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Conversion of EEG Activity Into Cursor Movement
by a Brain–Computer Interface (BCI)

Georg E. Fabiani, Dennis J. McFarland, Jonathan R. Wolpaw, and Gert Pfurtscheller, Member, IEEE

Abstract—The Wadsworth electroencephalogram (EEG)-based
brain-computer interface (BCI) uses amplitude in mu or beta fre-
quency bands over sensorimotor cortex to control cursor move-
ment. Trained users can move the cursor in one or two dimensions.
The primary goal of this research is to provide a new communica-
tion and control option for people with severe motor disabilities.
Currently, cursor movements in each dimension are determined 10
times/s by an empirically derived linear function of one or two EEG
features (i.e., spectral bands from different electrode locations).

This study used offline analysis of data collected during system
operation to explore methods for improving the accuracy of cursor
movement. The data were gathered while users selected among
three possible targets by controlling vertical [i.e., one-dimensional
(1-D)] cursor movement. The three methods analyzed differ in the
dimensionality of the cursor movement [1-D versus two-dimen-
sional (2-D)] and in the type of the underlying function (linear
versus nonlinear).

We addressed two questions: Which method is best for classifica-
tion (i.e., to determine from the EEG which target the user wants to
hit)? How does the number of EEG features affect the performance
of each method? All methods reached their optimal performance
with 10–20 features. In offline simulation, the 2-D linear method
and the 1-D nonlinear method improved performance significantly
over the 1-D linear method. The 1-D linear method did not do so.
These offline results suggest that the 1-D nonlinear or the 2-D linear
cursor function will improve online operation of the BCI system.

Index Terms—Augmentative communication, brain–computer
interface (BCI), electroencephalography, feedback.

I. INTRODUCTION

RECENT studies show that people can communicate by
controlling certain components of their electroencephalo-

grapham (EEG). A system that makes this possible is called
a brain–computer interface (BCI). BCI communication could
substantially improve quality of life for people with no or very
little voluntary muscle control [9], [22]. Current approaches to
EEG-based communication [21] can be divided into two groups,
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those that use time-domain EEG components (e.g., [2] and [5])
and those that use frequency-domain components (e.g., [10]
and [14]–[16]). Frequency-domain methods use spectral anal-
ysis and focus on specific frequencies at specific scalp locations.
The BCI developed at the Wadsworth Center uses mu (8–12 Hz)
and/or beta (18–25 Hz) rhythms recorded over sensorimotor
cortex to control a cursor on a video screen [10]. In the simplest
case, the amplitude of a single spectral band at a single location
on the scalp is used to determine one-dimensional (1-D) cursor
movements. The user learns to control this amplitude. Cursor
movements are calculated 10 times/s by an empirically derived
linear equation. In offline analysis, data from the most recent
sessions are used to determine the best location and frequency
band for cursor control for the next sessions.

In the application discussed in this study, the user’s task is
to select among three boxes arranged vertically on the screen
by controlling vertical cursor movement [23]. The outcome of
a trial is either a hit or a miss, depending on whether the user
selects the correct box (i.e., the target) or selects a different box.
Performance is measured by percent correct, i.e., percent of the
trials that are hits.

At present, one or two EEG features and the parameters of
the linear equation that translates them into cursor movement
are chosen by the operator on the basis of the user’s past perfor-
mance. Previous research showed that additional locations can
improve performance [7]. This study uses up to 30 EEG features,
selected by sequential forward selection [3] in offline analysis of
the data from five trained users. It evaluates with offline analysis
three different methods for classifying each trial as one of the
three possible selections. For each method, a cursor function
for possible online application is discussed. The methods differ
in the dimensionality of the cursor movements and whether the
cursor function is linear or nonlinear. The first method is 1-D
linear, the second method is two-dimensional (2-D) linear and
the third method is 1-D nonlinear. The goal was to determine the
best method and the optimal number of features. A preliminary
version of this work has been presented in abstract form [4].

