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Abstract

Boxing hundreds of thousands of particles in low-dose electron micrographs is one of the major bottle-necks in advancing toward
achieving atomic resolution reconstructions of biological macromolecules. We have shown that a combination of pre-processing oper-
ations and segmentation can be used as an effective, automatic tool for identifying and boxing single-particle images. This paper provides
a brief description of how this method has been applied to a large data set of micrographs of ice-embedded ribosomes, including a com-
parative analysis of the efficiency of the method. Some results on processing micrographs of tripeptidyl peptidase II particles are also
shown. In both cases, we have achieved our goal of selecting at least 80% of the particles that an expert would select with less than
10% false positives.
� 2005 Published by Elsevier Inc.
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1. Introduction

To minimize radiation damage to ice-embedded biolog-
ical specimens, electron micrographs have to be acquired at
low electron dose, which results in a low signal-to-noise
ratio (SNR) (Glaeser, 1971). Single-particle reconstruction
(Radermacher et al., 1987; see Frank, 1996) is based on the
premise that the information necessary to reconstruct a
biological particle (a molecule) can be collected from differ-
ent images showing different ‘‘copies’’ of the molecule in
different views. To improve the SNR in the data, a large
number of images of particles in many orientations must
then be merged to produce a three-dimensional (3-D) den-
1047-8477/$ - see front matter � 2005 Published by Elsevier Inc.
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sity map. When images of currently available quality are
used, it is believed that images of as many as one million
particles are required to reconstruct a protein-molecule at
an ‘‘atomic’’ resolution (Henderson, 1995; Frank, 2002;
Sali et al., 2003).

Picking hundreds of thousands of particles is a signifi-
cant bottle-neck in the process of single-particle reconstruc-
tion at high resolution (Glaeser, 2004; Nicholson and
Glaeser, 2001). As a result, there are several recent papers
describing automatic particle picking techniques (Huang
and Penczek, 2004; Rath and Frank, 2004; Roseman,
2004; Sigworth, 2004; Volkmann, 2004). The number of
false positives may, however, still exceed 30% when existing
methods are applied to micrographs of routinely used qual-
ity (Zhu et al., 2004).

In the course of a single particle reconstruction, it is a
general practice that the particle images are boxed along
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Fig. 1. Control flow diagram of the particle-picking software.
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with a considerable background area around the particle.
Information from this background is required to normalize
the data (Boisset et al., 1993). In micrographs that contain
a high density of particles, this practice results in the
appearance of partial signatures of one or more neighbor-
ing particles that intrude into the boxed area. Boxes that
contain intruding particles are routinely rejected for further
processing, as the partial signatures of the neighboring par-
ticles are believed to interfere with the alignment process as
well as the normalization. This rejection of particles reduc-
es the number of useful particles that can be picked from
any one micrograph.

In an earlier paper addressing the particle-picking prob-
lem, we have proposed a method that uses a combination
of steps that involve pre-processing, segmentation and fea-
ture analysis (Adiga et al., 2004). We now demonstrate that
the segmentation approach can help in detecting partial
signatures of the neighboring particles in a boxed single-
particle image. Segmentation thus allows the option of
replacing partial signatures with a representative back-
ground texture patch rather than eliminating such particle
images from the data set. To accomplish this, we have
introduced a novel post-processing operation called
shrink-wrapping that will center the particles in a box area
and facilitate the elimination of intruding particle signa-
tures. The same operation can be further used to create a
binary mask of the particle that may prove to be useful
for quality indexing, pre-classification of particles, etc.
The method is carefully designed to avoid invalidating
the statistical signature required for normalization.

This paper also describes improvements made over the
initially proposed segmentation method as well as a gener-
alization of the software so that it can be used to pick non-
convex particles. We have increased the robustness of the
pre-processing and segmentation operations by making
them more adaptive to histogram-feature variations in
the micrograph. The current paper reports a large-scale
comparative analysis of more than one hundred and thirty
thousand ribosome particles in 55 micrographs acquired at
Wadsworth Center, Albany. Some preliminary results on
non-convex shaped, TPP-II particles are also shown.

