
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 89 (2009) 14–23
0165-16

doi:10.1

� Cor

Room N

fax: +13

E-m

principe
journal homepage: www.elsevier.com/locate/sigpro
Correntropy as a novel measure for nonlinearity tests
Aysegul Gunduz �, Jose C. Principe

Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
a r t i c l e i n f o

Article history:

Received 19 September 2007

Received in revised form

26 March 2008

Accepted 1 July 2008
Available online 17 July 2008

Keywords:

Nonlinearity tests

Surrogate methods

Kernel methods

Correntropy
84/$ - see front matter & 2008 Elsevier B.V. A

016/j.sigpro.2008.07.005

responding author. P.O. Box 116130, Building

EB 486, Gainesville, FL 32611, USA. Tel.: +13

52 392 0044.

ail addresses: aysegul@cnel.ufl.edu (A. Gundu

@cnel.ufl.edu (J.C. Principe).
a b s t r a c t

Nonlinearity tests have become an essential step in system analysis and modeling due

to the computational demands and complexity of analysis involved in nonlinear

modeling. Standard nonlinear measures are either too complicated to estimate

accurately (such as Lyapunov exponents and correlation dimension), or not able to

capture sufficient but not necessary conditions of nonlinearity (such as time

asymmetry). Correntropy is a kernel-based similarity measure which contains the

information of both statistical and temporal structure of the underlying dataset. The

capability of preserving nonlinear characteristics makes correntropy a suitable

candidate as a measure for determining nonlinear dynamics. Moreover, since

correntropy makes use of kernel methods, its estimation is computationally efficient.

Using correntropy as the test statistic, nonlinearity tests based on the null hypothesis

that signals of interest are realizations of linear Gaussian stochastic processes are

carried out via surrogate data methods. Experiments performed on linear Gaussian,

linear non-Gaussian, and nonlinear systems with varying in-band noise levels, data

lengths, and kernel sizes confirm that correntropy can be employed as a discriminative

measure for detecting nonlinear characteristics in time series. Results of tests performed

on data collected from natural systems are in agreement with findings in time series

analysis literature.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Prior knowledge of the underlying dynamical proper-
ties of a natural system can guide system modeling, in
particular, the selection of linear versus nonlinear models
for increased accuracy and better performance. Linear
stochastic processes can generate visually complicated
signals due to noise, random inputs to the system, or static
nonlinear measurement techniques [1]. On the other
hand, systems that are anticipated to be nonlinear (such
as the brain) might produce signals that do not reflect
nonlinear dynamics [2] and our prejudice of the system
ll rights reserved.
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z),
might be misleading [3]. In practical applications, non-
linear models should be avoided if the underlying signals
are in fact linear in nature, due to increased complexity in
nonlinear system training and sensitivity analysis in
modeling [4]. Hence, it is a good practice to check a priori
whether the data suggest the model to be adopted via
nonlinearity tests.

The method of surrogate data [5] provides a rigorous
framework for nonlinearity tests whose main ingredients
are the null hypothesis and a nonlinearity measure. The
most commonly used null hypothesis states that the
examined time series is generated by a linear Gaussian
stochastic process collected through a static nonlinear
measurement function. Thus, properly designed surrogate
data should only retain the same linear properties
(autocorrelation and amplitude distribution) as the origi-
nal signal, and be otherwise random [6]. The generated
surrogate data are compared to the original data under a
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discriminating nonlinear measure. We test if the value of
the measure for the original time series is likely to be
drawn from the distribution of values of the surrogates
within a confidence level. If the measure elicits compara-
tively different values for the original series, the null
hypothesis is rejected [1].

Conventional nonlinearity measures inspired from
chaos theory [7] for testing nonlinearity include maximal
Lyapunov exponents [8] (a measure of local trajectory
divergence), correlation dimension [12] (a measure of the
system’s effective number of degrees of freedom), correla-
tion entropies [8], time-delayed mutual information [10],
information-theoretic redundancies [10], and transfer
entropy [11]. The calculation of these statistics depends
on several parameters such as embedding dimension,
time delays, and radial neighborhoods and therefore
requires extensive computations for accurate results in
finite sample data. Reliability of the results depends on
whether scaling or plateaus regions are present in the
plots of these measures versus their parameters and
whether the examiner can intelligently interpret the
results[1]. Not only do varying parameters complicate
interpretations, but also the fact that the procedures need
to be repeated for each surrogate data adds to the
computational complexity [13].

