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Abstract

People can learn to control electroencephalographic (EEG) sensorimotor rhythm amplitude so as to move a cursor to select among choices

on a computer screen. We explored the dependence of system performance on EEG control. Users moved the cursor to reach a target at one of

four possible locations. EEG control was measured as the correlation (r 2) between rhythm amplitude and target location. Performance was

measured as accuracy (% of targets hit) and as information transfer rate (bits/trial). The relationship between EEG control and accuracy can

be approximated by a linear function that is constant for all users. The results facilitate offline predictions of the effects on performance of

using different EEG features or combinations of features to control cursor movement.
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Keywords: Augmentative communication; Electroencephalography; Mu and beta rhythms; Rehabilitation; Neuroprosthesis; Brain–computer interface;

Brain–machine interface

Individuals with severe motor disabilities require alternative

means of communication and control. All conventional

augmentative communication and control technologies

require some measure of muscle control (e.g. a power

wheelchair with mouth controls). Thus, these technologies

may not be useful to those with little or no muscle control.

Such individuals could benefit from communication systems

that do not depend on muscle control. Recent research in our

laboratory and in others has focused on developing non-

invasive brain–computer interface (BCI) systems (see Refs.

[11,13,14] for review). These BCI systems allow people to

use scalp-recorded electroencephalographic (EEG) activity

to control a device such as a computer cursor.

Participants using the Wadsworth BCI learn to control

the amplitude of 8–12 Hz mu and/or 18–24 Hz beta

rhythms in the EEG recorded over sensorimotor cortex and

use that control to move a cursor in one or two dimensions to

select among choices on a computer screen [1,12,13]. With

this system, people can answer questions [3] or spell words

[8]. This EEG control does not depend on muscle activity

[9], and thus provides participants with a new, non-muscular

communication and control channel.

Our present work is focused on improving the speed and

accuracy of BCI communication and control. In this effort,

we collect comprehensive EEG data during online operation

and analyze it offline to evaluate alternative EEG features or

combinations of features. In these offline analyses, our

principal goal is to predict whether and to what degree

specific alternatives will improve speed and accuracy

online. These predictions depend on knowledge of the

online relationship between the user’s control of specific

EEG features (measured as the correlation (r 2) between the

features and the location of the target (i.e. the location of the

correct choice)) and system performance (measured as

accuracy, or the percent of trials in which the target is hit).

R 2 is a common index of prediction in statistical analysis. It

is the proportion of variance in a dependent variable that is

explained by a given statistical model (r 2 ¼ explained sum

of squares/total sum of squares) [15]. In the present case, we

use the target location as the predictor, and r 2 is the

proportion of the variance in the user’s EEG feature that is

accounted for by the target location. Thus, if the user has no

EEG control r 2 will be 0, while if the user has perfect

control, so that the EEG feature is completely determined by

target location, r 2 will have its maximum value of 1.00.

To the extent that r 2 serves as a good predictor of system

performance, it can be used in offline analyses of data

previously collected to evaluate the potential online value of

alternative EEG features. We sought to establish the validity
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and usefulness of this approach by determining the actual

relationship between r 2 and system performance in a

number of representative users.

Four adults participated in this study. Users A, B, and C

were men (aged 38, 29, and 40 years) and user D was a

woman (aged 43 years). Two had no disabilities, while user

C had a T7 spinal cord injury that confined him to a

wheelchair and user D was deaf in her left ear. All users

gave informed consent to the study, which had been

reviewed and approved by the New York State Department

of Health Institutional Review Board.

An initial session defined the scalp locations and EEG

frequencies to be used for online cursor control (see below).

The optimal locations and frequencies were user-specific

and were continually monitored and periodically updated as

previously described [1]. Prior to beginning this study, each

user participated in ten 30 min sessions at the rate of two to

three per week to develop EEG control and an additional

four to 188 sessions devoted to a variety of studies.

During recording, the user sat in a reclining chair 2 m

from a video screen and was asked to remain motionless.

EEG was recorded from 64 standard scalp electrodes

distributed over the entire scalp [6]. All 64 channels were

referenced to the right ear, amplified 20,000 £ with a

bandpass of 0.1–60 Hz, digitized at 160 Hz, and stored for

offline analysis. To control the cursor online, the power in a

3 Hz wide band obtained from an autoregressive spectral

analysis of the spatially filtered signals from one to three

scalp locations over the sensorimotor cortex was used in a

linear equation to determine cursor movement.

