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Abstract

Performance on a cognitive test can be viewed either as measuring a unitary function or as reflecting the operation of
multiple factors. Individual subtests in batteries designed to measure human abilities are commonly modeled as a single
latent factor. Several latent factors are then used to model groups of subtests. However these latent factors are not
independent as they are related through hierarchical or oblique structures. As a result, the simple structure of subtest
performance results in complex latent factors. The present study used structural equation modeling to evaluate several
multidimensional models of the Wechsler Adult Intelligence Scales- fourth edition (WAIS-IV) subtests. Multidimensional
models of subtest performance provided better model fit as compared to several previously proposed one dimensional
models. These multidimensional models also generalized well to new samples of populations differing in age from that used
to estimate the model parameters. Overall these results show that models that describe subtests as multidimensional
functions of uncorrelated factors provided a better fit to the WAIS-IV correlations than models that describe subtests as one
dimensional functions of correlated factors. There appears to be a trade-off in modeling subtests as one dimensional and
modeling with homogeneous latent traits. More consideration should be given to models that include multiple
uncorrelated latent factors as determinants of the performance on a given subtest. These results support the view that
performance on any given cognitive test is potentially the result of multiple factors. Simple structure may be too simple.
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Introduction

One view of the determinants of performance on standardized

cognitive tests holds that performance is potentially the result of

multiple factors [1,2]. For example, Milberg and associates [3]

describe a number of distinct processes that might limit

performance on single subtests of the Wechsler Adult Intelligence

Scales- revised (WAIS-R). This view is supported by examination

of the impact of different patterns of brain pathology on test

performance. In contrast, some researchers hold that a single

factor (g) accounts for most of the variance in cognitive test

performance [4]. This view holds that clinical interpretation

should be primarily at the level of general intelligence and is

supported by factor analytic studies of test performance.

There is a problem with the factor analysis of abilities tests as

proposed by Hart and Spearman [5] due to the fact that these

models have more latent variables than observed variables [6,7].

Thurstone [8] advocated the concept of simple structure as a goal

in factor analysis. By simple structure Thurstone [8] was referring

to solutions with a large number of zeros or nearly vanishing

entries in the factor matrix (ie., each test should have nonzero

loadings on as few factors as possible). Thurstone [8] considered

simple structure to be a psychologically meaningful solution to the

factor indeterminacy problem. Other authors have also viewed

simple structure to be essential [9]. While Thurstone [8]

considered it reasonable to assume that any given mental test

might be determined by a single psychological factor not all

theorists agreed [10].

Current practice in modeling test batteries such as the Wechsler

Adult Intelligence Scales- fourth edition (WAIS-IV) is based on

this concept of simple structure. For example, the solution

provided in the WAIS-IV manual (Figure 5.3, [11]) has only

one subtest loading on more than one factor. Likewise, alternative

models applied to the WAIS-IV standardization sample suggested

by other authors have but one WAIS-IV subtests loading on more

than one factor [12,13]. These simple solutions were obtained by

using either hierarchical or oblique factor models. An exception is

the work of Gignac [14] who modeled the correlations from the

WAIS-III standardization sample using a ‘‘nested’’ factor model

with a ‘‘g’’ factor orthogonal to group level factors and loading

directly on each subtest. Gignac [14] found that modeling g as a

first-order factor resulted in better model fit and less ambiguous

factor loadings.

Smith and associates [15] have argued for the use of

homogeneous constructs. They contend that oblique and hierar-

chical models produce complex latent variables that do not

represent homogeneous constructs. In addition, as pointed out by

Gignac [14], higher-order models imply that the effects of the

higher level factor (i.e., g) are not direct, but rather are mediated

by group level factors. Finally, as noted by Gignac [14], oblique

models imply that the covariance between factors is multidimen-

sional. That is, if several factors are correlated, then their variance

can be partitioned into orthogonal common and unique compo-
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nents (i.e., the common component of the pair and the two unique

components). In the case of a hierarchical model this common

component is the same for all factor pairs. In the case of oblique

models this common component differs for each pair. Thus, the

covariance of an oblique model with n factors can be partitioned

into an orthogonal model with n!/(2*(n–2)!) factors (eg., the model

of Ward and associates [13], with five oblique factors, is equivalent

to a model with 15 orthogonal factors).