Predictability of time series has been proposed to
distinguish between randomness and chaos, and to detect
nonlinear dynamics without constructing actual models
[14]. Chaotic systems follow deterministic patterns and
thus accurate short-term predictions are possible,
although sensitivity to initial conditions exponentially
decreases predictability in long-term [17]. Approximate
entropy [15,16] measures the likelihood that patterns that
are close to each other will remain close in the next
incremental comparisons. Transportation distance func-
tion [17] measures the difference in long-term behavior of
two time series. Delay-vector variance [4,14] yields an
inverse measure of predictability through estimating
variances of embedded delay-vectors in a neighborhood
of a target delay-vector. Although more robust than
estimating dimensions, these methods also depend on
embedding dimension, time delays, and radial neighbor-
hoods.

Statistical measures proposed for nonlinearity tests are
higher order moments which elicit time reversibility [18],
higher dimensional autocorrelation functions [19] and
higher dimensional spectra [20]. The autocorrelation
function defines the properties of linear Gaussian pro-
cesses [21] and since the autocorrelation function is
symmetric around zero time lag, linear Gaussian pro-
cesses are time reversible [8]. Hence time asymmetry is a
sufficient evidence of nonlinearity, but not a requisite
[22]. Subba Rao [20] and Hinich [23] suggested linearity
tests based on bispectral analysis. However, the computa-
tional complexity of estimating the bispectrum is quite
extensive.

Correntropy, proposed by Principe et al. [24], is a
similarity measure which combines the signal time
structure and the statistical distribution of signal ampli-
tudes in a single function. Correntropy and the conven-
tional autocorrelation function exhibit common
properties, but unlike autocorrelation, correntropy is
sensitive to higher order moments of the amplitude
distribution and can identify the nonlinear characteristics
of a signal generation. Moreover, it takes advantage of
kernel methods [25] to compute inner products effi-
ciently. Motivated by its computational simplicity and its
ability to reflect nonlinear characteristics, we propose to
use correntropy as a discriminate measure for nonlinear-
ity tests. The discrimination power and false alarm rates of
correntropy as a nonlinearity measure are tested on
synthetic linear Gaussian, linear non-Gaussian and non-
linear time series with varying data lengths, signal-to-
noise ratios and under static nonlinear distortions.
Tests performed on the Santa Fe Time Series Competition
Data [9] yielded results that are in concord with those
performed employing other nonlinear measures which are
much more computationally demanding.
2. Nonlinearity tests with surrogate methods

The method of surrogate data is a popular tool for
testing a null hypothesis on a time series against its
temporally random realizations through a discriminating
measure. In nonlinearity literature, one widely used null
hypothesis is ‘‘the examined time series is generated by a
Gaussian linear stochastic process’’ [3]. Linear correlations
and time evolution of Gaussian linear processes can be
preserved through their autocorrelation functions. For this
null hypothesis, thus, constrained realizations of the data
are created, which require that the surrogates have the
same autocorrelations as the original data, and be
otherwise random [3,27]. With this goal in mind,
surrogates are created to have same Fourier amplitudes
as the data but with random phases. The key point of this
methodology is that the squared amplitude of the Fourier
transform is a periodogram estimator of the conventional
power spectral density [26]. Hence, the original time
series and its surrogates attained by this method share the
same power spectrum, and therefore the same autocorre-
lation function. However, any underlying nonlinear dy-
namic structure within the original data is altered by
phase randomization. Thus, in the presence of such
dynamic nonlinearities, using a measure capable of
yielding distinct values for the original data compared to
its surrogate counterparts would enable us to reject the
null hypothesis (at a statistical confidence level).