II. CURRENT BCI SYSTEM

EEG is electrical activity produced by the brain and recorded
from the scalp or from the cortical surface [13]. It is produced by
the neurons and synapses of the central nervous system (CNS)
in the course of their operations. The Wadsworth BCI measures
particular features of EEG activity (i.e., mu and/or beta rhythms
over sensorimotor cortex) and converts them into 1- or 2-D cursor
movements. These cursor movements are used to provide feed-
back to the user. This feedback helps the user to learn to control
his or her EEG activity and thereby control cursor movement.

1534-4320/04$20.00 © 2004 IEEE
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Fig. 1. EEG of the user u is translated into cursor movement by the BCI and
displayed back to the user on a video monitor y . Adjustments p to the BCI are
made as a result of the offline analysis of stored data z.

A. BCI and Its Environment

Fig. 1 summarizes the current BCI operation. The BCI has
two inputs and two outputs.

1) Input :
This is a 64-dimensional time discrete signal

. Each scalar
is the EEG gathered from a different

location on the scalp. The EEG is sampled at 128 Hz.
Therefore, each sample corresponds to a time period of
1/128 s. The subscript indexes these samples. Therefore,

is the sample of the first time period and is the
sample of the second time period.

2) Input :
This is a user profile, containing parameters that adjust

the BCI to the user.
3) Output :

This is the information displayed on a screen to provide
feedback to the user. For this study, the screen showed a
cursor and three boxes (i.e., the possible selections) ar-
ranged vertically, and one of the boxes was highlighted to
indicate that it was the target (i.e., the correct selection).
The index indices the output at a certain time. The time
between two outputs is 100 ms.

4) Output :
Contains data of the current session for later offline

analysis.

B. BCI Components

The Box “BCI” in Fig. 1 has six components. These are
shown in Fig. 2.

1) Spatial Filter: A spatial filter improves the signal-to-
noise ratio by subtracting a weighted subset of the 63 remaining
electrodes from the electrode of interest. The output is a
vector containing 64 different linear combinations of the input

. Each scalar
is the spatially filtered signal from the elec-

trode at the time period . The type of the spatial filter defines
the weight matrix . In practice, a Laplacian Reference
filter or a common average reference (CAR) filter [11] is used.

2) Spectral Analysis: A 200-ms time window from the
spatially filtered signals is transformed from the time to
the frequency domain. The time window

comprises the last signals
at time index of the th component of . The parameter

specifies the size of the time window and depends on the

Fig. 2. Spatial filter improves signal-to noise ratio of the signal u of the
64 electrodes using a weight matrix W as parameter. Spectral analysis is
performed on a selection q of the spatially filtered signals a . Thereby, w
selects the frequency bands. With the weights r these m spectrally analyzed
signals b are linearly combined. The resulting scalar c is normalized (x )
and then mapped to a cursor position � using the scalar G as an input. Finally,
this cursor position is represented in the context of a task (e.g., three boxes,
highlighted target) on the screen (y ).

sampling frequency. The system uses the Burg algorithm for
estimating autoregressive (AR) coefficients of order 10. Any
spectral band can then be computed from these AR coefficients
[6]. Let be the spectrum of a time window
TW. The output is a vector, containing a selection of spectral
bands from the time window

(1)
The vector selects the scalars of (i.e.,

electrodes) to be analyzed and denotes the
selected spectral bands. The index indices the time for . For
continuous feedback, the time interval between and is
100 ms so that the 200-ms time windows are overlapping.

3) Linear Combination: The features of the vector
(i.e., the amplitudes of different frequency

bands at different locations) are linearly combined. The co-
efficients of this linear combination are . The
output is defined by

(2)

Currently, the EEG components and the coefficients for the
linear combination are determined by offline inspection of the
data.