Although hierarchical models imply that subtest performance is

one dimensional, with higher order effects mediated by lower

order processes, models of cognitive architecture often postulate

multiple processes that determining observed behavior. For

example, Franzen [16] suggests that Neuropsychological test

performance is determined by factors related to the stimulus,

processing and the response. Shiffrin and Schneider [17] state that

‘‘automatic and controlled processes are used in combination in all

tasks’’. Barrett and Kurzban [18] have argued that mental

processes ‘‘consist of multiple specialized systems, rather than a

single general purpose one.’’ Anderson and associates [19], have

postulated four cognitive processes operating during solution of

simple arithmetic problems to account for activations occurring in

multiple brain areas. Studies of event-related potentials have been

interpreted as reflecting the operation of multiple cognitive

subsystems [20]. As noted earlier, Milberg and associates [3]

describe a number of distinct processes that might limit

performance on single subtests of the WAIS-R. As these examples

illustrate, it is common practice to hypothesize multiple determi-

nants of performance of single tasks. While it is possible that a

single factor produces individual differences in these multiple

cognitive processes, it is also possible that each cognitive process is

subject to independent variation across individuals.

The present study evaluated the hypothesis that performance on

any mental test necessarily involves multiple cognitive processes

[21]. If this is so, then it would be expected that structural models

that allow for multiple factor loadings on each of the WAIS-IV

subtests should provide a better fit than those with simple

structure. In order to test this hypothesis models with loadings of

all subtests on all factors were evaluated. These multidimensional

models were compared to several models previously proposed to

account for the correlations between the WAIS-IV subtests.

Because these multidimensional models have a large number of

free parameters particular emphasis was placed on generalizing

the parameter estimates to new data.

Methods

Participants
This study used the data reported for the standardization

sample of the WAIS-IV [11]. Three samples were constructed

consisting of data for individuals between 20 and 54 years of age

(Tables A.3 through A.7, n = 1000), individuals between 16 and 19

years of age (Tables A.1 and A.2, n = 400), and individuals

between 55 and 69 years of age (Tables A.8 and A.9, n = 400). The

publisher states that the sample was stratified to match the United

States population based on the demographic variables of age, sex,

education level, race/ethnicity, and geographic region.

Analyses
Three models of WAIS-IV structure obtained from the

literature were compared with several models that had multiple

orthogonal factor loadings for each subtest. The 20–54 year-old

sample from the WAIS-IV standardization data was used for

parameter estimation and two additional samples were used for

cross-validation with parameter values fixed to the estimates

obtained from the 20–54 year-old sample.

Correlations matrices included all 15 subtests of the WAIS-IV.

For each sample, tabled values were combined by first applying

Fisher’s z transform, then averaging all of these values for each

pair of subtests in a sample, and then taking the inverse transform

to produce average r values. All correlations were positive and all

tabled values were based on the same number of participants (i.e.,

200) so that these factors were not considered in averaging r

values.

All analyses were done with the SAS CALIS procedure [22]

using default settings. All latent factors were set equal to 1 (except

for those defined by a hierarchical structure) as recommended by

Anderson and Gerbing [23]. Comparison models included the

model presented in Figure 5.2 of the WAIS manual [11]

(subsequently referred to in Tables as Wechsler 2008), the model

presented in Figure 3 of Benson and associates [12] (Benson 2010)

and the model presented in Figure 4 of Ward and associates [13]

(Ward 2011). These are the models with the best fit statistics

reported by each author for the 15 subtests of the WAIS-IV. The

models of Wechsler [11] and Benson and associates [12] are

hierarchical models while that of Ward and associates [13] is an

oblique model. The Wechsler [11] model has four first-order

factors (ie., verbal comprehension, perceptual reasoning, working

memory and processing speed) and a second-order g factor. Both

Benson et al. (2010) and Ward et al. (2011) describe their models

as versions of the Cattell-Horn-Carroll (CHC) model with five

first-order factors (ie., crystallized ability, visual processing, fluid

reasoning, short-term or working memory and processing speed).

The Benson and associates [12] model has a second order g factor

while the Ward and associates [13] model estimates a correlation

between each pair of these factors. Additional models were

evaluated with 1, 2, 3, 4, 5 and 6 orthogonal factors (4,5, and 6

independent) that had loadings for every factor on each scale.

