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1. Introduction

Non-invasive brain–computer interfaces (BCIs) enable users 
to control external devices (such as computer systems [1, 2], 

prosthetic arms [3, 4], and robotic vehicles [5]) using brain 
activity. The primary application of BCIs is to replace [6] 
function in those with severe motor disabilities that are the 
result of injury [7] or disease [8, 9]. They also, however, may 
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Abstract
Objective. In this paper, we report the performance of 9–11-year-old children using a steady-
state visual evoked potential (SSVEP)-based brain–computer interface (BCI) and provide 
control data collected from adults for comparison. Children in our study achieved a much 
higher performance (79% accuracy; average age 9.64 years old) than the only previous 
investigation of children using an SSVEP-based BCI (∼50% accuracy; average age 9.86 years 
old). Approach. Experiments were conducted in two phases, a short calibration phase and a 
longer experimental phase. An offline analysis of the data collected during the calibration phase 
was used to set two parameters for a classifier and to screen participants who did not achieve 
a minimum accuracy of 85%. Main results. Eleven of the 14 children and all 11 of the adults 
who completed the calibration phase met the minimum accuracy requirement. During the 
experimental phase, children selected targets with a similar accuracy (79% for children versus 
78% for adults), latency (2.1 s for children versus 1.9 s for adults), and bitrate (0.50 bits s−1 for 
children and 0.56 bits s−1 for adults) as adults. Significance. This study shows that children can 
use an SSVEP-based BCI with higher performance than previously believed and is the first to 
report the performance of children using an SSVEP-based BCI in terms of latency and bitrate. 
The results of this study imply that children with severe motor disabilities (such as locked-in 
syndrome) may use an SSVEP-based BCI to restore/replace the ability to communicate.

Keywords: brain–computer interface, steady-state visual evoked potential, BCI, SSVEP, 
children
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be useful for rehabilitation (such as after a stroke [10]) or to 
supplement [11] and/or improve [12] the natural capabilities 
of healthy individuals.

Most current BCI systems use electroencephalography 
(EEG), a non-invasive and relatively inexpensive tool, to 
measure the brain’s naturally generated electrical activity. For 
example, EEG can be used to measure brain activity generated 
by imagined movement [8], the detection of infrequent tar-
gets [13], or spatially distinct sounds [14]. Here, we consider 
EEG-based BCIs that use brain activity elicited by repetitive 
visual stimulations. These brain signals are commonly known 
as steady-state visual evoked potentials (SSVEPs).

SSVEP-based BCIs rely on the fact that repetitive visual 
stimulation elicits brain activity at the same speed (measured 
in frequency or flashes per second) as the stimulus [15]. In 
addition, the amplitude of the brain activity elicited by the 
stimulus is dependent on the user’s attention [16]. This means 
that if there are multiple stimuli flashing at different rates, the 
stimulus that the user attends to (the target) will elicit a larger 
amplitude response than the stimuli that the user ignores. In 
practice, the user’s target is unknown and must be inferred 
through analysis of the EEG data. This analysis, known as 
classification, outputs a guess of the user’s target, called the 
predicted target. This process of the user attending to targets 
and the classification system predicting targets enables a user 
to select a specific stimulus from the available set of stimuli 
and is the basis for all SSVEP-based BCIs.

There are three common ways to measure the performance 
of an SSVEP-based BCI user. Accuracy is the proportion of 
times the predicted target matches the target [17]. Latency is the 
mean time from target onset to classification [2, 18]. Bitrate is 
the number of bits per second that are transmitted, and is often 
preferred over other measures because it accounts for both 
accuracy and latency. Common ways of quantifying bitrate are 
the information transfer rate (ITR) [19] and the Nykopp bitrate 
(NBR) [20]. We use NBR to quantify bitrate in this paper, since 
it addresses several well-known limitations of ITR [21].

Given that the goal of most SSVEP-based BCIs is to replace 
function in those with severe motor disabilities and that these 
disabilities affect many different groups of people (with different 
ages, genders, etc), it is important to understand how SSVEP-
based BCI performance varies among these different groups. As 
an example, consider that SSVEP-based BCIs are often tested 
with young adults, but the average age of patients who have 
locked-in syndrome (LIS) is approximately 50 (this estimate is 
based on the average age of 151 LIS patients reported by Bruno 
et al [22]). Then consider that Lesenfants et al [23] found that 
only one out of six LIS patients (average age 49  ±  19.7 years) 
could use their SSVEP-based BCI system with better than chance 
accuracy, but 80% of young adults could use their system.