Practically, however, most measured linear processes
are likely to be non-Gaussian. This deviation from
Gaussianity, leads tests (based on phase randomized
surrogates) to routinely reject the linear null hypothesis
even though the time series is purely linear [28]. This
rejection therefore cannot immediately imply nonlinear
dynamics. For a linear process, the non-Gaussian distribu-
tion can simply be the nature of the time series, or could
be due to a distortive nonlinear measurement function.
For the latter probability, Schreiber [19] suggests general-
izing the null hypothesis to state that ‘‘the examined
time series is generated by a linear Gaussian stochastic
process, and measured through a monotonic, static non-
linear function’’ which distorts the normal amplitude
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distribution [29]. In order to generate surrogates that
preserve the amplitude distribution and power spectrum
of the original series, the surrogate data are iteratively
rank-ordered to the original data magnitudes and spec-
trally filtered to attain original spectral magnitudes until
the discrepancies in distribution and spectra converge to a
given accuracy [27]. This is known as the iterative

amplitude adjusted Fourier transform (IAAFT) method for
generating surrogates [27,30] and throughout this paper,
the surrogates are generated in this fashion and tested
against this generalized null hypothesis.

In the test design, initially a residual probability of a
false rejection, a is selected, which corresponds to a
confidence level of ð1� aÞ � 100%. The value of the
nonlinearity measure evaluated on each realization and
the original series are ranked. The null hypothesis is
rejected if the nonlinearity measure evaluated on the
original series deviates from the surrogates in a specified
direction. For a one-sided test ðð1=aÞ � 1Þ surrogate
sequences are generated [3]. For example, a confidence
level of 95% would require generation of at least 19
surrogates. Engaging more surrogates increases the con-
fidence level of a test.

Discrimination power (DP) of a nonlinearity measure can
be estimated through tests performed on deterministic
signals whose dynamic properties are known a priori. The
rate of rejecting the null hypothesis when the system is in
fact nonlinear elicits the discrimination power of the
measure ð0pDPp1Þ at the significance level of the test.
A deterministic nonlinear system commonly used in non-
linearity tests to determine discrimination powers of
measures is the chaotic Lorenz attractor [31]. In addition,
the rate of false alarm (type I error) can be measured on
linear Gaussian processes and linear non-Gaussian processes.

3. Correntropy

3.1. Definition and properties

Correntropy1 is a similarity measure of signals mapped
nonlinearly into a feature space [24]. In essence, corren-
tropy generalizes the autocorrelation function to non-
linear spaces: If fxt ; t 2 Tg is a strict stationary stochastic
process within an index set T, then the autocorrelation and
correntropy functions are defined respectively as

Rðs; tÞ ¼ Efhxs; xtig

Vðs; tÞ ¼ EfhfðxsÞ;fðxtÞig (1)

where f is a nonlinear mapping from the input space to the
feature space [24]. Instead of explicitly defining a mapping,
computing the mapping, and then taking an inner product
of the mapping, correntropy makes use of the ‘‘kernel trick’’
which defines the inner product of the nonlinear mappings
as a positive-definite Mercer kernel [32]:

kðxs; xtÞ ¼ hfðxsÞ;fðxtÞi (2)
1 The nomenclature of correntropy was inspired from the facts that

it is a similarity measure and that the negative logarithm of the mean of

correntropy yields the Parzen estimate of Renyi’s quadratic entropy [48].
The kernel trick provides efficient computations without
explicit knowledge of the mapping. Kernel methods have
been extensively used in recent years in applications such
as prediction [33], classification [34], decomposition [35]
and matched filters [36]. With the kernel trick, the
definition of correntropy reduces to the expected value
of the kernel of choice.

A widely used Mercer kernel is the Gaussian kernel
given by

kðxs; xtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
p exp

�kxs � xtk
2

2s2

� �
(3)

where s is the size of the kernel. Using a Taylor series
expansion for the Gaussian kernel, it can be shown that
the information provided by the autocorrelation is
included within correntropy by substituting n ¼ 1 in the
expansion [24]

Vðs; tÞ ¼
X1
n¼0

ð�1Þn

2ns2nn!
Ekxs � xtk

2n (4)

The two functions have many properties in common: both
are symmetric with respect to the origin and take on their
maximum value at zero lag. Moreover, from (4) it can be
observed that for n41, correntropy involves higher order
even moments of the term kxs � xtk and exhibits other
important properties autocorrelation function does not
possess. (Clearly, the choice of another kernel would lead
to a different expansion of correntropy. Note that a kernel
that would yield the odd higher order moments2 would
include a term for time reversibility and still require the
same amount of computations.)