Three final models were evaluated. These were a modification of

the Benson and associates [12] model that represented the general

factor as a ‘‘nested’’ factor [14] uncorrelated with the other factors

(ie., all factors are first-order)(Nested CHC), a model starting with

this nested model with added modifications suggested by the

CALIS diagnostic indices (Modified CHC), and a model starting

with the 6 orthogonal factors that was modified according to these

diagnostic indices (Modified 6 indep).

Modifications of the two models as suggested by the CALIS

diagnostic indexes (i.e., Modified CHC and Modified 6 indep)

were done in steps with a single weight changed and the results

subsequently evaluated prior to the next modification. Each step

consisted of adding the single factor loading suggested by the

Lagrange multiplier ranked largest, provided that this was pro-

jected to result in a significant change in the chi-squared (X2)

statistic (p,0.05). If no addition was indicated by the Lagrange

multiplier then the smallest change in the X2 statistic projected by

the Wald test was eliminated, provided that this did not result in a

significant change in the X2 statistic. This process continued if the

actual changes in the X2 statistic and the diagnostic criteria met

these same criteria.

Fit indices included chi-squared (X2), the goodness of fit index

(GFI), the adjusted goodness-of fit index (AGFI), the standardized

root-mean-square error (RMSEA), the Akaike information crite-

rion (AIC) and Bentler’s comparative fit index (CFI). These indices

were selected so as to provide a comparison with prior studies.

These indices differ in how they deal with the trade-off between

model accuracy and complexity. The fact that there has been a

proliferation of such indexes attests to the difficulty of equating

accuracy and complexity. This problem of model evaluation is also

WAIS-IV Models
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dealt with by the use of cross-validation [24]. Cross validation in

the present study used the loadings for each factor on each subtest

as estimated from the 20–54 year old correlations. These were

applied separately to the correlation matrices from the 16–19 year

old and 55–69 year old participants. Only the scale-specific effects

(error) were estimated in the evaluation of models with cross-

validation, as is also the case with the NULL model, which was

also included.

Results

A summary of fit indices for the various models applied to the

20–54 year old sample is shown in Table 1. The model presented

in the WAIS manual [11] provides a reasonable fit but both that of

Benson and associates [12] and Ward and associates [13] show

improvements on all indices. The residual variance associated with

the fluid factor of the Benson and associates [12] model initially

produced a negative value so it was constrained to be greater than

zero. These three models will be referred to as the comparison

models. All indices improved as more factors were included in the

multiple orthogonal factor models. The four orthogonal factors

model fit this correlation matrix better than the three comparison

models for the GFI, Akaike and CFI indices. The five orthogonal

factor model fit better than the comparison models on all indices

except the AGFI. With the addition of the sixth factor the parallel

model outperformed the comparison models on all indices.

The nested model that modified the general factor in the

Benson and associates [12] model to be an orthogonal factor

(nested CHC model) had improved fit compared to the original

model for all indices. However the Ward and associates [13]

model outperformed the nested CHC model on all indices. The

modified models (i.e., models produced with the CALIS modifi-

cation indices) provided a better fit than the comparison models on

all indices and outperformed all other models except for the six

orthogonal factor model on the X2 and GFI indices, which do not

adjust for model complexity. The modified six orthogonal factor

model was the only model with a X2 that did not differ

significantly from chance (p,0.2665).

A summary of the generalization of the factor loadings fitted

with the 20–54 year old sample to the data from 16 to 19 year old

participants is shown in Table 2. Because all models had the same

number of degrees of freedom (i.e., only the subtest specific

‘‘error’’ was estimated), all fit indices showed the same rank

ordering. The Benson and associates [12] model provides the best

fit of the comparison models. The nested CHC model was slightly

better. Both the five and six factor parallel models generalized to

the younger participants better than the comparison models. The

modified six orthogonal factor model generalized better than the

comparison models and the five orthogonal factor model but was

not as good as the six orthogonal factor model. All models had X2

values that differed significantly from chance.

A summary of the generalization of the factor loadings fitted

with the 20–54 year old sample to the data from 55 to 69 year old

participants is shown in Table 3. The Ward and associates [13]

model provides the best fit of the comparison models. The nested

CHC model was slightly better. Both the five and six parallel

factor models generalized to the older participants better than the

comparison models. The modified six orthogonal factor model

generalized better than all other models. All models had X2 values

that differed significantly from chance.