Prior studies of these demographic differences in the per-
formance of SSVEP-based BCIs have reported mixed results. 
Allison et al [24] assessed the performance of more than 100 
people between the ages of 18 and 79 at a large computer expo 
(CeBIT 2008). While younger people tended to perform at 
higher bit rates, there were no significant differences in perfor-
mance between people of different ages or genders. A follow-up 
paper by Volosyak et al [25] also found no differences between 

people of different ages. Two more recent papers, however, have 
reported differences between young adults and older adults in the 
context of SSVEP-based BCIs. Hsu et al [26] compared SSVEP 
amplitudes in young adults, older adults, and ALS patients. They 
found that young adults produced larger SSVEPs with a higher 
signal to noise ratio at an occipital electrode site compared to 
older adults and ALS patients. In addition, Volosyak et al [18] 
recently investigated differences in performance between young 
adults (between the ages of 19 and 27) and older adults (between 
the ages of 54 and 76) while using an SSVEP-based BCI for 
text-entry. The results of this study showed that younger adults 
achieved a higher average bitrate than older adults.

While the aforementioned studies have considered adults 
of different ages, only one previous study has investigated the 
performance of children compared with adults when using an 
SSVEP-based BCI. In this study, Ehlers et al [17] asked chil-
dren of different ages to use an SSVEP-based BCI for text-
entry. Ehlers et al found that children achieved lower accuracy 
than adults and concluded that children were not yet able to 
generate a reliable SSVEP due to developmental differences. 
The data presented by Ehlers et al [17] are an important contrib-
ution to the literature on SSVEP-based BCIs. However, it is not 
clear if external factors influenced the results. For example, 
the children were tested in a noisy school environment, one 
that may have distracted them from the task. In addition, it 
is not clear whether the children struggled with the SSVEP-
based BCI because it was used for text-entry, a task that—even 
without a BCI—is harder for children than adults [27]. Previous 
cognitive neuroscience research conflicts with the results from 
Ehlers et al [17]. For example, Birca et al [28] first reported that 
there were no differences in SSVEP magnitude between chil-
dren and adults, and later reported that children aged 8–11 had 
larger SSVEP responses over the occipital region than adults 
[29]. Furthermore, Ehlers et al [17] only reported accuracy, and 
not the latency or the bitrate of the participants.

The small number and conflicting results of these prior 
studies leave open the question of whether or not children can 
use an SSVEP-based BCI with good performance. Resolving 
this question is important if we want to consider the use of 
SSVEP-based BCIs to replace lost function in children with 
severe motor disabilities, including LIS [30]. To help resolve 
this question, we describe a new study in this paper that 
compared the performance of children (aged 9–11) using 
an SSVEP-based BCI. Our study consisted of two phases, a 
short calibration phase and a longer experimental phase. Data 
collected during the calibration phase were used to choose 
parameters for our classifier and to screen out participants 
with low performance (11 of 14 children and 11 of 11 adults 
met minimum performance requirements). Data collected 
during the experimental phase were used to measure average 
accuracy, latency, and bitrate in each of the two groups.

2. Method

2.1. Participants

26 able-bodied volunteers (15 9–11 year olds, Mean  =  9.73 
and 11 adults aged between 19–68, Mean  =  39.31) 
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participated in our study. Participants were recruited through 
email bulletins and word of mouth. Two adult participants had 
previous experience with a BCI (S01a and S09a). All subjects 
had normal or corrected-to-normal vision and no prior his-
tory of neurological illness6. Each participant was compen-
sated with a small gift ($5.00 US or less) for their time. This 
study was approved by the Institutional Review Board at the 
University of Illinois at Urbana-Champaign.

2.2. EEG recording

EEG signals were recorded from six tin electrodes. The elec-
trodes were placed on the surface of the scalp located at 10–5 

international sites: PO3, POZ, PO4, O1, OZ, and O2 [32]. The 
channels were grounded at the right ear and referenced to the 
top of the head (location CZ). The signals were recorded at 
impedances of less than 10 kΩ. All EEG signals were band-
pass filtered from 1 Hz to 30 Hz, amplified using a James Long 
bioamplifier, and digitized at 128 Hz (National Instruments 
Model PCI-6225). BCI2000 [33] was used to visualize and 
record the preprocessed EEG signals.

2.3. Experimental procedures

All experiments were conducted in a cool and sound attenuated 
room with dim ambient lighting. The participants were seated 
in a comfortable office chair between two speakers facing an 
LED computer monitor (24 inch BenQ XL2420T). All partici-
pants were approximately 24 inches from the monitor, but no 
chin rest was used to restrict head movement. After completing 
the consent process, each subject was asked to complete a brief 
survey with basic background questions, based on the ques-
tionnaire used by Allison et al [24]. After the survey was com-
pleted, the participants completed a short calibration phase and 
a longer experimental phase. After the experiments, partici-
pants also completed an additional phase that will be discussed 
as a part of a different study. During all experiments partici-
pants were asked to focus their visual attention on a target pre-
sented on the monitor. For both the calibration phase and the 
experimental phase the targets were three white circles (5.1 cm 
in diameter) flashing between white and black at 6.2 Hz, 7.7 
Hz, and 10 Hz. We chose these frequencies based on previous 
experience [34] and because they are less likely to elicit photo-
induced seizures. The second of these two reasons is especially 
important when working with younger individuals, who are 
often unaware that they are photosensitive [31].

