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Abstract
A brain–computer interface (BCI) provides a non-muscular communication channel to people
with and without disabilities. BCI devices consist of hardware and software. BCI hardware
records signals from the brain, either invasively or non-invasively, using a series of device
components. BCI software then translates these signals into device output commands and
provides feedback. One may categorize different types of BCI applications into the following
four categories: basic research, clinical/translational research, consumer products, and
emerging applications. These four categories use BCI hardware and software, but have
different sets of requirements. For example, while basic research needs to explore a wide
range of system configurations, and thus requires a wide range of hardware and software
capabilities, applications in the other three categories may be designed for relatively narrow
purposes and thus may only need a very limited subset of capabilities. This paper summarizes
technical aspects for each of these four categories of BCI applications. The results indicate
that BCI technology is in transition from isolated demonstrations to systematic research and
commercial development. This process requires several multidisciplinary efforts, including the
development of better integrated and more robust BCI hardware and software, the definition of
standardized interfaces, and the development of certification, dissemination and
reimbursement procedures.

1. Introduction

Over the past 80 years, since Hans Berger first recorded
electroencephalographic activity (EEG) from the scalp using
silver wires and a galvanometer (Berger 1929), researchers and
clinicians have continued to develop better instrumentation
and clinical applications that can detect and/or use EEG
and other brain signals. One of these clinical applications

is a brain–computer interface (BCI) (Vidal 1973) that
might restore communication to people with severe motor
disabilities. BCI instrumentation consists of hardware
and software. BCI hardware records brain signals either
non-invasively (e.g., EEG, magnetoencephalography (MEG),
functional near-infrared spectroscopy (fNIRS)) or invasively
(e.g., electrocorticography (ECoG), local field potentials
(LFP), single-unit activity) using a series of devices (i.e.
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sensor, biosignal amplifier and analog-to-digital converter).
BCI software then translates these brain signals into device
output commands and provides feedback to the user.

Up to the present day, BCI research and development
has mainly focused on basic research and laboratory
demonstrations of various BCI applications (Farwell and
Donchin 1988, Wolpaw et al 1991, Pfurtscheller et al 1993,
Birbaumer et al 1999, Taylor et al 2002, Pfurtscheller et al
2003, Gao et al 2003, Wolpaw and McFarland 2004, Schwartz
et al 2006, Coyle et al 2007, Müller et al 2008, Velliste et al
2008, Bin et al 2009, McFarland et al 2010, see Wolpaw
et al 2002 for review). As BCI research is evolving from
isolated demonstrations to systematic investigations, it has
become clear that BCI hardware and software require features
such as real-time capability (Guger et al 1999, 2001, Mason
and Birch 2003, Schalk et al 2004, Cincotti et al 2006,
Berger et al 2007, Wilson et al 2010) and high bandwidth
and sensitivity (Crone et al 1998, Schalk 2008), that existing
hardware and software often did not provide. In response,
different vendors (e.g., g.tec, BrainProducts, Tucker-Davis
Technologies, Ripple, etc) have produced hardware devices
that are optimized for BCI or related research. These research
systems can capture EEG, ECoG or single-neuron activity in
real time from up to 512 channels, and sample these signals at
up to 50 kHz with very high sensitivity (e.g., 24-bit resolution,
250 mV sensitivity). This BCI hardware is interfaced with
BCI software that is based either on general-purpose BCI
frameworks such as BCI2000 (Schalk et al 2004, Mellinger
and Schalk 2007, Schalk and Mellinger 2010) or OpenVIBE
(Renard et al 2010), or on custom software. Using these
research-grade systems, groups around the world are now
beginning to demonstrate clinical efficacy of BCIs in patients
with severe motor disabilities (Kübler et al 2005, Sellers et al
2006, Vaughan et al 2006, Nijboer et al 2008, Cincotti et al
2008, Stavisky et al 2009, Guger et al 2009, Sellers et al 2010,
see Mak and Wolpaw 2009 for review), thereby beginning the
translation of research findings into clinical practice.

In addition to these academic efforts that focus on
clinical applications of BCI technology, some commercial
vendors have begun to provide consumer-grade applications
to both able-bodied and disabled people. Such consumer
applications include augmented communication devices
(IntendiX, http://www.intendix.com) and gaming systems
(MindFlex, http://www.mindflexgames.com, Allison et al
2007, Fairclough 2008, Blankertz et al 2010, see Reuderink
2008 for review). Other types of commercial applications
may use BCI technology to detect different covert states
in a subject (Zander and Jatzev 2009, Bahramisharif et al
2010, Baernreuther et al 2010). This approach provides the
basis for emerging applications such as neuromarketing (e.g.,
Neurofocus, http://www.neurofocus.com, Pradeep 2010) or
defense applications (e.g., Honeywell, AugCog helmet, St.
John et al 2005, Dorneich et al 2009, Kotchetkov et al 2010).