Overall these results show that modeling the WAIS-IV subtests

as determined by multiple orthogonal factors provide a better fit of

the data. The modified six orthogonal factor model is simpler and

provided somewhat better performance on several of the fit indices

from the 20–54 year old sample than the six orthogonal factor

model. In addition, the modified six orthogonal factor model was

the only model not significantly different from chance. However

the original six orthogonal factors model generalized better to the

cross-validation samples. Details of both modified models are

discussed below.

The factor loadings estimated from the 20–54 year old sample

associated with each subtest for the modified CHC model are

shown in Table 4. In general, the structure of this model resembles

that of the Benson and associates [12] model from which it was

derived. Factor 1 has large positive loadings for every subtest and

can readily be interpreted as a general factor (g) corresponding to

the higher-order factor of Benson and associates [12]. Factor 2 has

largest loadings on Vocabulary, Comprehension, Information and

Similarities, as does the Benson and associates [12] Crystallized

Abilities factor. It differs from the Benson and associates [12]

model in that it includes a small loading on Picture Completion.

Picture Completion involves knowledge of the form of visual

objects. Like the verbal items loading on this factor, it can be

described as relating to semantic knowledge (memory). Factor 3

has the largest loadings for Visual Puzzles, Block Design and
Table 1. Model Fit for the WAIS Standardization Data for
Ages 20–54.

Model df X2 GFI AGFI CFI RMSEA Akaike’s

Null model 105 8697.69 0.2530 0.1463 0.0000 0.2862 8487.69

Wechsler 2008 80 398.39 0.9469 0.9203 0.9629 0.0631 238.39

Benson 2010 80 331.65 0.9567 0.9350 0.9707 0.0561 171.65

Ward 2011 78 263.11 0.9664 0.9483 0.9785 0.0487 107.11

4 independent 45 167.26 0.9775 0.9401 0.9858 0.0521 77.26

5 independent 30 95.48 0.9871 0.9483 0.9924 0.0467 35.48

6 independent 15 41.55 0.9945 0.9559 0.9969 0.0421 11.55

Nested CHC 74 298.59 0.9610 0.9368 0.9739 0.0551 150.59

Modified CHC 62 91.44 0.9881 0.9770 0.9966 0.0218 232.56

Modified 6
indep

47 52.59 0.9931 0.9824 0.9993 0.0109 241.41

The modified CHC and Modified 6 independent models were the result of using
the CALIS modification indices as described in the methods.
doi:10.1371/journal.pone.0074980.t001

Table 2. WAIS Standardization Data Generalized to Ages 16–
19.

Model df X2 GFI AGFI CFI RMSEA Akaike’s

NULL 105 3018.82 0.2843 0.1821 0.0000 0.2637 2808.82

Wechsler 2008 105 239.36 0.9261 0.9156 0.9539 0.0566 29.36

Benson (2010) 105 205.17 0.9382 0.9293 0.9656 0.0489 24.83

Ward (2011) 105 206.30 0.9366 0.9276 0.9652 0.0492 23.70

4 independent 105 201.56 0.9353 0.9261 0.9669 0.0480 28.44

5 independent 105 173.84 0.9451 0.9372 0.9764 0.0405 236.16

6 independent 105 151.54 0.9531 0.9464 0.9840 0.0333 258.46

Nested CHC 105 202.29 0.9380 0.9291 0.9666 0.0482 27.71

Optimized CHC 105 187.62 0.9416 0.9333 0.9716 0.0444 222.38

Optimized 6
uncorr

105 160.66 0.9501 0.9430 0.9809 0.0364 249.45

doi:10.1371/journal.pone.0074980.t002
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Picture Completion, as does the Benson and associates [12] Visual

Processing factor. In addition, Factor 3 also has loadings on

Cancellation, Figure Weights, Matrix Reasoning and Symbol

Search, all tasks that involve visual processing. Factor 4 has

positive weights on Information, Vocabulary and Arithmetic. It

does not correspond with the Fluid Reasoning factor of Benson

and associates [12] from which it evolved. Factor five has loadings

on digit span, letter-number sequencing and arithmetic, as does

the short-term memory factor of Benson and associates [12]. In

addition, factor 5 has loadings on Picture Completion, Cancella-

tion and Vocabulary. Factor 6 has the largest loadings on Symbol

Search, Coding and Cancellation and corresponds roughly to

Processing Speed in the Benson and associates [12] model. Unlike

Benson and associates [12] though, this model suggests that

Processing Speed is a factor on other subtests, such as Picture

Completion, Digit Span and Feature Weights.