2.4. Calibration phase

Each participant completed a calibration phase to calibrate the 
BCI system and to screen participants with low performance.

Data from the calibration phase was used to set free param-
eters of the classifier (appendix A; section 2.6). The partici-
pants were given verbal instructions and allowed to start the 
application when they were ready by pressing a key on the 
keyboard. Once the calibration phase started, an arrow speci-
fied the target during each trial (figure 1(a)) and this target was 
highlighted with a yellow outline. Participants were instructed 
to overtly focus their attention on the target for the entire trial. 
Each trial lasted 5 s, with a short pause between trials. The 
order of the specified targets was randomized with each of the 
three frequencies specified as the target five times for a total 
of 15 trials. The calibration phase took no more than five min-
utes. Following the calibration phase, the participants were 
given time to relax while the experimenter calibrated the BCI 
system with the calibration data.

During the analysis of the calibration data, if the partici-
pant never achieved an 85% accuracy, they were deemed to 
be unable to use the SSVEP-based BCI and any data collected 
during the experimental phase was excluded from further 
analyses.

Figure 1. Graphical representations of the experimental interface. 
(a) Shows how targets were identified with an arrow during the 
calibration phase. (b) Shows how the target was highlighted during 
the experimental phase. (c) Shows the feedback given to the user 
after the classifier guessed the predicted target. Note that the size of 
the targets and text have been enlarged to improve readability. (a) 
Targets for the calibration phase. (b) Targets for the experimental 
phase. (c) Feedback after selection during the experimental phase.

6 For future studies on the development of SSVEP-based BCIs for children, 
we also recommend excluding participants based on a family history of 
neurological illness. For more guidelines, see Fisher et al [31].
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2.5. Experimental phase

During the experimental phase, users were asked to select a 
sequence of targets using our SSVEP-based BCI. When the 
experiment was started, a splash screen was displayed while 
the experimenter described the task. After the researcher pro-
vided instructions on how to use the application, the partici-
pant was allowed to press a key on the keyboard to begin the 
experiment.

Similar to the calibration phase, the interface used in the 
experimental phase displayed three stimuli. The target that the 
participant was supposed to select was the same as in the cali-
bration phase, except there was no arrow pointing to it (figure 
1(b)).

Participants were instructed to select targets by overtly 
shifting their visual attention. If the classifier guessed a target, 
a check mark was shown at the location of the predicted target 
(figure 1(c)) and a tone provided audio feedback that a selec-
tion had been made. Participants were given up to 5 s to select 
a target during each trial. If no target was selected within 5 s, 
the trial ended and the next trial began. The application paused 
for 1 s between trials. Real-time feedback on the number of 
trials completed was provided at the top of the interface.

The experimental phase consisted of four rounds and a 
bonus round at the end (data from the bonus round will be 
described as part of a future study). Each round contained 15 
trials. The order of the targets during each round was rand-
omized. Each of the three stimulation frequencies were speci-
fied as the target five times during each round. At the end of 
each round, a message was displayed indicating the round 
number and the system paused for 6 s. At the end of the exper-
imental phase a message was displayed to the user, letting 
them know the session was completed.

2.6. Signal processing

A classifier, based on canonical correlation analysis (CCA), 
was used to determine the predicted target. Our algorithm 
for the classification of SSVEP targets using CCA was sim-
ilar to the one described by Lin et al [35] with three notable 
differences:

 (i)  We considered only two harmonic frequencies.
 (ii)  A threshold (τ) was used to enable asynchronous control.
 (iii)  Two free parameters, the amount of data considered by 

the classifier (window-length [t], measured in seconds) 
and τ were set using data from the calibration phase.

For additional details on the classifier used in this study, 
see appendix A.

2.6.1. Window-length and threshold. As discussed in sec-
tion 2.6, the purpose of the calibration phase (section 2.4) was 
to set t and τ. After each participant completed the calibration 
phase, individual 5 s trials were extracted from the calibration 
data. After trial extraction, there were five trials for each of 
the three target frequencies. Using this data, a search was per-
formed to find the parameters that maximized the participant’s 
NBR [20]. The NBR was computed for t = [0.5, 0.625, ..., 5] 

and for τ = [0, 0.01, ..., 1]. The values of t and τ that maxi-
mized NBR were subsequently used for classifying targets 
during the experimental phase.