4) Normalization: The EEG is a nonstationary signal. The
EEG-amplitudes display considerable apparently spontaneous
variation, both across trials and across sessions. A moving
average filter is used to adjust for trial-to-trial variations not
predicted by target. The data from recent trials are used to predict
the mean and standard deviation of the next trial [19]. The data of
the next trial is then normalized by these estimates according to

(3)

It is assumed that this normalized signal is stationary.
5) Cursor Function: A linear function [10] translates EEG
into cursor movement

(4)
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where is a scaling factor. The cursor position at any time is
defined by the sum of all movements performed in the trial

(5)

where is defined by .
6) Task: The data analyzed in this paper were gathered

while users performed a 1-D, three-choice task [23], referred
to as the three-box task. In this task, the user is presented with
three boxes placed vertically on the screen: a top, a middle, and
a bottom box. At the beginning of the task, the cursor appears
in the center of the middle box and one box is highlighted to
indicate that it is the target. One second later, the cursor begins
to move controlled by the users EEG and continues to move
until it selects one of the boxes. The selection is made either by
remaining in a box for a specified dwell time (e.g., 2 s) or, for
the top and bottom box, by reaching the top or bottom of the
screen. If the box selected is the target, the trial is a hit; if the
box selected is not the target, the trial is a miss.

Participants were five adults: four without disabilities (one
woman and three men, ages 33–58) and a 24-year-old man with
cerebral palsy who is confined to a wheel-chair and commu-
nicates with a touch-talker. All gave informed consent for the
study, which had been reviewed and approved by the New York
State Department of Health Institutional Review Board. After
an initial evaluation defined the frequencies and scalp locations
of each subject’s spontaneous mu and beta rhythm activity, he or
she learned EEG-based cursor control with a two target task in
ten 30-min sessions (2–3/week) and then participated for 10–69
additional sessions devoted to a variety of studies. Over the
course of each subject’s participation, offline data evaluations
led to adjustments in the electrode locations, frequency bands,
and spatial filter used by the online algorithm that controlled
cursor movement.

III. METHODS

In offline analysis, we explored three different methods for
classifying each trial, that is, deciding from the user’s EEG
which box he or she was trying to select (i.e., which box was the
target). For each method, we determined the accuracy of clas-
sification and the dependence of this accuracy on the number
of EEG features used. We used two linear methods, referred to
as K1 and K2, and one nonlinear method referred to as K3. To
evaluate the overall quality of each method, we used the data
gathered from five users performing the three-box task (i.e., Sec-
tion II-B6). The data of each user comprised 15 daily sessions.
Each session included an average of 200 trials, each with an av-
erage trial duration of 2.2 s. We used ten subsets of this data
(i.e., training sets) for training (i.e., to determine the parameters
of each method) and ten subsets (i.e., test sets) for testing (i.e.,
to evaluate performance of each method). The th training set
contained sessions and the th test set con-
tained the following session . We used the first training
set to initially select the best 30 EEG features (for each clas-
sifier separately) by sequential forward selection [3]. Then, we
trained each classifier on the first training set and tested it on
the first test set. We performed this procedure of training and
testing ten times (i.e., for training and test set)

using the same, initially selected, EEG features. The aim of this
procedure was to simulate the online task as closely as possible.

A. Log-Transformation

As described in Section II-B, each scalar with
(i.e., each feature) is the amplitude of a

single spectral band at one scalp location. The logarithm of this
signal is roughly normally distributed. For this reason, we took
the logarithm of each component of the vector . Then, we
normalized each scalar to zero mean and standard de-
viation one (3). We defined the vector ,
which contains the values after taking the logarithm and
the normalization.

B. Trial Means

The data used offline have different trial lengths caused by the
termination criterion of the three-box task (Section II-B6). This
trial-length should not influence the classifiers because the trial
length was determined by the algorithm used online. For this
reason, we used trial means for training and testing. We defined

as the trial mean

(6)

C. Classification (i.e., Determination of Which Box Is the
Target)

The discriminant function is a linear mapping of the
trial mean to one dimension

(7)

The parameters and 0 were obtained by the pseudoinverse
method [1], [8] which minimizes the sum squared error (SSE)
between the predicted values (i.e., ) and the target values (i.e.,
1/0/ 1 for top/middle/bottom target). The classification of a
trial was then determined by whether the discriminant function

was higher than the threshold , lower than the
threshold or between these two thresholds. The
thresholds were determined so that trials with top, middle, and
bottom targets had the same probability of correct classification.
The classifier K1 was defined as

if
if
else

(8)