2. Method

Our approach to particle picking, based on segmenta-
tion, follows conventional image-analysis steps of pre-
processing followed by segmentation and post-processing.
The control flow-diagram shown in Fig. 1 summarizes
the segmentation-based software design.

2.1. Pre-processing

The pre-processing steps are designed to increase the
particle contrast, smooth the fine texture of the back-
ground, and remove most of the low-frequency intensity
variations from the micrographs. These goals are achieved
by a combination of contrast stretching, partial diffusion of
the pixel intensities and a background-subtraction process.
All these processing steps are used to identify the locations
of putative particles, after which we revert to the original
data to extract the particle images that are to be used for
particle reconstruction.

A non-linear contrast-stretching operation performed as
described previously (Adiga et al., 2004), first redistributes
the gray-scale of the pixels that fall within an adaptively
selected gray-scale range. This process results in a similar
(i.e., standardized) intensity distribution for all the micro-
graphs with an approximately common mean. This initial
image standardization step is essential to avoid retuning
of control parameters for the steps further down the pro-
cessing pipeline. Figs. 2A and 3A show a small part of rep-
resentative micrographs of ribosomes and TPP-II particles,
respectively, before contrast-stretching, and Figs. 2B and
3B show the same micrographs after contrast-stretching.

Difficulty in reducing the noise and the associated gran-
ular texture in cryo-micrographs is a major factor hindering
the automation of particle identification. The goal of the
noise-reduction process is to obtain as much as possible a
smooth background while retaining good contrast between
the background and the particles. Use of non-linear aniso-
tropic filters such as the one defined in Eq. (1) has been
proved to be effective in achieving the desired reduction in
noise (Adiga et al., 2004). The non-linear smoothing filter
in its explicit reaction-diffusion form is written as



Fig. 2. Results obtained at intermediate steps of processing for picking ribosome particles by segmentation. (A) A small part of an original micrograph.
(B) Contrast-enhanced micrograph. (C) After reaction-diffusion filtering. (D) Background image of the micrograph in (C). (E) Background-subtracted and
rescaled micrograph. (F) Result of binarization and hole-filling. (G) Result of size filtering. (H) Result of boxing the particles after removing the
brightness-saturated particles.
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Fig. 3. Results obtained at intermediate steps of processing for picking TPP-II particles by segmentation. (A) Original micrograph. (B) Contrast-enhanced
micrograph. (C) After reaction-diffusion filtering. (D) Background image of the micrograph in (C). (E) Background-subtracted and rescaled micrograph. (F)
Result of binarization, hole-filling and size-filtering. (G) Result of picking the particles (shown by placing a �red� dot over the particles). (H) A small area is
magnified for a better view. The square box indicates a navette-shape particle thatwas picked twice due to the fact that its high-intensity ends are similar to two
distinct end-views/top-views.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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oI
ot

¼ ðsin bÞ � h � r2I þ ðcos bÞ � rh � rI ; ð1Þ

where, h ¼ 1=ð1þ ðoI
ox Þ

2 þ ðoI
oy Þ

2Þ is an image intensity gradi-
ent operator known as an edge indicator function. The first
term, {(sinb) Æh Æ$2I} is a diffusion term responsible for
smoothing, while {(cosb) Æ$h Æ$I} is responsible for edge-
enhancement. The parameter �b� determines the relative
contribution of diffusion and enhancement terms to the
process of non-linear smoothing. Figs. 2C and 3C show
the result of smoothing the micrographs for 100 time steps,
using the above described filter with b = 65�. The size of
the time step is Dt ¼ 1

2
ð 1
Dx2 þ 1

Dy2Þ, where Dx = Dy = 1, de-
fines the distance between pixels in the �x� and �y� direction
(Malladi and Ravve, 2002).

To reduce the intensity variation in the background, a
background image is first reconstructed by carrying out a
higher degree of diffusion of the micrographs, as shown
in Figs. 2D and 3D. This ‘‘unsharp mask’’ is then sub-
tracted from the previously smoothed micrograph. The
result of background subtraction is shown in Figs. 2E
and 3E.