There were two differences in the way that the parameters 
were calculated for different subjects. First, for children, the 
minimum value of t was set to be 1.250 s. For the adults, 
the minimum value of t was set to be 0.5 s. Second, for five 
of the children—denoted with asterisks in table  B1—the 
parameters were calculated using three harmonic frequen-
cies instead of two. The possible impact of these two dif-
ferences will be considered in the results and discussion 
(sections 3 and 4).

3. Results

Of the 26 people who participated in our study, 22 were able to 
complete the entire experiment (average age children  =  9.64 
years of age, average age adults  =  38.00 years of age). One 
child was excluded due to a technical issue (software crash). 
Three children were excluded due to low performance. Two 
of the children who were excluded appeared distracted during 
the calibration phase. They did not pay attention to the screen 
or appear to attempt the task. Data from participants who did 
not achieve a minimum accuracy of 85% within 5 s of stimula-
tion during the calibration phase (section 2.4) were excluded 
from further analyses.

In our study, there were three primary measurements of 
performance.

 (i)  Accuracy—Accuracy was calculated as the number of 
times that the predicted target was equal to the target 
divided by the total number of trials.

 (ii)  Latency—The average amount of time (measured in 
seconds) that elapsed between the onset of the stimuli and 
the classification of the predicted target.

 (iii)  NBR—Calculated using the definition of Nykopp [20, 
21, 36], a quantity that describes the amount of informa-
tion transmitted over a noisy channel per unit of time and 
reported in terms of bits s−1. Our calculation of NBR is 
based on the formulas found in Kronegg et al [21].

3.1. Calibration phase

We report our analysis of the calibration data in two ways. 
First, we describe the t and τ values used during the experi-
ment (since there were two differences in the way that t and 
τ were calculated for the participants who were children; sec-
tion 2.6.1). Second, we describe a post-experiment analysis of 
the data. In both cases, 11 of the 14 children and all 11 adults 
who completed the calibration phase exceeded our threshold 
for being able to use an SSVEP-based BCI.

3.1.1. Parameters from experiments. The results obtained 
during the calibration phase are given in tables  B1 and B2. 
Before assessing statistical differences between the children 
and adults in the data from the calibration phase, the assump-
tions of a two-sample t-test were tested. A Shapiro–Wilk test 
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(performed using the MATLAB command swtest by Ahmed 
BenSaïda from the file exchange) was used to test the assump-
tion of normality. This test found that the data was normally 
distributed for τ (p  =  0.85), but not for t (p  =  0.001). Since the 
data was found to be normally distributed, τ was also tested for 
outliers (using the MATLAB function isoutlier; outliers were 
defined as being more than three standard deviations from the 
mean; no outliers were found) and for equal variances between 
the groups using Levene’s test (MATLAB function vartestn; 
p  =  0.88). A Mann–Whitney U test with no correction for 
multiple comparisons found that the t values used for classi-
fication in the participants who were children (Mean  =  1.545 
s, Mdn  =  1.375 s, SD  =  0.450 s) were longer (p  =  0.02) than 
those used for the participants who were adults (Mean  =  1.227 
s, Mdn  =  1.000 s, SD  =  0.849 s). Although, one adult (partici-
pant S05a) had a t of 3.625 s (table B2), 1.375 s longer than any 
of the children who participated in the study. There was no dif-
ference in the τ values calculated for children (Mean  =  0.57, 
Mdn  =  0.58, SD  =  0.15) compared with adults (Mean  =  0.60, 
Mdn  =  0.60, SD  =  0.15) using a two-sample t-test (p  =  0.63).

3.1.2. Post-experiment analysis. The purpose of the post-
experiment analysis of the data from the calibration phase was 
to calculate t and τ in the exact same way for all of the par-
ticipants using the classifier described in section 2.6. Before 
assessing statistical differences in the data from the calibra-
tion phase between the children and adults, the assumptions 
(normally distributed data, no outliers, equal variance) of a 
two-sample t-test were tested. A Shapiro–Wilk test (per-
formed using the MATLAB command swtest) was used to test 
the assumption of normality for each of the variables. This test 
found that the data was normally distributed for τ (p  =  0.93), 
accuracy (p  =  0.13), and bitrate (p  =  0.33), but not for t 
(p  =  0.001) or latency (p  =  0.02). A test for outliers (using 
the MATLAB function isoutlier; outliers defined as more than 
three standard deviations from the mean) did not find any out-
liers in the data. Finally, using Levene’s test for equality of 