In summary, applications of BCI technology fall
into the following four categories: basic research,
clinical/translational research, consumer products, and
emerging applications. All these four categories use BCI
hardware and software, but have different sets of requirements.

For example, while basic research needs to explore a wide
range of system configurations, and thus requires a wide
range of hardware and software capabilities, applications in
the other three categories may be designed for relatively
narrow purposes and thus may only need a very limited subset
of capabilities. The following sections summarize different
technical issues for these four categories of BCI applications.

2. Basic research

Basic BCI research and development is based predominantly
on recording and analysis of electrophysiological brain signals.
These brain signals can be classified into three categories that
depend on the source of signal recordings: (i) EEG signals,
which are recorded from electrodes on the scalp; (ii) ECoG
signals, which are recorded from electrode grids on the surface
of the brain; (iii) single-unit activity that is recorded from
electrode arrays implanted within the brain.

The number of channels that are recorded usually varies
from 8–64 for EEG (Sharbrough et al 1991), to 32–192
for ECoG (Lesser et al 2010), to 100–300 for single-unit
recordings (Maynard et al 1997). The brain signals recorded
from these modalities vary substantially in their amplitudes
and frequencies (EEG: 50 μV , 0–50 Hz; ECoG: 500 μV ,
0–300 Hz; extracellular single unit activity: 100 μV , 0.3–
30 kHz, see Niedermeyer and Lopes da Silva 1993 for review).
Because signals also vary substantially in amplitude across
frequencies (Miller et al 2008, 2010), it is difficult to acquire
these three signal categories with the same amplifier and
analog/digital converter. This issue is compounded by safety
requirements that are prescribed by regulatory authorities such
as the Food and Drug Administration (FDA) in the US, the
European Commission (CE) in Europe, and the Ministry of
Health, Labor, and Welfare (MHLW) in Japan. For that
reason, current BCI hardware is usually tailored for only one
category of signals and the extraction of one set of features. In
consequence, laboratories may need to purchase a dedicated
set of BCI hardware for each of these signals. At a system
cost of several hundred to one thousand dollars per channel,
this becomes an expensive proposition.

The integration of these dedicated sets of acquisition
hardware into the laboratory requires connecting different
hardware interfaces to electrodes and behavioral sensors. This
usually requires additional hardware (e.g., head-stages, pre-
amplifiers and behavioral data acquisition) to acquire signals
from other sources and to prevent artifacts that affect the signal-
to-noise ratio.

The coordinated acquisition, analysis, and storage of brain
and behavioral signals recorded by these sets of acquisition
hardware remain complex. It requires communication
and synchronization of various software interfaces. These
interfaces may be synchronous (e.g., stream-based) or
asynchronous (e.g., event-based) and their timing and
sampling rate may vary (Wilson et al 2010). General-purpose
BCI software frameworks such as BCI2000 (Schalk et al
2004, Mellinger and Schalk 2007, Schalk and Mellinger 2010)
or OpenVIBE (Renard et al 2010) provide readily available
solutions to acquire, analyze and store brain and behavioral
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signals. However, standardization of software beyond such
packages does not exist yet.

In summary, standardization and integration of hardware
and software continues to remain an issue for BCI research
and development.

3. Clinical/translational research

The translation of BCIs into clinical practice provides a
primary impetus and focus for BCI research, and is thus of
great interest to funding institutes such as the NIH. Groups
around the world are demonstrating the clinical efficacy of
BCIs (Kübler et al 2005, Sellers et al 2006, Vaughan et al 2006,
Nijboer et al 2008, Cincotti et al 2008, Stavisky et al 2009,
Guger et al 2009, Sellers et al 2010, see Mak and Wolpaw
2009 for review), and the NIH lists 11 active investigational
clinical BCI trials (http://clinicaltrialsfeeds.org).

These investigational studies currently use experimental-
grade BCI hardware and software that were developed for basic
research and suffer from high cost and complexity, proprietary
standards, and lack of robustness (Cincotti et al 2006). The
translation of this experimental-grade BCI hardware and
software into product-grade clinical BCI instrumentation is
challenging. It requires the integration of BCI hardware and
software into clinical environments as well as improvements
to clinical applicability, robustness, usability, and cost/benefit
ratio (Kübler et al 2006). Besides these engineering tasks,
the development of clinical certification (Higson 2002),
reimbursement (Raab and Parr 2006), and dissemination
procedures all require attention.