Fourier transforms of statistical measures yield major
functions employed in spectral analysis. Examples of such
prominent Fourier transform pairs are the autocorrelation
and power spectral density functions (i.e., spectrum),
bicorrelation and bispectrum functions. In Principe et al.
[24] the Fourier transform of correntropy was introduced
as the generalized power spectral density and named
correntropy spectral density (CSD). Its expression is given as
follows:

PV½o� ¼
X1

m¼�1

V ½m� e�jom (5)

which retains many properties of the conventional power
spectral density.

3.2. Surrogate nonlinearity tests with correntropy

Recall that the surrogates are generated in a fashion so
that they possess the same spectra as the original time
series. Just like the conventional power spectral density,
correntropy spectral density represents the distribution of
generalized power amongst frequencies. Thus, if normal-
ized by the total generalized power, CSD becomes a
For example, Taylor expansion on the Laplacian kernel yields all of

the moments:

VLapðs; tÞ ¼ E exp
�kxs � xtk

s

� �� �
¼
X1
n¼0

ð�1Þn

snn!
Ekxs � xtk

n
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probability density function of generalized power over
frequencies. If an examined time series does not possess
nonlinear dynamics, the underlying distribution of its CSD
and that of its surrogates should also be the same. On the
other hand, if the two underlying distributions are
different, we deduce that the time series contains non-
linear structures not contained in its surrogates.
This decomposition of correntropy into probability den-
sity functions allows for the use of the two-sample
Kolmogorov–Smirnoff goodness-of-fit test [37]. We there-
fore propose to use normalized CSD as the nonlinear
discriminating measure and the Kolmogorov–Smirnoff
test for the rejection of the null hypothesis.

The Kolmogorov–Smirnoff goodness-of-fit test is a
powerful tool which examines whether two signals are
random samples from the same distribution. It is based on
the empirical cumulative distribution functions (ecdf)
obtained directly from the data samples. For the problem
at hand, we want to compare the ecdfs calculated from the
CSDs of the original and surrogate series. The maximum
difference between the ecdfs of the two series, denoted by
F, across all frequencies in range, denoted by f, is the test
statistic

D ¼max
f
jForigðf Þ � Fsurrðf Þj (6)

This D-value is compared to a critical value given by

Da ¼ cðaÞ
ffiffiffiffiffiffiffiffiffi
2=N

p
(7)

where N is the common sample size of the two series and
the coefficient cðaÞ depends on the significance level. For
a ¼ 0:05, this value equals 1.36.

The Kolmogorov–Smirnoff test states that if the
empirical D-value is greater than the critical value, then
the hypothesis that the two series were generated from
the same distribution should be rejected.

For any kernel method, the choice of kernel size affects
the performance of the method. The kernel size generally
is determined empirically. In this study, the bandwidth of
the kernel is selected according to Silverman’s rule of
thumb [38]:

s ¼ 0:9AN�1=5 (8)

where N is the data length and A stands for the minimum
of the empirical standard deviation of data and the data
interquartile range scaled by 1.34 as defined in Silver-
man’s rule. Apart from the stationarity assumption
required in the definition, this is the only parameter
involved in estimating correntropy apart from the size of
the dataset. Reliable estimation of nonlinear measures
inspired from chaos theory (such as Lyapunov exponents,
correlation dimensions etc.), on the other hand, require
calculations over many parameters after which regions of
linear or constant trends are sought. If no such regions are
evident or if those regions are dependent on the choice of
parameters, the tests cannot be conclusive.

For the same number of lags, the computational
complexity of correntropy is on the same order as
autocorrelation and other statistical nonlinearity mea-
sures such as time reversibility and bicorrelation. The
Ramsey–Rothman [39] definition of time reversibility uses
the following third order autocorrelation:

fTRðtÞ ¼ Efxtx
2
tþt � x2

t xtþtg (9)

A time series that can be fully characterized by its
autocorrelation (such as a linear Gaussian process) is
invariant to any time reversals due to the time symmetry
property of the autocorrelation function. Thus, any sign of
time asymmetry in a time series would lead to the
rejection of the null hypothesis.