2.2. Segmentation

The process of segmentation that identifies and
extracts the particles consists of two stages, region-based
binarization and pinch-off filtering. The region-based
adaptive-binarization operation is designed to convert
the initial gray-tone image into a two-tone one. The
algorithm is as follows.

• Threshold the pre-processed micrograph at its mean
intensity.

• Fill the holes within the foreground of the binary image.
A hole is defined as any isolated background component
whose size is less than 25% of the particle size. The par-
ticle size is itself an input parameter that defines the
approximate size of the particle in pixel units.

• Label the components in the binary image using a
connected-component labeling algorithm (Jain et al.,
1995).

• Calculate a new threshold value for each labeled region
by regional histogram analysis. The new regional thresh-
old value for each component corresponds to the gray
value of the point in the respective histograms that is less
than the gray value of the mode point, where, in addi-
tion, the curvature of the histogram is maximum. The
curvature �j� of a plane curve in the form of y = f (x)

can be calculated as j ¼
d2y

dx2

ð1þðdydxÞ
2Þ3=2

. The derivatives were

calculated as finite differences.
• Threshold each component, based on the regional
thresholds calculated as described above.

• Fill the holes, if any, created by this second stage of
thresholding. Fig. 2F shows the final result of binari-
zation and hole-filling of a pre-processed micrograph.
There is a possibility that some of the closely located
particles, when binarized, are found to touch one another
through frail connections. When the objects are labeled,
such connected objects are given the same label. This gen-
erally results in rejection of the whole cluster of two or
more particles. To avoid the rejection of the particles in
such clusters, we have segmented them by a method of
ultimate erosion and conditional dilation. All the compo-
nents in the binary image whose sizes are below 25% of
the pre-defined particle-size are considered to be artifacts
and are first removed from further processing. The indi-
vidual objects in the binary image are then eroded until
the size of the eroded signatures falls below 50% of the
predefined particle size. The object signatures are then
dilated under the constraint that no two dilated signa-
tures should touch one another, and the pixels of the
dilated signatures do not occupy the background area
defined by the original binary image, e.g., Fig. 2F. This
operation eliminates the frail connections between closely
located objects, and hence it is called a pinch-off
operation.

In the next step, all the objects are component-labeled
again, and those with size greater than the pre-defined par-
ticle size are eliminated from further processing. Figs. 2G
and 3F show the result of segmentation and size-filtering
of a ribosome micrograph and a TPP-II micrograph,
respectively.

For each component in the segmented image, the
weighted centroid of that component is calculated. The pix-
el intensity in the contrast enhanced image was used as the
weight. Such a weighted centroid provides the coordinates
of an approximate center of the particle. Figs. 2H, 3G and
H shows the result of extracting the particles by placing a
�RED� dot over the particles.

2.3. Post-processing

Additional post-processing filters are required when
images of non-convexly shaped particles are processed.
If the particles have a very distinct shape, for example,
tobacco mosaic virus (TMV) particles (Zhu et al.,
2001), it is possible to include shape-based features to
eliminate the false positives. Shape can be quantified by
computing a measure of the similarity between a particle
and a template (using, for example, the correlation coef-
ficient), or by computing a metric of the geometry of the
binary mask of a particle as demonstrated for an appli-
cation to TPP-II particles in this paper.

It is a general practice to discard boxed particles in a
manual-selection (editing) phase, if portions of adjacent
particles intrude into the boxed area. Some techniques dis-
card a particle when it is located within a preset distance
from an already selected particle (Rath and Frank, 2004).
As an alternative option to rejecting particles that are close
neighbors, we have implemented a heuristic operation that
recognizes the intruding particle within a boxed image and
replaces the intruder by a background-texture pattern. Fol-
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lowing that, the operation also approximately re-centers
the particle within a selected box, since the changes in the
shape of a particle due to use of the shrink-wrap operation,
described below, also change the location of its center of
mass. The algorithm to do the shrink-wrap operation is
illustrated in Fig. 4 and it involves the following steps.

• For each particle, define a box that is approximately
twice the size of the particle. The particle size is defined
as an area occupied by the particle in the image in pixel
units.

