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Brain–computer interfaces (BCIs) can provide communication and
control to people who are totally paralyzed. BCIs can use nonin-
vasive or invasive methods for recording the brain signals that
convey the user’s commands. Whereas noninvasive BCIs are al-
ready in use for simple applications, it has been widely assumed
that only invasive BCIs, which use electrodes implanted in the
brain, can provide multidimensional movement control of a robotic
arm or a neuroprosthesis. We now show that a noninvasive BCI
that uses scalp-recorded electroencephalographic activity and an
adaptive algorithm can provide humans, including people with
spinal cord injuries, with multidimensional point-to-point move-
ment control that falls within the range of that reported with
invasive methods in monkeys. In movement time, precision, and
accuracy, the results are comparable to those with invasive BCIs.
The adaptive algorithm used in this noninvasive BCI identifies and
focuses on the electroencephalographic features that the person is
best able to control and encourages further improvement in that
control. The results suggest that people with severe motor disabil-
ities could use brain signals to operate a robotic arm or a neuro-
prosthesis without needing to have electrodes implanted in their
brains.

brain–machine interface � electroencephalography

Brain activity produces electrical signals that can be detected
from the scalp, from the cortical surface, or within the brain.

Brain–computer interfaces (BCIs) change these signals from
mere reflections of brain activity into outputs that convey the
user’s intent to the outside world (1). Because they do not
depend on nerves and muscles, BCIs can provide communica-
tion and control to people with severe neuromuscular disorders
such as amyotrophic lateral sclerosis (ALS), brainstem stroke,
cerebral palsy, and spinal cord injury. The primary goal of BCI
research is to enable these users, who may be completely
paralyzed (‘‘locked in,’’ unable even to breathe or to move their
eyes), to express their wishes to caregivers, operate word-
processing programs, or even control multidimensional move-
ments of a robotic arm or a neuroprosthesis.

BCIs can be noninvasive or invasive. Noninvasive BCIs, which
derive the user’s intent from scalp-recorded electroencephalo-
graphic (EEG) activity, are already in use for basic communi-
cation and control (2, 3). Invasive BCIs, which derive the user’s
intent from neuronal action potentials or local field potentials
recorded within the brain, are being studied mainly in nonhuman
primates (4–12). These invasive BCIs face substantial technical
difficulties and entail significant clinical risks: they require that
recording electrodes be implanted in the cortex and function well
for long periods, and they risk infection and other damage to the
brain. The efforts to develop them, despite these disadvantages,
are based on the widespread belief (13–17) that only invasive
BCIs will be able to provide users with real-time multidimen-
sional control of a robotic arm or a neuroprosthesis. The study
presented here shows in humans that a noninvasive BCI, using
sensorimotor rhythms recorded from the scalp, can provide
multidimensional control that is within the range reported for
invasive BCI studies in monkeys. These results suggest that

people with severe motor disabilities might control complex
movements without having electrodes implanted in their brains.

Methods
Human Subjects. Four people [a man age 41 (user A), a woman age
27 (user B), a man age 31 (user C), and a man age 23 (user D)]
were the BCI users in this study. User A had a complete
midthoracic (T7) spinal cord injury 26 years before the study.
User D had an incomplete midcervical (C6) spinal cord injury
7 years before the study. Both had normal arm function, had little
or no leg function, and used wheelchairs. Users B and C had no
disabilities. These users varied widely in their prior BCI expe-
rience. User A had participated in several studies of one-
dimensional cursor control (228 sessions; 91 h of performance)
(18), and user B had participated in one such study (28 sessions;
11 h of performance). User C had no previous experience. User
D had participated in a one-dimensional study (47 sessions; 19 h
of performance) 4–5 years earlier and had no BCI experience in
the 4 years since. The study was approved by the New York State
Department of Health Institutional Review Board, and each user
gave informed consent.

Study Protocol. During BCI operation, the user sat facing a video
screen (19, 20). EEG activity was recorded from 64 standard
electrode locations distributed over the entire scalp (21). All 64
channels were referenced to the right ear, amplified 20,000�
(bandpass 0.1–60 Hz), digitized at 160 Hz, and stored. A small
subset of channels controlled cursor movement online (see
below).