Bicorrelation is the correlation of a signal with two
different time lags [20]:

Rxxxðt1; t2Þ ¼ Efxtxtþt1
xtþt2
g (10)

In order to reduce the number of parameters Schreiber
et al. [22] employ t2 ¼ 2t. Schreiber [22] points out that
these two measures are very easy to compute and
although work well generally (i.e., elicit good discrimina-
tion powers), they can also fail completely. Since we want
to emphasize the low computational demands of corren-
tropy, it is only fair that we compare correntropy based
tests with these two measures.
4. Simulation results

4.1. Discrimination power analysis on deterministic data

In this section, we present simulations to demonstrate
the utility of the proposed correntropy measure as a tool
to detect nonlinear structures on three synthetic time
series: (i) linear Gaussian, (ii) linear non-Gaussian, (iii)
nonlinear, at several noise levels and dataset lengths by
running 100 Monte Carlo simulations at each varying
parameter. The additive noise in systems (ii) and (iii) is
compromised of scaled phase-randomized realizations of
the signal in order not to distort the autocorrelation
function [22]. The three signal-to-noise ratios (SNR)
examined herein are 6, 10 and 20 dB and the data lengths
are varied from N ¼ 500 to 5000 with increments of 500
samples. The confidence level of the tests is set as 95%
(corresponding to significance level of 0.05) and 19
surrogates are generated for each simulation via IAAFT.
4.1.1. Tests on linear Gaussian processes

We create a synthetic linear Gaussian process through
a linear feedback system

xðnÞ ¼ 1:5xðn� 1Þ � 0:8xðn� 2Þ þ �ðnÞ (11)

where �ðnÞ follows a white Gaussian distribution with zero
mean and unit variance. The autocorrelation and corren-
tropy of the original series and its surrogates are shown in
Fig. 1. The Kolmogorov–Smirnov test comparing the
correntropy spectral densities did not reject that the
surrogates were generated from the same distribution. In
other words, the null hypothesis of a Gaussian linear
source was not rejected. Adding white Gaussian noise and
changing the number of samples did not result in the
rejection of the null hypothesis with the proposed
measure in 100 Monte Carlo simulations. Other examples
of linear Gaussian time series are included in [42].
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Fig. 1. (a) Autocorrelation and (b) correntropy functions of synthetic linear Gaussian data and surrogate series.
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4.1.2. Tests on non-Gaussian linear processes

As discussed in Section 2, when the null hypothesis is
rejected on an examined series through a nonlinearity
measure, we are not certain whether to attribute the
rejection to nonlinear dynamics or the non-Gaussian
nature of the process. Nagarajan [16] has extensively
studied Fourier based surrogate techniques in the pre-
sence of non-Gaussian linear processes and instantaneous
nonlinearities. The tests all resulted in the rejection of the
null hypothesis due to the non-Gaussian nature of the
series rather than nonlinearity. Hinich et al. [28] have also
reported high false alarm rates when nonlinearity tests
were conducted on linear exponential processes using
Fourier based surrogates. A measure that does not reject
the null hypothesis in the presence of non-Gaussian linear
processes would be considered to have low discrimination
power from the perspective of testing for Gaussianity,
however, from the perspective of nonlinearity tests, it
would increase the liability of rejections suggested by this
measure.

For the tests, the linear system described in (11) is
injected with �ðnÞ sampled from a white exponential
distribution with zero mean and unit variance.3 The
original series and its realizations are compared against
correntropy based measures, time reversibility and bicor-
relation for varying data lengths (N ¼ 50025000 with
increments of 500 samples). One hundred Monte Carlo
simulations were performed with in-band Gaussian noise
levels of SNR ¼ 6, 10, and 20 dB at each data length. The
false alarm rates for the three statistics at SNR ¼ 20 dB are
plotted in Fig. 2. For correntropy based tests, the mean and
standard deviation of the false alarm rates for the three
SNR levels across the varying data lengths are found to be
f10:0� 6:9%;8:8� 4:8%;4:4� 7:2%g. Hence, the rejection
of the null hypothesis in the absence of nonlinear
dynamics is low for the proposed measure.