The classifiers K2 and K3 used two linearly extracted features
g1(z) and g2(z) of the feature space z(X). The extracted feature
space g(z) was determined by two linear discriminant functions
YTop/Middle(z) and YMiddle/Bottom(z). The weights of these
discriminant functions were determined by performing linear
discriminant analysis (LDA) [1] between a pair of classes (i.e.,
Top/Middle, Middle/Bottom) of the training data. Thus, g(z)
was defined as

(9)

The discriminant functions , ,
and discriminated between each pair of
classes in the previously defined 2-D extracted feature space
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Fig. 3. Each symbol is a single trial. The target is the top box for full circles,
the middle box for open circles, and bottom box for full triangles. For each graph
(i.e., K1, K2, or K3), the three areas defined by the lines show the results for the
classification of one session by the classifier K1, K2, or K3.

(g). The classifier K2 used these functions to divide the 2-D
extracted feature space into three areas, each associated with
one target (Fig. 3 shows an example)

if

if

else.

(10)

It is also possible to use these three discriminant functions for
K2 in the feature space instead of . In this case, the classifi-
cation results would be similar, but 2-D feedback would not be
possible (Section III-E).

The classifier K3 used a statistical method on the 2-D ex-
tracted feature space . We assumed multivariate normal dis-
tribution for the three classes. Using Bayes theorem [1] and

equal prior probabilities, we calculated posterior probabilities
for all three classes. Thus, the nonlinear discriminant func-

tion minimized the SSE between the prediction (i.e., )
and the target values of the training data. It was defined by

(11)

As for K1, the thresholds were determined so that trials with
each of the three targets had the same probability of correct clas-
sification. The classifier K3 was defined as

if
if
else.

(12)

D. Feature Selection

All the methods previously described can process multi-
variate input. For this study, 15 relevant scalp locations over
sensorimotor cortex were evaluated (i.e., FC , FC , FC , FC ,
C , C , C , C , C , C , CP , CP , CP , CP , and CP [20]).
Each of these 15 locations was spatially filtered with a large
laplacian filter. Then seven different 3-Hz wide frequency
bands, all in the range 8–27 Hz, were analyzed for each of these
spatially filtered locations. Thus, the feature space consisted of
105 features. Many features contained minimal or redundant
information and were, therefore, not useful.

In this study, sequential forward selection [3] was used to
find for each method (i.e., K1, K2, and K3) separately the most
important 30 features ordered by their importance. Each feature
was found by minimizing the SSE between the prediction (i.e.,

, , or ) and the target values of the first training set (i.e.,
sessions ).

The sequential forward selection algorithm began by finding
the best single feature as the first feature in the subset. Next,
all remaining features were evaluated (i.e., SSE was calculated)
in combination with the subset. The best of these features was
then added to the subset. This was continued until the subset
contained 30 features.

E. Feedback

For each classifier, a cursor position (i.e., , , ) was ob-
tained by multiplying the time index within a trial (i.e., ) with
the discriminant function (i.e., for K1, for K3) or the ex-
tracted features (i.e., for K2). The resulting cursor position
was 1-D for K1 and K3 and 2-D for K2.

The cursor movements of were derived by a linear function
(i.e., ) and the cursor position was the
sum of these movements

(13)

For K2, the cursor position was obtained by
. Each dimension of the cursor movements was,

therefore, expressed by a linear function similar to . The
2-D cursor position was then defined by the sum of these
movements.

The cursor position of the classifier K3 was obtained by
multiplying the time index by the discriminant function [i.e.,

].
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Fig. 4. Discriminant function y as a function of the extracted features g (z) and g (z).

IV. RESULTS

We assessed the performance of the classification methods
K1, K2, and K3, described in the previous section. For each
method, the percentage of trials correctly classified was deter-
mined as a function of the number of features used.