Fig. 1 shows the online protocol. Each trial began when a

target (i.e. the correct choice) occupying 25% of the height

of the screen appeared at one of four locations (i.e. top, mid-

top, mid-bottom, bottom) spaced along the right edge of the

screen. Target location was block-randomized. One second

later, the cursor appeared in the middle of the left edge and

moved steadily across the screen in 2 s. Its vertical

movement was controlled by the user’s EEG as described

below. The trial ended when the cursor touched the right

edge of the screen. If it touched the target, the target flashed

as a reward and the computer registered a hit. If it touched

one of the other three locations, the cursor and the target

disappeared and the computer registered a miss. The screen

was blank for 1 s and then the next trial began.

During the 2 s in which the cursor moved steadily across

the screen, its vertical movement was determined by the

user’s EEG as follows. Every 100 ms the most recent 200

ms of the spatially filtered EEG from one to three channels

over the sensorimotor cortex [2] was analyzed by an

autoregressive algorithm [1] to determine the amplitude (i.e.

the square root of power) in a mu and/or beta rhythm

frequency band. The one to three amplitudes were combined

to give an EEG feature that was the independent variable in

a linear equation that controlled vertical cursor movement

(which thus occurred ten times/s). The slope and intercept of

this equation were adjusted at the end of each trial as

previously described [1,4,11].

Users completed two to three sessions per week. Each

session comprised six or eight 3 min runs separated by 1 min

breaks. Each run consisted of 32–35 trials. Users A and B

contributed ten sessions, user C nine sessions, and user D six

sessions. For all sessions, users A, B, C, and D achieved

average accuracies of 70%, 73%, 70% and 38%, respect-

ively (overall average accuracy 64%). With four choices,

accuracy in the absence of any EEG control would be 25%.

Thus, users A, B, and C displayed moderately good system

performance, while user D’s system performance, while

better than chance, was poor.

EEG control was assessed by calculating r 2 values for

each of the 3 min runs (32–35 trials) in each session. The

mean power of all the 200 ms EEG segments in a trial was

correlated with the target condition during that trial. Data

were collected for 48–60 runs (six to ten sessions) for each

user. R 2, the coefficient of determination, is the proportion

of the variance of the amplitude accounted for by the target

position [15]. It reflects the user’s EEG control. System

performance was measured both as accuracy, i.e. the % of

trials in which the target was hit, and as bits/trial [10,11].

User control versus system performance was evaluated by

regression analysis.

Fig. 2 illustrates typical EEG control with data from one

session of user C. The top panel shows frequency spectra for

the four target locations for the EEG channel that controlled

cursor movement online. The main differences among the

spectra occur in the mu rhythm band (centered at 13 Hz) and

to a lesser extent in the beta band (centered at 27 Hz). The

linear equation converted mu rhythm amplitude to vertical

cursor movement. As Fig. 2 shows, mu rhythm amplitude

varied appropriately with target position. The bottom panel

shows r 2, the coefficient of determination [15], the

proportion of the variance of the amplitude accounted for

by the target position. As indicated above, this measure

reflects the user’s EEG control.

Fig. 3 presents the dependence of system performance on

EEG control for the runs of each user. Accuracy is strongly

Fig. 1. Trial protocol. (A) A target occupying 25% of the right edge of the

screen appears at one of four locations along the right edge of the screen.

(B) One second later, the cursor appears in the middle of the left edge, and

(C) moves steadily across the screen in 2 s with its vertical movement

controlled by the user’s EEG as described in the text. (D) The trial ends

when the cursor touches the right edge of the screen. If it touches the target,

the target flashes for 1 s as a reward and the computer registers a hit. If it

touches one of the other three possible locations, the cursor and target

disappear, and the computer registers a miss. (E) One second of blank

screen precedes the beginning of the next trial (F).
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correlated with EEG control: a highly significant linear

correlation is present in each user.

To identify factors that determine the relationship

between EEG control and system performance, we sub-

jected the data shown in Fig. 3 to a multiple regression

analysis. In this analysis the dependent variable was

accuracy and the independent variables were the linear

effect due to r 2 (i.e. to EEG control), the quadratic effect

due to r 2, the user, and the interaction between r 2 and user.