• Component-label all the objects within the box using the
information from the segmented binary micrograph.
Figs. 4B1 and B2 show examples of such boxed images
from the binary micrograph.

• Using the binary image as an initial model of the particle
mask, apply the iterative dilate and shrink-wrap opera-
tion described below.

• Remove the intruding particle signatures within the
box. An intruding particle signature is any signature
inside the box that does not occupy the center of
the box.

Each step of shrink-wrapping consists of dilating the
object into a predefined neighborhood area within the
Fig. 4. Illustration of advantages of shrink-wrap operation. (A) An example of
particle truncation or the intrusion of a neighboring particle. (A1) A boxed par
off at the top. The particle is also off-centered. (B1) Binary mask of the particle
After shrink-wrap operation this particle is completely represented and centere
intruding particle within the box area. (B2) Binary mask of particles within the
by a background texture, followed by re-centering the particle after the shrink
box followed by erosion of individual boundary pixels
which have gray-values below the average intensity of
the dilated object. The gray-scale image obtained after
pre-processing is used for calculating the average intensi-
ty of the object and the intensity of the boundary pixels
of the dilated object. The process of eroding the object�s
boundary pixels stops when no more surface pixels can
be eroded.

The process of �dilate and shrink-wrap� is repeated until
the change in size of the object between two consecutive
iterations of dilate and shrink-wrap is zero. If the objects
are bloated beyond their actual boundary before the start
of the shrink-wrap process, such objects are simply shrunk
back to their shape and no change in the shape and size
takes place in the subsequent iterations. The advantage
of this shrink-wrapping process is that the shrinking takes
place based on the intensity characteristics of the individual
objects.

Fig. 4 shows an example of this post-processing step
in centering the particles and removing the intruding
noisy signature. It also shows the binary image of the
particle obtained as the result of shrink-wrap filtering.
It is possible that this binary image can be used in fea-
ture-vector calculation and pre-classification of the
particles.
a particle that would be eliminated in normal circumstances because of the
ticle image with a partial representation of the particle, i.e., particle is cut-
in (A1) as extracted from the binarized micrograph shown in Fig. 2G. (C1)
d. (D1) Binary mask of the particle in (C1). (A2) Another example with an
box shows an intruding particle. (C2) After replacing the intruding particle
-wrap operation. (D2) Binary mask of the particle in (C2).
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2.4. Implementation

The software was developed in IDL language with
required Graphical User Interface (GUI). The C language
version of the software was also implemented but without
the GUI facility. The derivatives in the reaction-diffusion
filter and the curvature calculation were implemented using
the difference equation of the form oI

ox ¼
Ixþ1�Ix

Dx .
The particle-picking program can be set in a batch mode

and run overnight on a set of micrographs of similar qual-
ity. The software takes about 10 min on a single micropro-
cessor machine to complete the particle picking over a
micrograph of an approximate size 6K · 6K.

We have tested the program on Linux 32bit and 64bit
operating systems. All the testing and experiments were
conducted on images where data were stored in little-
endian order. The data in big-endian order should be
converted to little-endian order before using this parti-
cle-picking program. The endian order can be changed
by �em2em.e� program freely available at http://www.
imagescience.de/em2em/. At present, the segmentation-
based software does not allow the user to interact once
it has started running, but we plan to provide interactive
controls for the user as an option in the next version of
the program.

Both IDL and C language versions of the program
together with the user-manual for tuning a small set of
parameters can be downloaded from the website http://
macro-em.org/particle-selection. We will periodically
update the program with improved versions at this site.

3. Results and discussion

Several improvements have been made over the earlier
version of this software. The pre-processing technique is
now structured into independent functions and most tun-
ing parameters adapt to the image statistics. Segmentation
is restricted to the binarization and pinch-off filtering steps
only. The post-processing operations read their parameters
from the particle-size and the image statistics. The
approximate particle-size, in terms of number of pixels, is
provided as an input parameter. Several additional,
post-processing filters are designed as optional features to
reduce false positives, to center the particles, and to obtain
an approximate binary mask of the particles. In general,
only a smoothing-level parameter and an approximate par-
ticle-size is required to be tuned by the user for a represen-
tative micrograph in a data set, and the rest of the
parameters are either independent of the variations in the
data or they are adaptively calculated based on image
statistics.