Fig. 4 summarizes the results. The results show that more
features can substantially improve performance for all methods.
The improvement was strongest for K2 and K3. For more than
three features, the performance of K2 (or K3) was significantly
( 0.01, paired t-test) higher than the performance of K1. Per-
formance increased with features up to a point. With too many
features, the performance deteriorated again. For K1, the perfor-
mance deteriorated from a maximum of 66.8% with 23 features
to 65.4% with 80. For K2, it deteriorated from a maximum of
70.2% with 11 features to 68.0% with 80. For K3, it deteriorated
from a maximum of 69.5% with 20 features to 67.7% with 80.
These results suggest that the classifiers give their maximum
performance with 10–20 features (see Fig. 4).

The actual online performance averaged over subjects A–E
was 69.3%. Data used for online operation was sampled with a
different A/D converter so that offline analysis has been done
with data that were not identical. To eliminate this influence

in the results, we performed an offline simulation of the linear
cursor function that was used online. In offline analysis, accu-
racy averaged over subjects A–E was 65.6%. Using more than
three features, the performance of the classifier K2 (or K3) was
significantly ( 0.01, paired t-test) higher than the perfor-
mance of the simulation. In contrast, there was no significant
( 0.01, paired t-test) difference between the performance of
K1 and the performance of the simulation.

We tested the 1-D cursor functions and (i.e., linear and
nonlinear). For all cursor movements of all subjects, we analyzed

[12] which reflects the user’s EEG-control. This was 0.130
for and 0.133 for . Fig. 6 shows a histogram of these
cursor movements. The percentage of the correct movements
toward the bottom target was 71.8% for and 74.3% for .

V. DISCUSSION

This study focused on the classification of trials from a
three-box task. We addressed two questions: What methods are
best for classification? How does the number of features affect
the performance of each method?

We evaluated three different methods: the classifiers K1, K2,
and K3. Each classifier is associated with a cursor function: 1-D
linear for K1, 2-D linear for K2, and 1-D nonlinear for K3.
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Fig. 5. Performance versus number of features for each of the five users (A,
B, C, D, E) and for all together (A–E). Classifier K1: full triangles; classifier
K2: open circle; and classifier K3: full circle. For each user, the classifiers were
tested on ten sessions and each session consisted on average of 200 trials. The
performance of each classifier represents its accuracy averaged over 2000 trials.

We used the sequential forward selection algorithm [3] for
feature selection. While this method does not guarantee the best
selection of features, it has modest computational costs. The
results showed that more features can substantially improve
performance. This improvement was strongest for methods K2
and K3. Comparing the performance of K2 (or K3) with K1, the
results showed that the performance of K2 (or K3) was signifi-
cantly higher than that of K1 for more than three features. Fig. 3
demonstrates this with the example of one session. The decision
boundaries of the classifier K1 are two parallel hyperplanes. In
the graph, it can be seen that this is a strong restriction (i.e., less
trials were correctly classified). K2 and K3 have more degrees
of freedom. K2 uses three hyperplanes that are not necessarily
parallel and K3 uses two nonlinear decision boundaries. Fig. 5 vi-
sualizes thediscriminant function asa functionof theextracted
features and . It can be seen that the nonlinear decision
boundaries in Fig. 3 were obtained by applying (12) on the graph,
i.e., cutting the graph horizontally at the level of the thresholds.

The results in Fig. 4 showed that the performance differ-
ence between K2 (or K3) and K1 increased with the addition
of features. Since it has been shown that K2 (or K3) is signif-
icantly better than K1, we conclude that the optimal decision
boundaries are not parallel (K2) or are nonlinear (K3) for more
than three features and that any linear 1-D discriminant func-
tion would perform worse than K2 (or K3). However, as demon-
strated in Fig. 3, the classes show considerable overlap, which
makes discrimination between K2 and K3 difficult.