The linear effect of r 2 was significant (r ¼ 0:82,

P , 0:0001), but the quadratic effect was not (r ¼ 0:01,

P ¼ 0:64). The effect of user was significant (r ¼ 0:33,

P , 0:0001), but the interaction of r 2 with user was not

(r ¼ 0:04, P ¼ 0:66). The user effect simply indicates that

system performance varied across users. At the same time,

the lack of significant interaction between r 2 and user

indicates that the slope of the linear regressions shown in

Fig. 3 does not differ significantly across users. That is, a

single slope accounts for the data of all four users; the

prediction of performance from r 2 is not significantly

improved by using a different slope for each user. It is also

worth noting that the combined r for all data considered was

greater (i.e. r ¼ 0:88, P , 0:0001) than r values obtained

for any one user. This is due to the fact that the total body of

data includes a greater range of values (for both r 2 and

accuracy) than do the data of any one user, and it thus

reflects the well-known effect of range restriction on

correlation. At the same time, this equation for the

combined data (y ¼ 0:6x þ 0:3) deviates from that expected

from a simple linear relationship between r 2 and perform-

ance (i.e. y ¼ 0:75x þ 0:25). This difference probably

reflects the effect of the dynamic factors such as those

discussed below (e.g. spontaneous variation in user control).

The results indicate that the r 2 value of the EEG feature

that controls cursor movement online is a good predictor of

system performance. When performance is measured as

accuracy, the relationship is linear (at least for the r 2 range

covered by the present data) and similar across users. Thus,

the r 2 values of alternative EEG features, which can be

calculated offline from stored data, should furnish useful

estimates of the online performance levels that these

features are likely to provide. As Fig. 3 illustrates, these

estimates are not perfect; accuracy may vary substantially

from run to run even without a change in r 2. This variation

may reflect intra-run variations in the user’s EEG control

and/or inter-run differences in the effectiveness of the

automated online adaptations that modify the slope and

intercept of the linear equation in response to spontaneous

changes in the EEG features [11]. Such variations may

affect accuracy and r 2 differently since accuracy is based on

single-trial events while r 2 is based on the statistics of the

entire run. These factors may also contribute to the fact that

the performance provided by a given value of r 2 is higher

for users A–C than for user D.

Fig. 2. Spectral focus of control from a user C session. (Top) Voltage

spectra for top (solid), mid-top (dashed), mid-bottom (dashed-dotted) and

bottom (dotted) targets for scalp locations that control online cursor

movement (see text). (Bottom) Corresponding r 2 spectrum. EEG control is

focused in the mu rhythm band (13 Hz) and to a lesser extent in the beta

rhythm band (27 Hz).

Fig. 3. EEG control (r 2) versus performance (accuracy and bit rate) for the

EEG feature that controlled the cursor online. Linear regression lines with

equations and r values are shown. Performance improves as EEG control

improves.
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Offline analyses based on r 2 calculations (or alterna-

tively, on discriminant analysis) are more straightforward

and efficient than those that depend on simulations of online

performance. The difference is particularly marked for

analyses aimed at predicting the online usefulness of

combinations of EEG features, for in such cases simulations

require extensive systematic evaluations of representative

sets of weights for the different features and for the

parameters used in the equations that translate these

combinations of features into cursor movement.

At the same time, because online performance reflects the

continuous interaction of the system and the user, an offline

analysis can only predict the online effects of a given change

in the system (such as use of a different or an additional EEG

feature). As a result, the predictions derived from offline

analyses must be tested online. Online evaluations are

usually time-consuming and labor-intensive, much more so

than offline analyses. Thus, the primary value of offline

analyses is that they can indicate which alternatives are likely

to be most successful and can thereby substantially reduce

the number of online evaluations that are necessary.

In an earlier study, we used offline r 2 analysis to compare

the potential value of EEG features derived by different

spatial filters [2]. The analysis predicted that a common

average reference (CAR) filter or a Laplacian filter with a

specific electrode spacing would provide better online

performance, and these predictions have proved correct.

Furthermore, we routinely use r 2 analyses to determine for

each new user the frequency band and scalp location of the

EEG feature that controls cursor movement. The present

study provides formal support for these uses of offline r 2

analysis.

Current work is employing r 2 analyses to identify

combinations of different EEG features that are likely to

improve performance. One recent study shows that, when

cursor movement is controlled by mu or beta rhythm

amplitudes, errors are accompanied by production of an

error potential in the time-domain that might be used to

improve performance [5]. Preliminary results of a second

study suggest that mu or beta rhythm amplitudes can also be

combined with another newly-defined time domain EEG

feature to improve performance [7].

Fig. 3 illustrates another important consideration for

efforts aimed at improving BCI performance. Relatively

modest improvement in r 2, while it may produce only

correspondingly modest improvement in accuracy, can

yield a substantial improvement in bit rate, the amount of

information transmitted per trial [10,11]. For example, for

user A in Fig. 3, an r 2 increase from 0.60 to 0.80 increases

accuracy by 13% (from 71% to 80%) while it increases bit

rate by 44%. Thus, relatively small improvements in user

EEG control can produce large improvements in infor-

mation transfer rate, which is a standard measure of the

performance of a communication system.
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