On the other hand, significant false alarm rates are
attained for measures of time reversibility and bicorrela-
3 Kolmogorov–Smirnoff tests were used to verify that the amplitude

distribution still deviated from Gaussianity after the filtering process.
tion. The rejection of the null hypothesis with these
measures is due to the non-Gaussianity of the synthesized
linear process.4

4.1.3. Tests on nonlinear processes

Finally, we generate nonlinear data via the chaotic
Lorenz system governed by the equations

_x ¼ sðy� xÞ

_y ¼ xðr� zÞ � y

_z ¼ xy� bz (12)

with r ¼ 28;b ¼ 8=3 via the fourth-order Runge–Kutta
method (with integral step 0.005). The results of the test
for the y-component are depicted in Fig. 3. Decreased
discrimination powers with increased noise levels and
fewer data samples are expected. Schreiber [22] questions
the usefulness of a measure with discrimination powers
less than 0.7. Therefore, we infer that at high SNR levels
4 In fact, Weiss [40] showed that all non-Gaussian linear processes

are non-time reversible.
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Fig. 3. Discrimination power of the correntropy based measure on noisy

Lorenz series (SNR ¼ 20 dB) for three levels of noise and varying data

lengths.
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(10–20 dB) data lengths of N ¼ 1000 are sufficient for
adequate discrimination powers.

Further, the discrimination powers of the three
measures at SNR ¼ 20 dB are given in Fig. 4. We observe
that the other two measures fail to yield discrimination
power levels of 0.7. These results are in accord with
Schreiber and Schmitz [22] who reported no significant
discrimination powers with time reversibility and bicor-
relation measures for the x-component of the Lorenz
series with in-band noise of 6 dB (with parameter t ¼ 1).

Finally, we examined discrimination power of the test
with varying kernel sizes for the Lorenz series. The data
length and signal-to-noise ratio were fixed at N ¼ 2500
and SNR ¼ 20 dB, respectively. Once again 100 Monte
Carlo simulations were performed at each kernel size. The
kernel widths were chosen to be factors of the kernel
width so ¼ 0:1956 attained by Silverman’s rule. The
results of this set of simulations are given in Fig. 5. The
reason we witness decreased discrimination powers when
the kernel size is too small can be attributed to the fact
that correntropy converges to a delta-Dirac function for
both the original time series and the surrogates and
therefore the measure loses its ability to discriminate.
When the kernel size is increased too much, the scaling
factor for the higher order moments becomes negligible
and the scaling factor for the autocorrelation term
increases. The shape of the correntropy function con-
verges to the autocorrelation function [41]. Fig. 6
demonstrates these converging properties of the corren-
tropy function for the noiseless Lorenz series [42]. The
skewness in Fig. 5 is due to the fact that correntropy
converges faster to the delta-Dirac function than it
converges to the autocorrelation function.
4.2. Nonlinearity tests on Santa Fe Competition data with

correntropy

We performed nonlinearity tests based on our pro-
posed measure on time series which were used in a
competition held at the NATO Advanced Research Work-
shop on Comparative Time Series Analysis which today is
widely known as the Santa Fe Competition data [9]. This is
still today a defacto standard to compare different
nonlinearity tests. The three datasets we have chosen
are dataset A: Lorenz-like chaos in NH3-FIR lasers [43],
dataset B: multichannel physiological data [44], and
dataset E: whole Earth telescope observations of the
White Dwarf star [45]. Some of the attributes of the
datasets pointed out in [9] are as follows: Dataset A is a
stationary, low-dimensional, clean time series collected in
a laboratory experiment in one trial and it shows
nonlinear behavior. Dataset B is a natural system, which
was recorded in episodes over multiple channels and well
documented. It consists of heart rates, respiration rates,
and blood oxygen concentrations. The analysis of this
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dataset can potentially save lives. Finally, dataset E is a
noisy well-documented natural system, which is most
probably linear.

Dataset A which consists of 1000 data points is given in
Fig. 7 along with one of its surrogates. Autocorrelation and
correntropy functions of the dataset and its surrogates are
also given. It can be observed that the autocorrelation of
the dataset belongs to the distribution of the autocorrela-
tion functions of the surrogates. The correntropy function
of the dataset, on the other hand, is distinctly different
than its surrogates and this observation is confirmed by
the Kolmogorov–Smirnoff tests in which the normalized
CSD of the dataset rejected hypothesis of belonging to the
same distribution as all of the 19 surrogates. Hence, the
proposed measure rejected the null hypothesis with 95%
confidence. Because the dataset was not heavily contami-
nated with noise, 1000 data samples were sufficient for
correct discrimination. The same result (nonlinearity of
dataset A) was also reported by Casdagli et al. [46] using
nonlinear prediction errors (which is against our goal of
avoiding nonlinear modeling with no a priori information
on the system) and by Palus [10] using redundancies
and linear redundancies (which require extensive compu-
tations).