variances, the two groups in each of the variables were found 
to have equal variance. A Mann–Whitney U test (with no cor-
rection for multiple comparisons) of the calibration data for 
the included participants revealed t would have been shorter 
(p  =  0.035) for the adults (Mean  =  1.227, Mdn  =  1.000, 
SD  =  0.849) than the children (Mean  =  1.432, Mdn  =  1.250, 
SD  =  0.448). Further statistical analyses did not reveal any 
differences in τ (two-sample t-test; p  =  0.77), accuracy (two-
sample t-test; p  =  0.11), latency  (Mann–Whitney U test; 
p  =  0.19), or NBR (two-sample t-test; p  =  0.08) between 
children and adults. These data are reported in tables  1–3. 
Figure 2 presents the data from the calibration phase—as cal-
culated in the post-experiment analysis—for the children and 
the adults graphically. When the accuracy of classification for 
a τ = 0 is plotted as a function of t, we can see that children 
and adults improve in accuracy as t increases (figure 2(a)). 
Figure 2(b) shows accuracy curves for the children who were 
excluded from the study and the average acc uracy of included 
and excluded children. Unlike the included children, the acc-
uracy of excluded children (for τ = 0) does not increase as 
a function of t. Figures 2(c) (children) and (d) (adults) show 
accuracy as a function of t (τ = 0) for the three stimulation 
frequencies. Figure 2(e) shows the t and τ values calculated 
for each child overlaid on an image of the average NBR for 
each possible value of t and τ. A similar image for the adults 
is shown in figure 2(f).

Table 1. Post-experiment analysis of data from calibration phase 
(included children).

Subject t τ Accuracy Latency NBR

S01c 1.375 0.75 0.87 2.40 0.51
S02c 1.125 0.70 0.87 1.38 0.79
S03c 2.125 0.40 0.87 2.41 0.44
S04c 1.375 0.47 1.00 1.57 1.01
S05c 0.875 0.75 1.00 1.58 1.00
S06c 2.250 0.35 0.87 2.60 0.46
S07c 1.125 0.63 0.93 2.14 0.69
S08c 1.250 0.58 0.93 1.70 0.78
S09c 1.250 0.64 0.93 1.70 0.78
S10c 1.875 0.36 0.87 1.92 0.62
S11c 1.125 0.73 1.00 1.83 0.86
Mean 1.432 0.58 0.92 1.93 0.72
Mdn 1.250 0.63 0.93 1.83 0.78
SD 0.448 0.16 0.06 0.40 0.20

Table 2. Post-experiment analysis of data from calibration phase 
(excluded children).

Subject t τ Accuracy Latency Bitrate

E01c 0.500 0.00 0.40 0.50 0.42
E02c 0.500 0.00 0.40 0.50 0.98
E03c 0.500 0.00 0.60 0.50 1.05
Mean 0.500 0.00 0.47 0.50 0.82
Mdn 0.500 0.00 0.40 0.50 0.98
SD 0.000 0.00 0.12 0.00 0.35

Table 3. Post-experiment analysis of data from calibration phase 
(included adults).

Subject t τ Accuracy Latency Bitrate

S01a 1.000 0.60 0.93 1.17 1.14
S02a 1.375 0.51 0.93 1.76 0.75
S03a 1.125 0.57 1.00 1.86 0.85
S04a 0.750 0.70 1.00 1.80 0.88
S05a 3.625 0.27 0.93 3.76 0.35
S06a 1.625 0.42 0.93 2.13 0.62
S07a 0.750 0.68 0.93 1.12 1.18
S08a 0.750 0.74 0.93 1.43 0.93
S09a 0.875 0.66 0.93 1.19 1.11
S10a 0.625 0.82 1.00 1.33 1.20
S11a 1.000 0.60 1.00 1.74 0.91
Mean 1.227 0.60 0.96 1.75 0.90
Mdn 1.000 0.60 0.93 1.74 0.91
SD 0.849 0.15 0.03 0.74 0.26
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3.2. Experimental phase

The performance of participants during the experimental 
phase is shown in figure  3. The accuracy data from the 
experimental phase was found to meet the assumptions of 
the two-sample t-test. Both latency (p  =  0.003) and NBR 
(p  =  0.03) were found to violate the assumption of normally 
distributed data, as measured using the Shapiro–Wilk test 
(performed using the MATLAB command swtest). Further 

statistical analyses did not reveal any differences between 
the children and adults in terms of accuracy (two-sample t-
test; p  =  0.84; figure  3(a)), latency (Mann–Whitney U test; 
p  =  0.15; figure  3(b)), or NBR (Mann–Whitney U test; 
p  =  0.45; figure  3(c)) in the experimental phase. Both chil-
dren (Mean  =  79%, Mdn  =  83%, SD  =  14%) and adults 
(Mean  =  78%, Mdn  =  80%, SD  =  11%) achieved similar 
levels of accuracy during the experimental phase and both 
groups had worse performance during the experimental 
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phase than during the calibration phase. In terms of latency, 
the children (Mean  =  2.106 s, Mdn  =  2.073 s, SD  =  0.48 
s) were almost 0.2 s slower than the adults (Mean  =  1.917 
s, Mdn  =  1.710 s, SD  =  0.73 s), but the high variance meant 
that this was not significant. Children (Mean  =  0.50 bits s−1, 
Mdn  =  0.49 bits s−1, SD  =  0.20 bits s−1) also transmitted 
information at a slightly lower (but not significantly lower) 
NBR than adults (Mean  =  0.56 bits s−1, Mdn  =  0.59 bits s−1, 
SD  =  0.25 bits s−1).