The estimated factor loadings associated with each subtest for

the modified six orthogonal factor model derived from the 20–54

year old sample are shown in Table 5. Factor 1 has large positive

loadings for every subtest and can readily be interpreted as the

general factor (g). Factor 2 has loadings on 12 of the fifteen

subtests, so it also appears to be a general factor. Unlike Factor 1

however, it is a mixture of both positive and negative loadings.

The positive loadings seem to be related to Processing Speed [12],

with largest positive loadings on Symbol Search, Cancellation and

Coding. The negative loadings seem to be related to Crystallized

Ability, loading on Comprehension, Vocabulary, Similarities and

Information. Implications of this pattern will be considered in the

discussion. Factor 3 is also a contrast between four positive and 5

negative loadings. The negative loadings on visual puzzles, block

design, and picture completion correspond to the perceptual

reasoning factor of Wechsler [11]. The positive loadings on

Coding, Symbol Search, Vocabulary and Digit Span do not

clearly correspond to any of the factors in the comparison models.

However their verbal content is in contrast to the visual-spatial

nature of the subtests with negative loadings on this factor. Factor

4 is a contrast between positive loadings on Comprehension,

Similarities, Picture Completion and Vocabulary with negative

loadings on Arithmetic and Figure Weights. Factor 5 has positive

loadings on Information, Vocabulary, Similarities and Compre-

hension, corresponding to crystallized ability [12]. It also has a

positive loading on Picture Completion. As Picture Completion

requires semantic knowledge (i.e., general knowledge about the

world) of visual form it arguably requires crystallized ability. The

negative loadings on Coding, Matrix Reasoning and Digit Span

are all tasks relatively low in their requirements for semantic

knowledge. Finally, factor six has negative loadings on Digit Span,

Letter Number Sequencing, Arithmetic and Figure Weights,

corresponding to the Working Memory factor of Wechsler [11].

All of these loadings except for Figure Weights also correspond to

the Short-Term Memory factor of Benson and associates [12].

Table 3. WAIS Standardization Data Generalized to Ages 55–
69.

Model df X2 GFI AGFI CFI RMSEA Akaike’s

NULL 105 3726.00 0.2255 0.1148 0.0000 0.2940 3516.00

Wechsler 2008 105 273.93 0.9160 0.9039 0.9533 0.0635 63.93

Benson 2010 105 253.71 0.9243 0.9135 0.9589 0.0596 43.71

Ward 2011 105 212.58 0.9341 0.9247 0.9703 0.0507 2.58

4 independent 105 217.03 0.9337 0.9242 0.9691 0.0517 7.03

5 independent 105 205.39 0.9369 0.9279 0.9723 0.0490 24.61

6 independent 105 202.79 0.9387 0.9299 0.9730 0.0483 27.21

Nested CHC 105 242.23 0.9276 0.9172 0.9621 0.0572 32.23

Modified CHC 105 222.19 0.9336 0.9241 0.9676 0.0529 12.19

Modified 6
indep

105 199.54 0.9395 0.9308 0.9739 0.0475 210.46

doi:10.1371/journal.pone.0074980.t003

Table 4. Weights for the Modified CHC Model.

Subtest Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Block Design 0.6474 20.4970

Similarities 0.7044 0.4689

Digit Span 0.6859 20.1009 20.6089 0.1022

Matrix
Reasoning

0.7158 20.1336

Vocabulary 0.6796 0.5690 0.2389 20.1080 0.0616

Arithmetic 0.7704 0.1914 20.1709

Symbol Search 0.4853 20.1419 0.6610

Visual Puzzles 0.6571 20.4815 20.0625

Information 0.6487 0.3909 0.3076

Coding 0.5367 0.5746

L-N Sequencing 0.6656 20.4047

Figure Weights 0.7780 20.1254 20.1169

Comprehension 0.6985 0.4990

Cancellation 0.3472 20.1109 20.1997 0.3981

Picture
Completion

0.4563 20.3914 0.1589

doi:10.1371/journal.pone.0074980.t004

WAIS-IV Models
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Discussion

Models that describe subtests as multidimensional functions of

uncorrelated factors provided a better fit to the WAIS-IV

correlations than models that describe subtests as one-dimensional

functions of correlated factors. This was true both for the WAIS-

IV sample from which the free parameters were estimated as well

as for the two samples from alternative populations to which these

estimates were generalized. While accounting for the WAIS-IV

correlations better, these multidimensional subtest models also had

more free parameters.