Fig. 8 presents the correntropies of one episode of the
heart rate recordings in dataset B and its generated
surrogate series. The system was recorded at 2 Hz
sampling rate with data length of N ¼ 17 000. Our
correntropy-based tests applied to 4 min of data rejected
the null hypothesis with 95% confidence over 19 surro-
gates. This result is confirmed by Casdagli et al. [46] who
found 10–25% more accurate prediction results with
nonlinear models compared to global linear ones.

Finally, we examined dataset E.14 and its surrogates.
The data length of this set is N ¼ 2602 and the dataset was
contaminated with noise. The corresponding autocorrela-
tion and correntropy function are provided in Fig. 9. The
correntropy of the original series is not distinguishable
from those of its surrogates. Moreover, the CSD based tests
do not reject the null hypothesis and thus the test is
inconclusive about whether there are nonlinear dynamics
in this time series. Since this is a natural system, we would
anticipate that there are nonlinearities present. Never-
theless, other measures are in accord with this finding. For
the same dataset, Palus [10] could not find significant
differences between linear and nonlinear measures of
redundancy and therefore reported that a linear stochastic
process is consistent with the data. Theiler et al. [47] state
that evidence of nonlinearity in this dataset should be
dismissed as an artifact of long coherence time. Thus, we
have shown that correntropy is a suitable measure for
nonlinearity tests, not only on synthetic data, but also on
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Fig. 7. (a) Original dataset A, (b) one of the generated surrogates, (c) autocorrelation, and (d) correntropy functions of original and surrogate series.
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Fig. 8. (a) Autocorrelation and (b) correntropy functions of dataset B and surrogate series.
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Fig. 9. (a) Autocorrelation and (b) correntropy functions of dataset E.14 and surrogate series.
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limited samples of noisy measurements from real physical
systems.
5. Conclusions

Herein, a generalized power spectral measure based on
correntropy for surrogate based nonlinearity tests has
been proposed. The methodology relies on the fact that
correntropy captures dynamic properties of time series
through nonlinear mappings of kernels, without resorting
to any conventional nonlinear test statistics such as
Lyapunov exponents or correlation dimension, which rely
on many parameters and are computationally time
consuming. The method rejects the null hypothesis that
the observed signal is of Gaussian and linear nature if the
correntropy power spectral densities of the signal and all
of its surrogates fail the two-sample Kolmogorov–Smirn-
off test. This test scheme is based on the loss of dynamic
nonlinear properties of the original series through the
process of generating surrogate data. If no such properties
exist, the series and its surrogates share the same CSD
distribution. It should be pointed out that this nonlinear-
ity measure, just like other statistical nonlinearity mea-
sures, relies on the method of surrogate data and is not a
stand alone measure. Therefore, the measure would fail if
the generation of proper surrogates failed.

The methodology has been applied to synthetic linear
Gaussian, linear non-Gaussian, and nonlinear data and
analyzed with varying in-band noise levels, data lengths
and kernel widths. The rejection of the null hypothesis in
the two linear cases is insignificant. Not rejecting the null
hypothesis in the linear case of non-Gaussian sources
demonstrates the liability of the proposed statistic as a
nonlinearity measure. Discrimination power of the mea-
sure was examined with a nonlinear Lorenz attractor for
various SNR levels, dataset lengths and kernel sizes.
Significant discrimination powers were attained in the
presence of in-band noise at data lengths as low as 1000
samples and a wide range of kernel widths. Finally, we
applied our nonlinearity measure to real natural systems
with various data lengths and corruptive noises. Our
results were in accord with the results published in
literature on the same datasets, supporting the liability of
the proposed measure. Overall, the proposed correntropy
based nonlinearity measure is a computationally efficient
and reliable test statistic which captures not only
temporal correlations but also dynamical properties of
time series.
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