The data from the experimental phase were also inspected 
for differences in accuracy and latency of the selection of 

targets by frequency (figure 4) and round (figure 5). No differ-
ences were found.

4. Discussion

This study demonstrated that 9–11-year-old children are able 
to use an SSVEP-based BCI with much higher accuracy than 
previously reported [17] and is the first work to report the 
performance of children when using an SSVEP-based BCI in 
terms of latency and bitrate (NBR). Furthermore, the accu-
racies, latencies, and NBRs of the children and adults who 
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completed the experimental phase were nearly identical. 
The remainder of the discussion is organized by phase: first 
we discuss the calibration phase, then we discuss the exper-
imental phase, and we conclude by considering future work.

4.1. Calibration phase

A calibration phase was used to calibrate the BCI system and 
to screen participants for inclusion in the experimental anal-
ysis. Data from the calibration phase showed that 11 of the 
14 children (table B1) and all 11 adults (table B2) included 
in this study met the minimum threshold for inclusion in the 
experimental analysis.

Three children did not meet the criteria for their data to 
be included in the experimental analysis. The experimenters 
noted that two of the excluded children were visibly distracted 
during the calibration phase. The calibration task was rela-
tively boring. Children were asked to attend to targets without 
getting feedback of any kind. It is possible the distracted 
behavior that was observed during the calibration phase could 
be an indication of a lack of engagement during this ses-
sion. We encourage future research to examine the impact of 
engagement on BCI performance. In addition, an eye-tracker 
could be used to determine where participants are directing 
their gaze. It is likely that the third excluded child was simply 
one of those people who are unable to use an SSVEP-based 
BCI [37]. By collecting more data, it may be possible to 
understand differences in BCI ‘literacy’ between children and 
adults, this represents one direction of future work.

The data collected during the calibration phase were also 
used to compare the performance of children with that of 
adults. This comparison was performed using two separate 
analyses. The first analysis used the same parameters as in 
the experiments to compare children versus adults. In this 
analysis, the t values for the children were slightly longer than 
those used for the adults. We partially attribute this to (1) the 
fact that the minimum window-length permitted for children 
was 1.25s while the minimum window-length for adults was 
0.5 s and (2) for several of the children, the classifier we used 
during the calibration phase had three harmonics instead of 
two. Many of the adults (table B2) had t values of less than 
1.25 s, which may have skewed these results. The second 
analysis was conducted after all of the experiments were com-
pleted and used the exact same classifier for all participants. 
When this analysis was performed, the t values calculated for 
the adults were still shorter than the t values calculated for the 
children. While the difference was small, this result may sug-
gest (as proposed by [17]) that there are some differences in 
the ability of children versus adults to generate an SSVEP. It 
would be interesting to see if this difference is exaggerated in 
even younger children.

4.2. Experimental phase

Data from the experimental phase show that children 
(9–11-years-old) can use an SSVEP-based BCI for a target 
selection task with a similar accuracy, latency, and NBR as 

adults. It is well known that repetitively flickering stimuli elicit 
an SSVEP in both children [28] and adults [38]. While healthy 
adults are known to be able to use this signal to control an 
SSVEP-based BCI [1, 2, 18, 37], there is only one previous 
study investigating whether children also have this ability [17]. 
That study observed that children completed the SSVEP-based 
BCI task with significantly lower accuracy than adults (median 
difference 24.4% for 7–11 Hz stimuli) [17]. Thus, the present 
study (1) provides evidence that children have the ability to 
use SSVEP-based BCIs and (2) suggests that any differences 
in performance between 9–11-year-old children and adults are 
smaller than previously believed [17]. Since children can gen-
erate an SSVEP and use this signal to control an SSVEP-based 
BCI for a target selection task, it is possible that SSVEP-based 
BCIs could be used as communication devices for children 
with severe motor disabilities, such as LIS [30].