Models with more free parameters may produce spurious results

due to overfitting the data [25]. Fit indices that adjust for the

number of estimated parameters have been proposed as a way to

deal with this problem. However the continuing proliferation of

these indices attests to the fact that there is no clear way to balance

reduction in prediction error with number of estimated param-

eters. Since overfitting occurs when parameters account for chance

variation in the data the most straightforward evaluation is

through cross-validation [24,26]. For all models in the present

study only the residual variances were estimated for cross-

validation, so that factor loadings could not be adjusted to chance

variation in the test data. In the present study models were

compared in terms of generalization of the parameters estimated

from the 20–54 old samples to the 16–19 and 55–69 year old

samples. These represent what Mosier [24] referred to as validity

generalization since the new samples represent different popula-

tions rather than simply an additional sample from the same

population. The generalization of the multidimensional models to

new populations provides strong evidence that the superior fit of

these models is not due to overfitting.

Overfitting is said to occur when parameters account for chance

variation in the data [27]. There are several sources of chance

variation in modeling the structure of cognitive abilities. These

include error in sampling a given individual’s performance,

sampling error within the population from which the parameters

are estimated, error in sampling of alternative populations, and

error associated with sampling of tests. Fit indices and cross-

validation deal with the error in parameter estimation associated

with samples of finite size. Examples include the variability due to

less than perfect test reliability and chance differences between the

statistics of the sample and the statistics of the population from

which it was drawn. If a model is to be used across a broad range

of individuals, then the differences between the statistics of the

population with which the parameters were estimated and these

other populations represents a potential source of overfitting. That

is, the model parameters may be tuned to idiosyncratic charac-

teristics of one specific population. With tests such as the WAIS-IV

the second order (i.e., subtest correlations) statistics are being

modeled. The intended use of instruments such as the WAIS-IV

includes a broad range of individuals in terms of age and abilities

[11]. Consequently it is desirable to show that models generalize

across these populations. The present study ruled out overfitting

due to these first three factors by including evaluations of samples

both younger and older than that used for parameter estimation.

Consequently the superior fit of multidimensional models has

broad generality across the populations used for standardization.

Model parameters might also be tuned to specific characteristics

of the particular sample of tests that are used to estimate

parameters. While the goal of many studies is to determine the

structure of human abilities [12] the models obtained may be

limited by the particular sample of tests modeled. In the present

study, the model with six factors loading on all subtests provided

the best fit on all of the indices in each sample. The 15 subtests

available from the WAIS-IV do not provide sufficient degrees of

freedom to evaluate a seven factor model with loadings on all

subtests. However there is no reason to rule out the possibility that

more than six factors might be useful in modeling human abilities.

Thus the present study is limited in terms of the complexity of the

model of abilities than could be evaluated. The manner in which

abilities are sampled by specific subtests could also be an issue. For

example, the WAIS-IV does not include tests of non-verbal

memory span (e.g., [28]). There are no doubt many other types of

tests that might be included. At present it is not clear how omission

Table 5. Weights for the Modified 6 Independent Factors Model.

Subtest Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Block Design 0.6423 0.1961 20.4426

Similarities 0.7732 20.1772 0.1995 0.1832

Digit Span 0.6856 0.1819 0.0668 20.0810 20.5084

Matrix
Reasoning

0.6974 20.1989 20.1067

Vocabulary 0.8093 20.1847 0.1148 0.1487 0.3281

Arithmetic 0.7713 20.2652 20.1826

Symbol Search 0.5431 0.5508 0.1647 0.1394

Visual Puzzles 0.6401 0.1488 20.4878

Information 0.7189 20.1617 0.3690

Coding 0.6230 0.4108 0.2878 20.2465 0.2077

L-N Sequencing 0.6504 0.1316 20.4600

Figure Weights 0.7172 20.2646 20.1107 20.1018

Comprehension 0.7808 20.2289 0.2385 0.1446

Cancellation 0.3584 0.4748

Picture
Completion

0.4598 0.3426 20.2770 0.1554 0.1390

doi:10.1371/journal.pone.0074980.t005

WAIS-IV Models
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of such tests might bias estimates of the structure of human abilities

(or alternatively how the generality of models might be restricted).