The number of parameters to be tuned in the software is
one of the issues in defining the utility of the software. A
few user-set parameters can be tolerated if they are
required to be set on only one or two training images,
and the rest of the images can be processed automatically
with the same set of parameter values. In the work reported
here, parameters are set based on experiments with one
micrograph. In the segmentation-based technique, the set
of parameters include one that defines the number of iter-
ations of contrast stretching; a smoothing-filter parameter
b; the number of time-steps for smoothing; the amount
of diffusion used for construction of the background-
image; and the particle-size. The number of iterations for
contrast stretching is set based on the visual improvement
in the contrast of the particles in the micrograph. This
was set to a default value �1.�

In our experiments, the algorithms were found to be
robust against small changes in the parameter values. For
example, in the case of ribosome-particle picking, a 10%
increase in the number of time steps for diffusion resulted
in less than a 1% change in the particle selection efficiency.
Excessive diffusion causes an obvious loss of particles,
while insufficient smoothing results in an increase in the
number of false positives. Similarly, variation of b in the
range of 65–85� did not show any significant changes in
the particle picking efficiency. A further decrease in b
results in enhancement of noisy structures along with true
particles, which results in increased false positives. The par-
ticle size is not intended to be a tuning parameter, but the
user is free to treat it as such.

We have observed that when micrographs of a different
type of particle are processed, we had to tune only the time-
steps for smoothing and reset the particle-size on one
micrograph while the rest of the parameters were left
unchanged from values used previously for ribosomes.
The parameter tweaking can be done in less than half an
hour by following the control-flow of the operations as
described in this paper.

Our goal is to consistently achieve 80% or more efficien-
cy in boxing the same particles that were selected manually
and to do so with less than 10% false positives, without
human intervention. If Hman = {p1,p2, . . . ,pn} is the set
of manually boxed particles, where the size of the set
#{Hman} = n, and Haut = {p1,p2, . . . ,pm} is the set of par-
ticles boxed automatically, where #{Haut} = m, then
{Hman \ Haut} is the set of particles that are picked by both
automatic and manual methods. The symbol �\� is the set
intersection that brings out those elements that are com-
mon to both sets. The set {HmanHman\Haut}} is the set
of particles that are manually picked but not picked up
by the automated software. The symbol �n� denotes the
set difference. The set, {Hautn{Hman \ Haut}} is the set of
false positives, i.e., the set of particles boxed by the auto-
matic method while rejected as non-particles by the manual
method. The percentage efficiency of the automatic method
is then calculated by % efficiency ¼ #fHman\Hautg

n � 100.

3.1. Comparison of ribosome picks

Experiments were conducted on 55 micrographs con-
taining images of more than one hundred and thirty thou-
sand ribosome particles obtained by electron microscopy.
These micrographs were collected in Albany, New York,

http://www.imagescience.de/em2em/
http://www.imagescience.de/em2em/
http://macro-em.org/particle-selection
http://macro-em.org/particle-selection
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Fig. 5. Graphical representation of the efficiency of the segmentation-
based software for particle-picking, tested on a set of 55 micrographs. The
blue curve at the top of the chart shows the percentage efficiency in
correctly picking the particles and the pink curve at the bottom of the
chart shows the percentage rate of false-positives. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this paper.)
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on a Philips Tecnai F30 at 300 kV using low-dose condi-
tions at a magnification of 39000·. The pixel size in the
digitized micrographs corresponds to 3.72 Å/pixel (Valle
et al., 2003).