This is, to the best of our knowledge, the first study to 
report the performance of 9–11-year-old children using an 
SSVEP-based BCI in terms of latency and bitrate (NBR). 
By considering latency and bitrate (NBR)—in addition to 
accuracy—our study provides a more complete picture of 
the performance differences between children and adults. 
This more complete picture is important, since it is pos-
sible for two users of an SSVEP-based BCI to have a 
similar target selection accuracy, but very different overall 
performance. For example, S03c (see table  B3) and S09a 
(see table B4) both had an average accuracy of 88% in the 
experimental phase. However, S03c had an average latency 
of 3.079 s and bitrate of 0.42 bits s−1 compared to S09a who 
had an average latency of 1.256 s and bitrate of 0.90 bits 
s−1. In other words, while these two participants had iden-
tical accuracies, S09a communicated twice the information 
per unit of time—as measured by NBR—as S03c. Thus, the 
reported accuracy results of Ehlers et al [17] may have been 
confounded by the latency of target selection, which they 
allowed to vary. Here, we show that the performance of chil-
dren using an SSVEP-based BCI for a target selection task 
was similar to the performance of adults in terms of acc-
uracy, latency, and NBR.

There appear to be differences in classification accuracy 
between the calibration phase (92% for children, 96% for 
adults) and the experimental phase (79% for children, 78% for 
adults). All of the data collected during the calibration phase 
was used to set the parameters for the experimental phase. This 
may have caused overfitting, the parameters we chose were 
appropriate for the calibration phase data, but did not gener-
alize well to experimental phase data that was subsequently 
collected. Even with the limited data that was available, this 
issue may have been mitigated using cross-validation when 
setting the classifier parameters [39]. This represents a poten-
tial area for improvement in future studies.

This study demonstrates that children can use an SSVEP-
based BCI much better than previously reported, although there 
are differences between our study and the only previous invest-
igation of SSVEP-based BCIs for children. Ehlers et al reported 
children (mean 9.86 years old) achieved an accuracy of approxi-
mately 50% (based on visual analysis of figure 2 in [17]). The 
children in our study, on the other hand, achieved an average 
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of 79% accuracy. There are a number of methodological differ-
ences between the two studies that could explain this difference:

 •  The environments in which the children completed the 
experiments were different. In Ehlers et al [17] children 
performed the experiments in a noisy school environment, 
while in our experiments they were in a quiet laboratory 
environment. There is value in testing the performance 
of children under different environmental conditions. 
Clinical and/or home environments may be noisy in some 
cases (like in the experiments of Ehlers et al [17]) and quiet 
in others (like the experiments reported here). Detailed 
investigations of the effect of environment and distraction 
on the performance of children using an SSVEP-based 
BCI may inform the design of clinical/home systems.

 •  The tasks were different. The children in our study used 
the SSVEP-based BCI to complete a target selection task. 
In Ehlers et al [17], children completed a text-entry task. 
Text-entry is a very common platform for SSVEP-based 
BCI experiments [1, 2], but may not be appropriate for 
children [27].

 •  Our experiments used slightly different stimulation 
frequencies. The frequency of stimulation is known to 
impact the amplitude of the elicited SSVEP [1].

 •  We conducted a calibration phase to set two classifier 
parameters before the experimental phase.

 •  After low performance in the calibration phase, three 
children were excluded from the experimental phase of 
our study. Ehlers et  al [17], however, did not exclude 
any children from their results. Figure  2(b) shows—
using the data from the calibration phase—that grouping 
the included and excluded children together may have 
reduced average performance. This suggests two things. 
First, it is important to consider the performance of 
individuals in these studies and identify outliers. Second, 
excluding the three children may have caused the differ-
ences in performance between our study and Ehlers et al 
[17] to appear larger than they really are.

It is possible that any of these methodological differences 
could explain why the children in our study had higher perfor-
mance than the similar age group of children in the study by 
Ehlers et al [17].

One potential limitation of the current study is that the 
parameters used in the classifier were slightly different for 
some of the children than they were for the adults. As discussed 
in section 4.1, we performed a post-experimental analysis of 
the calibration data to assess the impact of this difference. This 

6.2Hz 7.7Hz 10Hz 6.2Hz 7.7Hz 10Hz

40

60

80

100
A

cc
ur

ac
y 

(%
)

Children Adults
6.2Hz 7.7Hz 10Hz 6.2Hz 7.7Hz 10Hz

1

2

3

4

La
te

nc
y 

(s
ec

on
ds

)

Children Adults
(a) (b)

Figure 4. Performance of included children versus included adults during the experimental phase by stimulation frequency in terms of (a) 
accuracy and (b) latency. The variations in the x-axis are random noise that has been added to reduce overlap in the data points and increase 
readability.

1 2 3 4
70

75

80

85

90

95

Round Number

A
cc

ur
ac

y 
(%

)

 

 

Children
Adults

1 2 3 4
1.75

1.875

2

2.125

2.25

2.375

Round Number

La
te

nc
y 

(s
)

 

 

Children
Adults

(a) (b)

Figure 5. Performance of included children versus included adults during the experimental phase by round in terms of (a) accuracy and (b) 
latency.

