods it uses to communicate with an exter-
nal database. This interface specifies generic functions such
as testing if the database connection is present, sending
SQL queries, and fetching information. Briefly, setting up
SPIRE to connect to an external database involves (1)
installing the Python library to let Python communicate
with that database, and (2) writing some Python code con-
forming to the application interface, enabling SPIRE to
access the database. The SPIRE distribution includes
Python code for setting up a tiny MySQL database as well
as connecting SPIRE to that database. The database
section of the Python website (www.python.org/topics/
database/modules.html) has modules for connecting to
Informix, Ingres, MySQL, ODBC, Oracle, Postgres,
Sybase, and many other database systems. SPIRE’s ability
to connect to a laboratory database means it can become
part of that laboratory’s information management system.

2.11. Options and preferences

The Options window provides the means to adjust the
behavior of SPIRE, various default parameter settings,
and database connectivity. User preferences are saved to
an external file, usually named .spire, in the user’s home
directory. This file is read whenever SPIRE starts up. User
preferences include items such as whether to save various
log files, how many lines or files should appear in various
displays, and the names of text and image viewers that
are called from the Project Viewer. System preferences
include the default names of the parameter file, file num-
bers file, and configuration file, as well as the system com-
mand used to execute SPIDER. A database section
contains buttons and entries for testing the database con-
nection, writing and sending SQL queries, and uploading
data.

3. Discussion

Rather than embarking on a radical rewriting of the
SPIDER software, we have decided to utilize Python’s
touted ability to serve as a ’glue’ for connecting disparate
software systems (van Rossum, 1998). It has served well
in this role, allowing us to create interfaces to display
and plotting systems, database systems, and most impor-
tantly, an environment for executing SPIDER batch files.
SPIRE is not designed to solve any particular reconstruc-
tion research problem. It is up to the batch file authors
to produce a set of SPIDER procedures that correctly carry
out a series of processing tasks. Nor does it address issues
of program correctness, except in the case of the batch
header syntax. If a batch run crashes, an error message is
presented that will hopefully aid the user in debugging.
The correct use of file numbers and parameters are not
enforced in SPIRE—again, that is up to the logic of the
batch files.

SPIRE is designed to provide new users with a friendlier
interface to SPIDER, and to give all users a more orga-
nized overall view of their ongoing reconstruction project,
while preserving SPIDER’s powerful programming envi-
ronment. The configuration file specifies the core set of
batch files for a particular reconstruction strategy, the
directory layout of a reconstruction project, how the batch
files are presented to the user, and the order in which they
should be executed. It uses XML tags to denote and
describe each of these sections. Thus, the configuration rep-
resents a template for reconstruction projects, which users
may use again and again. A different configuration is
required for a different type of project; for example,
single-particle vs. tomographic reconstruction. Thus
SPIRE is most useful for running frequently used batch

http://www.python.org/topics/database/modules.html
http://www.python.org/topics/database/modules.html


W.T. Baxter et al. / Journal of Structural Biology 157 (2007) 56–63 63
files that are part of a laboratory’s routine data analysis. It
is not designed for ‘‘single-use’’ batch files that SPIDER
users sometimes write to do ‘‘quick and dirty’’ jobs. How-
ever, since each project is slightly different, SPIRE does
permit users to change their local copies of the batch files,
tailoring them to meet their specific needs. New batch files
can even be added to a project.

The graphical interface makes use of dialogs, as a means
of grouping together batch files that form a conceptual
unit. Given that some reconstruction projects require doz-
ens of batch files, the configuration aids users’ understand-
ing of a project’s organization by clustering together
functionally related procedures. The graphical batch forms
provide a form of ‘‘data hiding’’, in which users have
immediate access only to those parameters they should be
allowed to change. More extensive editing of the batch file
logic is permitted, but this requires a few extra steps.
SPIRE does not check for correctness of parameters, or
whether specified data files are appropriate, or even exist.
These checks are dependent on the batch file logic. One
can imagine a system that does these things, but since
‘‘correctness’’ is highly dependent on the particulars of
the task at hand, such a system would no longer be a
general interface for running SPIDER batch files.