In addition to the difficulties in translating BCI
technologies, it remains unclear whether clinical BCI systems
will ever be a viable alternative to other established (i.e.
muscle-based) and emerging (e.g., bionic) assistive devices.
Currently established and emerging assistive clinical devices
tend to provide a better cost/benefit ratio and are easier to
use and disseminate (Majaranta and Räihä 2002, Berger and
Glanzman 2005, Pylatiuk and Döderlein 2006, Schalk 2008).

If clinical BCI systems are to become widely used, they
need to either improve on their performance or complement
established and emerging assistive devices. Hybrid BCIs, i.e.
the combination of a BCI with other BCIs or existing assistive
systems, follow a current trend that addresses this issue
(Allison et al 2010, Millán et al 2010, Pfurtscheller et al 2010,
Zander et al 2010). In any case, the current lack of product-
grade BCI hardware and software and standardized procedures
impedes the translation of BCIs into clinical practice.

4. Consumer products

The growing interest in and maturity of the field of BCI
research have opened up different avenues for application of
BCI technology in commercial contexts.

Commercial BCI devices measure signals from the
brain and turn them into outputs that provide value to
the customer. As with many other novel technologies,
it is currently unclear in what situations BCI devices
can provide maximum value for the largest number of

users. Several manufacturers are currently exploring
these questions by offering commercial BCI-like devices.
These companies include Emotiv (http://www.emotiv.com),
Neurosky (http://www.neurosky.com) and OCZ Technology
(http://www.ocztechnology.com).

The success of widespread dissemination of commercial
BCI devices depends on reducing the barriers to acquiring
and using these systems. This requirement entails several
challenges that relate mainly to cost and ease of use. The
cost of a typical (i.e. research-based) BCI system is usually
at least 5000 dollars—too much for most consumer products.
Reducing these costs is mainly a technical problem that can be
solved, but does require appropriate resources. Improving
ease of use mainly relates to improving EEG electrode
technology. Typical EEG electrodes are wet, i.e. they require
the application of conductive electrode gel, and usually have
to be applied by trained experts who abrade the skin mildly.
In contrast, widespread application requires that electrodes
can be applied without gel and the associated mildly abrasive
procedures. Different strategies have been proposed to address
this problem. The first strategy is to create ‘dry’ electrodes,
i.e. electrodes that can function with a dry interface between
electrodes and the scalp. Different types of dry electrodes
have been proposed (Popescu et al 2007, Matthews et al 2007,
Sullivan et al 2008, Sellers et al 2009, Gargiulo et al 2010) and
are currently distributed by commercial vendors (e.g., Nouzz
(http://nouzz.com), Quasar (http://www.quasarusa.com)), but
at least some still have unsolved problems with robustness.
The second strategy is to create ‘active’ electrodes, i.e.
electrodes that do require the application of conductive gel,
but amplify the EEG signal at the electrode, which minimizes
the need for skin abrasion. Active electrodes are provided by
many commercial vendors of EEG equipment, but typically
are quite expensive and still require an additional biosignal
amplifier and analog-to-digital converter. The third strategy
is to actively shield the connection between the electrode
and distant biosignal amplifier. This possibility is currently
only implemented by one commercial vendor (Twente Medical
Systems International (http://www.tmsi.com)). Their system
utilizes actively shielded cables that prevent capacitive
coupling that also minimizes the need for abrading the skin.

Finally, improving ease of use also requires that operation
of the BCI software should be as easy as possible. This requires
that it can adapt efficiently to fluctuations in brain signals
caused by changes in the subject’s brain state or environmental
or other noise.

In summary, it is currently unclear to what extent BCI
performance will further improve, and when and to what extent
BCI technologies will find commercially viable applications
in consumer areas.

5. Emerging applications not related to
communication and control

Since their origin, BCIs have focused mainly on
communication and control. The resulting studies have
developed a body of knowledge and technology, including
portable hardware and novel methods for extracting and
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reliably classifying relevant aspects of brain signals. This
knowledge has applications beyond the development of
traditional BCIs. Some of these applications challenge the
current definition of BCIs.