In the first step of comparative analysis, the first author
of this paper has visually inspected 55 micrographs of ribo-
some particles and counted all the false-positives marked
by the segmentation software. To perform this check, the
micrographs were displayed on a computer monitor and
thick �red� dots were used to indicate the coordinates of
particles selected by the software. Every particle was then
inspected in the context of its surroundings, and the
Table 1
Comparative analysis of particle picking software performance using 14 micro
particles in the initial gold-standard data set that was obtained after manually e

File names No. of picks
in manual edit

No. of
auto picks

msk003.spi 1561 2474
msk004.spi 1470 2353
msk005.spi 1338 2511
msk006.spi 1279 2398
msk008.spi 1621 2335
msk010.spi 1707 2541
msk013.spi 1424 2623
msk015.spi 1165 2456
msk016.spi 1155 2370
msk018.spi 1605 2601
msk019.spi 1493 2587
msk020.spi 1387 2561
msk021.spi 1423 2513
msk022.spi 1632 2493
msk027.spi 1504 2386

No. of auto picks is the number of particles picked by the segmentation-based
and false-positives, respectively, calculated by comparison with the initial g
percentage of false positives in which it is assumed that 2/3rd of the apparent
obvious false-positives, for example �red� spots over a back-
ground region, were eliminated. Fig. 5 shows a graph indi-
cating the efficiency of the segmentation process for
particle picking based upon manual editing by the first
author of the paper. It can be observed that the automated
segmentation program consistently satisfied the condition
that it should show more than 80% efficiency in picking
the same particles that are picked on the basis of human
judgment, with less than 10% false positives. There is, how-
ever, a reasonable chance for introducing some sort of bias
in quantifying the efficiency of the software when a person
who has designed the software for automatic particle pick-
ing also does the manual picking and compares the results.

To reduce the likelihood of such a bias in the analysis,
the second author of this paper has picked particles from
a randomly selected subset of 14 micrographs. The micro-
graphs were first processed by SPIDER software batch
file lfc_pick.spi (Rath and Frank, 2004), to produce a
set of candidate particles. During manual editing of this
set of candidate particles, obvious false positives were first
eliminated. In the next step of manual inspection, some of
the true-positives were also eliminated on the basis of sev-
eral objective and subjective criteria such as intensity,
contrast, shape, visual estimation of high-frequency infor-
mation, etc.

Table 1 shows a more detailed comparative evaluation
that was made for the fourteen micrographs whose parti-
cles were picked by the second author of this paper. This
list of particle coordinates is considered to be a gold stan-
dard for comparison. The statistics clearly indicate that the
segmentation-based method performs well as regards to
efficiency but appears to perform poorly with respect to
the number of false positives. Fig. 6 shows a small part
of a high-density micrograph in which the particles are
marked. White boxes indicate ribosome particles marked
by the segmentation-based software while red dots indicate
graphs of ribosome particles: No. of picks in manual edit is the number of
diting the set of particles picked by SPIDER software batch file lfc_pick.spi

Apparent
efficiency (%)

Apparent false
positives (%)

Actual false
positives (%)

89 43 11
89 44 11
89 52 14
90 51 13
89 37 9
91 38 9
91 50 13
89 57 15
90 55 15
93 42 11
91 47 12
90 50 13
90 48 13
92 39 10
89 43 11

method. Apparent efficiency and apparent false positives are the efficiency
old-standard. Actual false positives shows a corrected estimate of the
false positives as true positives (see the text for details).



Fig. 6. A small part of a micrograph that contained a high density of
particles. Particles marked by the automated segmentation-based software
are shown in white boxes, and the particles included in the original gold-
standard set are marked by red dots. Many of the white boxes that do not
have red dots in them nevertheless appear to have boxed ribosome
particles. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
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the particles manually selected. It can be observed that
most of the white boxes have ribosome particles in them.
Several of them were not selected as �good� ribosome parti-
cles in the gold standard, however, based on subjective cri-
teria. Thus, the efficiency and the percentage of false
positives calculated by the direct comparison with the par-
ticles picked by the second author are referred to as the �ap-
parent efficiency� and the �apparent false positives,�
respectively.