Connectivity to a laboratory database was incorporated
into the design of SPIRE in its earliest phases. It requires a
reconstruction project to exist in a database before any
batch files have been run. This feature encourages users
to enter into the database the various microscope parame-
ters that SPIRE will request at the very start of a project,
rather than to add their results belatedly to the laboratory
archive after the completion of a project. Automatic down-
loading of parameters from a database also ensures their
correctness (or at least it gives users fewer chances to enter
them incorrectly). Similarly, at the end of a project, auto-
mated uploading of reconstruction results makes it more
likely that database entries will be filled correctly. The
problem with connecting to an external database is that
SPIRE does not have any knowledge about the structure
of the database or how to go about asking for information
contained therein. Instead, a programming interface is pro-
vided, which requires some Python programming on the
part of the laboratory using SPIRE; if necessary, with some
assistance from the Wadsworth/SPIDER team. A MySQL
interface comes with the SPIRE distribution as an example.
There are many Python database libraries available; hope-
fully, as more people use SPIRE, more database interfaces
will be written and included in the SPIRE distribution.

Thus, SPIRE is a program that provides a graphical
interface for users of the SPIDER software, while allowing
users to quickly view images via a convenient interface to
JWeb and other display programs. It can also execute
batch files that utilize PubSub (http://www.wadsworth.
org/spider_doc/spider/pubsub/pubsub.html), a publish
and subscribe system, written in Perl, that runs SPIDER
procedures in parallel on a distributed cluster of computers
or within a single cluster. A number of future improve-
ments to SPIRE are envisaged. These include consistency
checking between the internal project database and the files
on disk, a greater selection of external database interfaces
(in addition to the currently included MySQL), greater
integration between SPIRE and display programs such as
JWeb, enabling users to run a batch file and immediately
view the resulting images, and the ability to write SPIDER
batch files in the Python language. The latter will incorpo-
rate a Python wrapper for Spider commands, and the
Spider Python Library (www.wadsworth.org/spider_doc/
spider/docs/python/spipylib/index.html); both are currently
under development.

SPIRE was written from a desire to provide functional-
ity while preserving flexibility for SPIDER users, giving
them access to display programs, parallel distributed
processing, and interaction with the local laboratory data-
base. It is hoped that the interface makes new SPIDER
users more productive more quickly, and that it assists lab-
oratory information systems to maintain and monitor
reconstruction projects more efficiently.
Acknowledgments

This work was supported by NIH Grants P01
GM064692 and P41 RR01219 from the National Center
for Reseach Resources (NCRR/NIH).

References

Frank, J., 2006. Three-Dimensional Electron Microscopy of Macromo-
lecular Assemblies. Oxford University Press, New York.

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M.,
Leith, A., 1996. SPIDER and WEB: processing and visualization of
images in 3D elctron microscopy and related fields. J. Struct. Biol. 116,
190–199.

Frank, J., Shimkin, B., Dowse, H., 1981. SPIDER—a modular
software system for electron image processing. Ultramicroscopy
6, 343–358.

Frank, J., Shimkin, B., 1978. A new image processing software system for
structural analysis and contrast enhancement. In: Sturgess, J.M. (Ed.),
Proceedings of the 9th International Conference on Electron Micros-
copy, Toronto, Ontario, vol. I, p. 210.

Ludtke, S.J., Baldwin, P.R., Chui, W., 1999. EMAN: semiautomated
software for high resolution single particle reconstruction. J. Struct.
Biol. 128, 82–97.

van Rossum, G., 1998. Glue it all together with Python. OMG-DARPA-
MCC Workshop on Compositional Software Architecture. Monterey,
California, January 6–8.

http://www.wadsworth.org/spider_doc/spider/pubsub/pubsub.html
http://www.wadsworth.org/spider_doc/spider/pubsub/pubsub.html
http://www.wadsworth.org/spider_doc/spider/docs/python/spipylib/index.html
http://www.wadsworth.org/spider_doc/spider/docs/python/spipylib/index.html

	SPIRE: The SPIDER Reconstruction Engine
	Introduction
	SPIDER commands
	SPIDER batch files

	SPIRE
	The concept of the  ldquo Reconstruction Engine rdquo 
	The graphical interface
	Management of projects in SPIRE
	Configuration files
	Running SPIDER batch files in SPIRE
	Editing batch files
	SPIDER project files
	SPIDER-SPIRE interaction
	Parameters and file numbers: special SPIDER document files
	The parameters file
	The file numbers file

	Connecting to an external database
	Options and preferences

	Discussion
	Acknowledgments
	References