J. Neural Eng. 15 (2018) 056012



J J S Norton et al

10

analysis showed that there would have been a slight difference 
in the t value used for the children if the parameters used in the 
classifier were identical. The t values calculated for the adults, 
however, were lower than the t values calculated for children 
in either analysis. Even though there were small differences 
in the way the parameters t and τ were set for children versus 
the adults, it is most likely that these differences lowered the 
performance of children compared with adults (i.e. children 
may perform even better than we report here).

4.3. Future work

Given the high performance of 9–11-year-old children 
observed in this study, we encourage the investigation of 
SSVEP-based BCIs for younger groups of children. Data col-
lected during the experiments of Ehlers et al [17] did not reveal 
any significant differences between groups of children with 
average ages of 6.73, 8.08, or 9.86 years. Their data suggest a 
slight downward trend in accuracy with low-frequency stimuli 
as a function of age. In a study of SSVEPs elicited using 5 
Hz simulations, Birca et  al [29] show that both the magni-
tude and phase alignment of SSVEPs (generally) increase 
with age. This study, however, was limited in how it defined 
SSVEPs (first harmonic response only) and the stimulation 
frequencies tested (5 Hz only). An earlier study by Birca et al 
[29] used a wider range of stimulation frequencies (5, 7.5, 10, 
and 12.5 Hz). The results of this study showed that younger 
children (6-9 years old) had lower amplitude SSVEPs than 
adults for 12.5 Hz stimuli, but there were no other significant 
differences between SSVEP amplitude and age. As an addi-
tional confound, neither of these studies considered the effect 
of attention on the amplitude of the elicited SSVEPs. It seems 
likely—based on our results and these previous studies—that 
younger groups of children should also be able to use SSVEP-
based BCIs. There may, however, be differences in accuracy 
as a function of age for specific stimulation frequencies.

Another area of future work could include the development 
of a more engaging interface. Both the target selection task 
used in our study and the speller used by Ehlers et al [17] may 
have been viewed by the participants as boring. We propose 
that adding elements of games—called gamification—may 
increase the engagement of children with the SSVEP-based 
BCI and improve their performance. The use of gamification 
in lab studies has allowed researchers to improve their ability 
to conduct studies with children [40].

5. Conclusion

In summary, our data make several contributions to the devel-
opment of SSVEP-based BCIs for children. We report that of 
the fourteen 9–11-year-old children who were included in our 
study, 11 of them achieved an 85% accuracy or above during 
a short calibration phase. Furthermore, of the 11 children who 
completed the longer experimental phase, they achieved an 
average accuracy of 79% in 2.1 s, which was very similar to 
data collected from adults using the same SSVEP-based BCI. 

This study is also the first to report the performance of children 
using an SSVEP-based BCI in terms of latency and bitrate. 
The results of this study imply that children with severe motor 
disabilities (such as LIS) may use an SSVEP-based BCI to 
restore/replace the ability to communicate. We encourage 
future research to follow these results by continuing to explore 
SSVEP-based BCI research with children.
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Appendix A. Classification of the predicted target

These equations  are based on the original description the 
canonical correlation for classification of SSVEP targets by Lin 
[35]. Assuming k stimuli at frequencies f1...fk , CCA considers 
two sets of variables X and Yk and finds two weight matrices wX 
and wYk that maximize the correlation ρk between them.

ρk =
wT

x ΣXYk w
T
yk√

wT
x ΣXXwxwT

yk
ΣYkYk wyk

. (A.1)

When CCA is used to detect an SSVEP, X represents a 
matrix of EEG data (m channels by n samples) and Yk repre-
sents a matrix of sine and cosine reference waves (r reference 
waves by n samples) at harmonic h frequencies of stimulus k.

Yk =




sin(2πft1)
cos(2πft1)

...
sin(2πfth)
cos(2πfth)




. (A.2)

ρk is initially a vector with a length equal to the smaller of 
m and r, however, here we consider ρk = max(ρk). If

max(ρ) > τ (A.3)

then the classifier’s best guess (the predicted target) is

k̂ = argmax(ρ). (A.4)

Each trial of the calibration phase was analyzed in the fol-
lowing way. The analysis of each trial started at time 0, the 
time of stimulus onset. The data from time 0 to time t was 
then considered, if the max(ρk) does not exceed the threshold, 
then the window slid in steps of 0.125 s. After the window is 
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moved, ρk is recomputed and compared to the threshold again. 

This process continues until ρk exceeds τ or until t extends 
beyond the end of the trial. In the case that ρk exceeded the 
threshold, k̂ is then compared to the target x�. If ρk does not 
exceed τ before the end of the trial, then this was modeled in 
the calculation of NBR as an erasure.
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