Of all the sampling issues the impact of sampling tests is the most

difficult to evaluate.

Some researchers discount the fact that models ‘‘fail’’ the X2

null hypothesis test. For example, in discussing their results,

Benson and associates [12] state ‘‘both models failed the X2 null

hypothesis test of perfect fit. This does not mean that all aspects of either model

are false. Rather, this finding merely refutes the claim that all aspects of either

model are consistent with the data.’’ While there are various rationales

that might be offered for this attitude, it is important to appreciate

the fact that models generally provide an incomplete account of

the data. The fact that the value of X2 for the modified six

orthogonal factor model was not significant does not indicate that

it is the ‘‘true’’ model as it is probable that there are other models

that would also not differ significantly from chance. The

assumption that there is in fact a ‘‘true’’ model may be a fiction

[25]. Rather the concern should be on accuracy and the ability of

our models to generalize to a wide variety of different circum-

stances [29].

The advantage of a model with subtest performance determined

by multiple factors is one of the key findings of the present study.

The model summarized in Table 4 produced by modifying a

‘‘nested’’ version of the Benson and associates [12] model fit the

training data and generalized to the test samples better than the

three comparison models from the existing literature. Some of the

resulting orthogonal factors could be interpreted roughly in the

same manner as the original Benson and associates [12] factors with

the exception that they loaded on multiple subtests. The pattern of

these multiple loadings in many cases makes intuitive sense. For

example, the Cancellation subtest requires that examinees search

an array for one of two targets defined by a conjunction of visual

features. The loadings in Table 4 for this subtest are on factors

associated with Speed of Processing, Working Memory and Visual

Processing. In addition to the Speed of Processing factor identified

in the Benson and associates [12] model, Working Memory is

involved to the extent that examinees must store both the task

instructions and the targets in working memory. Indeed, there is

experimental evidence for the role of working memory in visual

search (e.g., [30]). In addition, the Cancellation subtest requires

that multidimensional visual features must be identified, suggesting

a role for Visual Processing. Limitations in any of these three factors

would be expected to limit performance. As this example illustrates,

the conceptualization of performance by models with simple

structure may be too simple.

The model summarized in Table 5 produced by optimizing the

six orthogonal factor model fit the data used to estimate parameter

values better than all models except for the 6 orthogonal factor

model from which it was derived and it generalized best to the

older sample. There is some correspondence between the loadings

for this model and the factors identified in the comparison models.

However all of these factors except the general factor have

loadings with mixed signs. There could be several explanations for

this. This pattern could be a result of factor indeterminacy and

might be eliminated by some rotation of the factors loadings.

Alternatively it could reflect a real opposing relationship between

different neural information processing modules as proposed, for

example, by Grossberg [31]. Factor indeterminacy may be the

most likely explanation (i.e., there are many models with

equivalent fit). Modeling of simulated data using methods similar

to that reported by McFarland [32] using six uncorrelated factors

with positive weights on all of 15 tests produced a pattern of results

similar to that in Table 5 (unpublished findings of the author).

Although all six simulated factors were of equal magnitude, more

variance was accounted for by a single general factor and the other

five factors had weights with both positive and negative values.

This pattern may be a characteristic of current factor analysis

algorithms rather than of the processes generating the data.

While the models presented in Figures 4 and 5 are simpler in the

sense that they have uncorrelated factors they are conceptually

complex. In particular, it is unlikely that practicing clinicians would

find several of the factors from Table 5 to be easily related to

practice. However these results show that further improvements in

modeling abilities are possible. Models such as those of Benson and

associates [12] and Ward and associates [13], while conceptually

simple, are not optimal. Even their conceptual simplicity may be

misleading since, as discussed earlier, oblique and hierarchical

factors are complex. The ‘‘nested’’ version of the Benson and

associates [12] model overcomes this problem. However it may be

too simple in that the models presented in Figures 4 and 5 provide

better fits to the data. Conceptually it is not difficult to appreciate

that performance on a given subtest might have multiple

determinants. For example, Milberg and associates [3] have

described multiple processes that might limit performance on

single subtests of the WAIS-R. Application of a multiple process

approach could lead to better models of human abilities.