The classifiers K2 and K3 operate in the 2-D extracted feature
space (9). Each dimension of this extracted feature space was ob-
tained by a linear discriminant function. The number of weights
of these functions was equal to the number of features plus one.
Therefore, the demand for data is a linear function of the number
of features. Similar, the number of weights used for the classifier
K1 is a linear function of the number of features (7). For some
users, optimal or near optimal performance could be obtained
with less than 10–20 features. However, using 10–20 features,
optimal or near optimal performance could be obtained for each
user and averaged over users, performance became a maximum.

The classifiers K2 and K3, therefore, improved offline per-
formance because their decision boundaries have more degrees
of freedom compared to a 1-D linear method (like K1 or the
method that is currently used online).

The statistical approach based on Bayes theorem discussed in
this study (11) is not the only way to obtain 1-D nonlinear dis-
criminant functions (e.g., others include multilayer perception
(MLP) [1] or radial basis functions [1]) but it is computation-
ally simple and effective.

A. Online Performance Versus Offline Simulation

The data used in this study were collected during online op-
eration of the Wadsworth BCI system. In online operation, the
parameters used to convert EEG into cursor movements are con-
tinually adjusted according to the most recent data and the user
continually adapts to these adjustments. In contrast, in offline
simulation, while the parameters are continually adjusted ac-
cording to the most recent data, the performance of the user is
simulated by the subsequent data, which is not adapted to these
adjustments. Thus, evaluating a method in offline simulation
provides an imperfect estimate of its online performance. The
methods evaluated here must be tested online to determine their
actual online performance. Since the user will probably adapt to
the new parameters, it is likely that the offline test is too conser-
vative, i.e., that the online results will be better.

B. Implementation in the BCI

In online operation of the current BCI, the trial end is deter-
mined by the termination criterion (i.e., Section II-B6) and the
trial outcome is determined according to the cursor position at
the end of the trial. In this study, the methods tested were used
to determine the trial outcome according to trial means. Feed-
back or cursor movements were not necessary for offline clas-
sification since there was no user interacting. In contrast, in the
current online application a cursor function is defined where the
trial outcome corresponds to the terminal cursor position.

While the discussed methods do ultimately need to be tested
online, they do suggest possibilities for such online research.

1) Targets: For the 1-D cursor functions and , the cursor
position at the end of the trial is equivalent to the discriminant
function or multiplied by the trial length. The middle box on
the screen could then be defined by the thresholds
and multiplied by a fixed trial length. At the
end of a trial, selection according to the cursor position would
be equivalent to the classification result of K1 or K3.

For the classification of the cursor position , the classifier K2
could be used. The input would be replaced by the cursor posi-
tion divided by the trial length. As a consequence, the screen
would be divided into three areas similar to Fig. 3, each associ-
atedwithone target.Then, thecursorpositionat theendof the trial
would indicate the target selection made by the classifier K2.

2) Feedback: The cursor function for K1 is similar to the
cursor function that is currently used online and should give
similar feedback in online operation. However, the offline re-
sults indicate that there is no improvement to be expected.

The cursor function performs 2-D cursor movements for the
classifierK2. Ina preliminary study, the WadsworthBCI hasbeen
applied to a 2-D four-choice task [22]. The cursor position of
K2 is similar to the cursor function used in that study: both are the
sum of 2-D cursor movements derived by two linear equations.
The only difference is that uses more features and the coeffi-
cients of the linear equations are derived systematically. Given
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Fig. 6. Percentage of cursor movement for top/middle/bottom target. Open cir-
cle: nonlinear cursor movements�� , full circle: linear cursor movements�� .

this initial demonstration that a cursor can be controlled in two
dimensions and the present offline results with the classifier K2,
it is probable that K2 in combination with a 2-D feedback would
significantly improve online performance of the three-box task.