To re-evaluate whether all particles that were boxed by
the software but were not in the initial manually selected
data set should be classified as false positives, the second
author was provided with the same set of 14 micrographs
in which only the �apparent false positives� were marked
by a red dot. The second author found that at least 2/3
of these �apparent false positive� particles were, in fact, true
particles that should be included in the gold standard set.
Accordingly the percentage of false positives for automatic
Table 2
Comparative analysis of particle picking software performance using five TPP

Micrograph No. of
manual pick

No. of
auto pick

Effici

TPP000.tif 098 116 93
TPP001.tif 438 457 90
TPP002.tif 288 293 87
TPP003.tif 392 436 94
TPP004.tif 411 424 89

Manual selection of the particles was done by the first author. In the first step
resulted in a relatively high number of false positives, as evident from column
shape based filtering.
particle picking was recalculated. The recalculated values
are shown in column 6 of Table 1 as �actual false positives.�

The automatic particle-picking software described in
this paper is not designed to eliminate the particles based
on quality criteria. It will pick every object in the micro-
graph that is deemed to be a particle based on the size
and intensity characteristics of the segmented object. This
has resulted in picking several particles that were not con-
sidered by a human expert to be good enough particles to
be in the gold standard. At present, evaluation of the qual-
ity of a particle is subjective and depends on the expertise
of the researcher. An important next objective will be to
design algorithms to quantify the subjective criteria that
are used in order to develop a quality index for the boxed
particles. We believe that it will be possible to develop such
an operation that would further reduce the percentage of
false positives when compared to human analysis.

3.2. Comparison of TPP-II picks

Our long-term goal is to design a particle-picking
approach that is more general in nature, i.e., one that does
not need completely new developments each time that a
new type of particle is to be picked. To test the generality
of the current software and to identify aspects for further
improvement, we have run the software on five micro-
graphs of TPP-II complex, which is a giant protease isolat-
ed from Drosophila (Rockel et al., 2002). TPP-II complex
has a twisted shape and exhibits distinct 2-D projections
that cannot be classified as a simple blob-like structure,
as is the case for ribosomes. The TPP-II complex shows
several distinct shapes when projected onto a 2-D plane.
Various shapes of side views are referred to as ‘‘navette’’
or boat-like, ‘‘bow-tie,’’ and ‘‘fish’’ views, as well as more
spherical end-views. These shapes are pictorially described
in Rockel et al. (2002). Fig. 3 shows different stages of pro-
cessing of the TPP-II micrographs using the above
described operations and filters.

The use of size and intensity thresholds that match the
side-views resulted in elimination of many particles with
small area such as top-views or end-views. Relaxing the
lower size-threshold value to pick end-views as well as
side-views increases the number of false positives. Visual
inspection of the segmented, false positives made it appar-
-II micrographs

ency (%) False
positives (%)

False positives after shape
filtering (%)

19 8
13 6
14 6
15 7
16 7

, the parameters were tuned to select end-views as well as side-views. This
5. Column 6 reflects the reduction in percentage of false positives due to
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ent that many of them did not have the near-spherical
shape expected of end-views. This made it possible to elim-
inate such false positives with criteria based on a combina-
tion of (1) object eccentricity, i.e., the ratio of maximum
radius to minimum radius of the binary mask of the parti-
cle and (2) the size of the binary mask.

Table 2 gives the performance analysis of the segmenta-
tion-based software for automatically picking the TPP-II
particles. When the objects in the binary image that are
below a pre-defined size threshold and above a given object
eccentricity limit were eliminated, the number of false pos-
itives decreased to fewer than 10% as evident from column
6 of Table 2. The results given in Table 2 indicate that the
software is now suitable for testing on a much larger data
set of TPP-II images.

We have observed, however, navette shaped particles are
occasionally recognized as two end-views rather than as
one single particle. An example is shown in Fig. 3H within
a marked box. These cases do not affect the efficiency of the
particle picking since we are not picking a false positive nor
do we leave out a true-positive during the particle picking
process. The negative effects of such cases are, (1) a same
particle gets to be counted twice and (2) the extracted par-
ticle image will not be properly centered. We therefore
believe that use of an improved shape-descriptor, such as
templates, should still be added during the post-processing
stages. In the next version of the particle-picking program
we propose to implement templates as shape descriptors, to
make the software more general in its applications.
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