The present study compared broad classes of models that can be

characterized as one-dimensional with those that can be classified as

multidimensional. The comparison models with simple structure are

one-dimensional since, for the most part, each subtest loads on a

single factor through which the effect of a general factor is mediated.

Models that describe subtests as multidimensional functions of

uncorrelated factors provided a better fit to the WAIS-IV

correlations than models that describe subtests as one-dimensional

functions of correlated factors. However it could be argued that one-

dimensional models are more desirable because they are simpler.

Along these lines, it is much easier to conceptualize each test as

reflecting only a single underlying ability. However, as noted by

Quine [33] simplicity is not easy to define and what is simple from

one perspective may be complex from another perspective. In the

present case, this simplicity in terms of subtest interpretation comes

at the cost of increased complexity in the conceptualization of the

latent traits. As discussed by Smith and associates [15], oblique and

hierarchical models produce complex latent variables that do not

represent homogeneous constructs. These models that are said to

have a ‘‘simple structure’’ with a single factor loading on subtests use

latent factors that are complex in the sense that they share covariance

with the other factors in the model. Thus simplicity at the subtest

level comes at the expense of complexity at the latent trait level.

Modifying the Benson and associates [12] model so that the

general factor is orthogonal to produce what Gignac [14] called a

nested model resulted in improved fit both in the sample used for

estimating weights and in the samples used to evaluate general-

ization. In addition to improved fit, this model, as well as those

summarized in Tables 4 and 5, has uncorrelated factors. As noted

by Smith and associates [15] oblique and hierarchical models

produce complex latent variables that do not represent homoge-

neous constructs. In addition, as pointed out by Gignac [14],

hierarchical models imply that the effects of higher level factor are

not direct, but rather are mediated by the group level factors.

There are several implications of using oblique and hierarchical

models. First of all, as discussed by Smith and associates [15], the

use of homogeneous constructs can advance validation and

diagnosis. In addition, studies such as those evaluating learning

disabilities often control for intelligence [34]. This practice is

questionable to the extent that the measure used to ‘‘control’’ for

general ability reflects a mixture of heterogeneous tendencies.

Finally there is a growing literature on biological correlates of
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human abilities [35]. Results of studies investigating the biological

correlates of human abilities necessary depend on the way in

which abilities are modeled.

The results of the present study also suggest that a useful model

of cognitive test performance cannot be identified by the use of

factor analysis in isolation. Constraining latent variable models

with knowledge of neurophysiology and neuropsychology is

probably a better strategy than constraining models by use of

simple structure. In this regard, it is notable that Hampshire and

associates [36] recently reported that several different brain

networks contribute to distinct components of intelligence.

These results support the concept that subtest performance is

determined by multiple orthogonal factors. In addition to the

implications for modeling test performance, these results also

support the concept that test behavior has multiple determinants

[1,21]. This contrasts to the view that each test has a single

interpretation. This one-dimensional interpretation of test perfor-

mance is not driven by experimental work but rather by the

interpretation of the results of the application of simple structure to

factor analysis [37]. As noted, experimental studies in cognitive

science [38] and neuropsychology [39] suggest more complex

determinants of constructs, such as short term memory, that are

used in these models. The assertion that a single g factor accounts

for most of the variance in cognitive test performance [4] may be

based on the application of an overly simplistic model.

Future work could compare the extent to which simple structure

and multidimensional models estimated from one sample of tests

generalize to a different but related sample of tests. For example,

Tulsky and Price [40] modeled the combined WAIS-III and

WMS-III scales. Perhaps a better study of generalization would fix

the weights computed from one of these batteries (e.g., the WAIS)

when predicting the structure of the other. Other test batteries,

such as the Woodcock-Johnson cognitive and achievement

batteries could be modeled in a similar fashion. Such studies

could address the question of generalization across scales.

In summary, models that describe subtests as multidimensional

functions of uncorrelated factors provided a better fit to the WAIS-

IV correlations than models that describe subtests as uni-

dimensional functions of correlated factors. Although these models

have more free parameters they generalize better to samples from

different populations when parameter values are fixed. There may

be a trade-off between simplicity of subtest modeling and

complexity of latent factors. Consequently models employing

multidimensional conceptualization of subtest performance should

be explored further. Simple structure may be too simple.
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