For the classifier K3, the cursor function is a 1-D nonlinear
function of EEG-features and time. Therefore, a cursor move-
ment can only be determined by subtracting the current cursor
position from the next. The difference between the values of

and was small. In general, the value is also sensitive
to the distribution of the cursor movements (e.g., a few, very
large movements toward the target would increase more than
they would increase performance). Fig. 6 shows that the cursor
movements were roughly normally distributed. In contrast,
the distributions of the movements were skewed and had
peaks at 1, 0, and 1. In an application online, these peaks might
not be a disadvantage. They occur because emphasizes values
near 1, 0, and 1. For top and bottom targets, these peaks were
caused by cursor movements of trials that were hits; the cursor
moved with maximum speed (i.e., 1 or 1) in the direction of
the target. Fig. 5 shows that the average cursor movement (i.e.,
this is ) of a trial is limited to a range between 1 and 1.
For the middle target, the peaks at 1 and 1 were derived from

cursor movements of trials that were misses while the peak at
zero was derived from trials that were hits; the cursor moved to
the center and stayed until the trial was over.

Given the higher value for cursor movements, the higher
number of movements toward the target and the significantly
better classification results of K3 compared to K1, it is most
likely that the method K3 (including feedback) will substan-
tially improve online performance of the BCI.

C. Other BCI Projects

Linear classifiers are widely used for two class problems,
(e.g., [15] and [16]). In the present study, we used linear clas-
sifiers for the classification between each pair of classes (i.e.,

, , ). Compared to non-
linear classifiers (e.g., to neural networks), linear classifiers have
less degrees of freedom (i.e., weights). While this can decrease
performance, fewer weights also need less data for training. This
can certainly be an advantage. For the current study, we did not
find any neural network based classifier (e.g., MLP [1]) in a
two-class situation that performed better than a linear classifier.
Other studies have used neural network based classifiers for two
class problems. For example, Pfurtscheller et al. [15] used the
Learning Vector Quantisation (LVQ) algorithm to classify trials.
Feedback was given at the end of the trial. Penny et al.. [14] used
a logistic regression model trained using a Bayesian evidence
framework to control a cursor. This led to more robust cursor
movements because uncertain movements could be rejected.

The three-class problem is different from the two-class
problem. The results of this study showed that the three classes
are not linearly dependent. Nonlinear classifiers can adapt
to this nonlinearity but simple linear classifiers (e.g., K1) do
not. Milan et al. used a statistical approach to the three class
problem [17]. Each trial was classified as the class with the
highest probability given the EEG. This method is similar to
the classifier K3 discussed in the present study except that it
does not provide continuous feedback and does not base the
classification on a 1-D cursor position.

Feature selection is usually not performed for linear classi-
fiers (e.g., [15] and [16]). The number of weights is a linear
function of the number of features. For this reason, useless fea-
tures have little impact on performance. For nonlinear methods,
this issue can be more crucial since the number of weights
is usually an exponential function of the number of features
(e.g., Pfurtscheller et al. used the distinction sensitive learning
vector quantization [(DSLVQ), an LVQ-based algorithm] [25]
for weighting features by their importance [15]). In the present
study and some other studies (e.g., [16] and [17]), the features
used were spectral bands of spatially filtered EEG signals.
Other studies used autoregressive (AR) parameters (e.g., [14]
and [15]) or common spatial filters (e.g., [15]). The Wadworth
BCI calculates all spectral bands from AR-parameters II-A.
This indicates that the same information is contained in both
representations (i.e., AR-parameters and spectral bands) so that
classification using frequency bands and classification using
AR-parameters are similar approaches.

VI. CONCLUSION

This study used offline analysis of data collected from sub-
jects selecting among three choices in an EEG-based cursor
movement task. Currently, cursor movements occurs in one di-
mension as a linear function of EEG features. For a three-box
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task, this function assumes that the EEG patterns for cursor con-
trol (i.e., move cursor up, stop cursor, move cursor down) are
linearly dependent. We presented two methods for classification
and feedback (i.e., 2-D linear or 1-D nonlinear) that had more
degrees of freedom. An offline analysis with these methods per-
formed significantly better than a linear 1-D cursor function.
Performance improved with features up to a point and deterio-
rated then slightly. The number of optimal features was user de-
pendent. Averaged over the users, maximum performance could
be obtained with 10–20 features. These results suggest that on-
line BCI performance can be improved by using more of the
information available in the EEG.
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