BCI technology can also provide the basis for novel
applications that go beyond restoration of function. Such
novel and emerging applications that are not related to
communication and control may include detection of covert
behavior (Zander and Jatzev 2009, Bahramisharif et al 2010,
Baernreuther et al 2010), biofeedback, sleep control, treatment
of learning disorders, functional and stroke rehabilitation, and
the use of brain signals as biomarkers for diagnosis of diseases
or their progression (Georgopoulos et al 2007). Some of these
opportunities have begun to be exploited commercially, e.g.,
neuromarketing (Neurofocus, http://www.neurofocus.com,
Pradeep 2010) and defense applications (Honeywell, AugCog
helmet, Dorneich et al 2009, St. John et al 2005). The
ability of BCI feedback to induce cortical plasticity (Fetz 1969,
Taylor et al 2002, Carmena et al 2003, Wolpaw and McFarland
2004, Leuthardt et al 2004, Miller et al 2010) may provide
the basis for therapeutic tools that restore the brain function.
Such therapeutic tools are currently under development for
reducing seizures (Monderer et al 2002, Walker and Kozlowski
2005, Sterman and Egner 2006), treating attention deficit
or hyperactivity disorders (Monastra et al 2005), improving
the cognitive function in the elderly (Angelakis et al 2007),
managing pain (deCharms et al 2005), and improving motor
function in stroke patients (Buch et al 2008, Daly et al 2009,
Ang et al 2010, see Daly and Wolpaw 2008 for review). One
of the characteristics of these emerging applications is that
they are often targeted toward larger markets than traditional
BCIs.

In summary, emerging applications not related to
communication and control may provide additional drive for
development of BCI hardware and software.

6. Standardization

As described in the previous sections, the translation of
BCI hardware and software from isolated demonstrations to
systematic investigations and commercial products requires
efforts in different disciplines (Berger et al 2007). The
lack of defined technical standards has become an important
impediment to the integration of those efforts. As an example,
it is currently difficult to mix and share hardware devices
(e.g., EEG headsets, amplifiers), tools (e.g., Bianchi et al
2009), and software modules (e.g., classifiers) that originate
from different laboratories or manufacturers. While there
have been isolated efforts to define and implement a common
model for BCI operation (Mason and Birch 2003), a standard
way in which they exchange information through well-defined
interfaces (Quitadamo et al 2008), and general-purpose BCI
software (Bianchi et al 2003, Schalk and Mellinger 2010,
Renard et al 2010), these efforts do not yet completely
encompass all aspects of hardware connectivity, file formats
for storing any kind of information (e.g., biosignals, classifiers
outputs, feedback rules), or all software interfaces (in
particular with third-party software).

Standardization of the technical basis for hardware and
software interfaces has been shown to facilitate the translation
from isolated demonstrations to systematic investigations
and commercial products (Tassey 1997). On the other
hand, standardization, if poorly designed or timed, impedes
innovation (Tassey 2000). However, if well designed
and timed, standardization will facilitate the coordinated
development of future BCI hardware and software. For
example, as a first step, connectors between EEG caps and
biosignal amplifiers could easily be standardized without
overly stifling innovation.

7. Conclusions

BCI hardware and software are currently in a transition
from isolated demonstrations to systematic research and
commercial development. Successful and continuing
transition requires that BCI hardware and software further
improve in speed, accuracy, price, and robustness, and
consequently the cost/benefit ratio. For example, to match
the cost/benefit ratio of conventional assistive communication
devices, product-grade BCI spelling devices may require
maintenance-free spelling performance of more than 10 words
per minute at close to 100% accuracy for less than 15
thousand dollars (e.g., MyTobii P10 eye-tracker system, Tobii
Technology AB, Sweden, http://www.tobii.com). To facilitate
necessary improvements, an ecosystem of product-grade BCI
systems and components needs to be developed. The requisite
efforts include the development of better integrated and
more robust BCI hardware and software, the definition of
standardized interfaces, and the development of certification,
dissemination and reimbursement procedures.

We expect that these efforts will create an ecosystem of
increasingly compatible BCI hardware and software that will
enable the translation of BCIs into clinical practice, as well
as the rapid development and dissemination of commercial
consumer applications and additional applications that are not
related to communication and control. The detailed aspects
for creating an ecosystem of product-grade BCI hardware and
software, and the likely societal impact of this ecosystem,
require further investigation.

The creation of this ecosystem may be hindered by factors
such as defensive intellectual property strategies, and the lack
of patent pools and commercial interests. It is also possible that
unresolved ethical considerations, such as privacy and liability,
will eventually impede the proliferation of BCIs (Haselager
et al 2009, Kübler et al 2006).

In summary, current trends in hardware and software
for brain–computer interfaces (BCIs) are the transition
from isolated demonstrations to systematic research
and commercial development, and steady, albeit slow,
improvements in BCI performance parameters. We anticipate
that these trends will drive the creation of an ecosystem of
increasingly compatible BCI hardware and software that is
likely to facilitate the increasing application of BCIs to the
needs of people with and without disabilities.
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