A trial began when a target appeared at one of eight locations
on the periphery of the screen (Fig. 1A). A target location was
block-randomized (i.e., each occurred once every eight trials).
One second later, the cursor appeared in the middle of the screen
and began to move in two dimensions with its movement
controlled by the user’s EEG activity as described below. If the
cursor reached the target within 10 s, the target flashed as a
reward. If it failed to reach the target within 10 s, the cursor and
the target simply disappeared. In either case, the screen was
blank for 1 s, and then the next trial began.

A daily session consisted of eight 3-min runs separated by
1-min breaks. Users A–D completed 68, 22, 40, and 25 sessions,
respectively, at a rate of 2–4 per week. In each user’s initial
sessions, the transition from one-dimensional to two-
dimensional control was accomplished by gradually increasing
the magnitude of movement in the second dimension and�or by
alternating between one-dimensional runs in the vertical and
horizontal dimensions and then switching to two-dimensional
runs.
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Control of Cursor Movement. Each dimension of cursor movement
(Fig. 1A, screen 2) was controlled by a linear equation in which
the independent variable was a weighted combination of the
amplitudes in a mu (8–12 Hz) or beta (18–26 Hz) rhythm

frequency band over the right and left sensorimotor cortices. The
weights in this variable were updated after each trial by an
adaptive algorithm to optimize the translation of the user’s EEG
control into cursor control.

During the cursor movement period, the cursor moved every
50 ms and was controlled as follows. The last 400 ms of spatially
filtered EEG activity [large Laplacian filter (22) from two
locations over sensorimotor cortex (C4 on the right and C3 on
the left) (21)] underwent autoregressive frequency analysis (23)
to determine the amplitudes in specific mu-rhythm and beta-
rhythm frequency bands. The selection of mu- and�or beta-
rhythm bands was based on the characteristics of each user’s
previously developed one-dimensional control; the form of their
combination was based on initial studies of two-dimensional
control (1, 18, 24). To determine vertical cursor movement (MV),
one right-side amplitude (RV) and one left-side amplitude (LV)
were each multiplied by a weight (wRV and wLV, respectively),
and the results were added to give the ‘‘vertical variable,’’ the
independent variable in a linear equation that specified a vertical
cursor movement in pixels:

MV � aV�wRVRV � wLVLV � bV�. [1]

To determine horizontal cursor movement (MH), one right-side
amplitude (RH) and one left-side amplitude (LH) were each
multiplied by a weight (wRH and wLH, respectively), and the
results were added to give the ‘‘horizontal variable,’’ the inde-
pendent variable in a second linear equation that specified a
horizontal cursor movement in pixels:

MH � aH�wRHRH � wLHLH � bH�. [2]

The terms aV, aH, bV, and bH in these equations were controlled
online as described in refs. 19 and 25. Positive and negative
values of MV moved the cursor up and down, respectively.
Positive and negative values of MH moved it right and left,
respectively.

Throughout data collection, full topographical and spectral
analyses (19, 26) (e.g., Fig. 1B) showed that the users’ cursor
control was due to actual sensorimotor rhythm control rather
than to non-EEG artifacts.

The Adaptive Algorithm. Initially, the Eq. 1 weights were both
�1.0, and the Eq. 2 weights were �1.0 and �1.0. Thus, vertical
movement was initially controlled by the sum of RV and LV, and
horizontal movement was controlled by the difference between
RH and LH, as in an earlier study (24). From then on, after each
trial, the weights were automatically adapted on the basis of past
trials to optimize, for subsequent trials, the translation of the
user’s EEG control into cursor movement control. For this
adaptation, each of the eight possible target locations was first
expressed as one of the four possible vertical levels and one of
the four possible horizontal levels (Fig. 1 A). Then, the least-
mean-square (LMS) algorithm (27) was used to adjust the
weights to minimize for past trials the difference between the
actual target location and the target location predicted by Eqs.
1 and 2. (That is, the LMS algorithm determined the weights for
the linear functions that would have given the best results had
they actually been used for past trials.) Thus, to the extent that
the user’s past EEG control predicted future EEG control, this
adaptation optimized the online translation of EEG control into
cursor control. Furthermore, it took advantage of, and thereby
encouraged, improvements in the user’s EEG control. For
example, if the correlation with vertical target level increased for
LV and not for RV, the magnitude of wLV in Eq. 1 increased and
the magnitude of wRV decreased.

Fig. 1. The protocol and the EEG control it achieves. (A) Protocol. The screen
at Left shows the eight possible target locations. The other screens show the
sequence of events in one trial. 1, a target appears; 2, 1 s later the cursor
appears and moves in two dimensions controlled by the user’s EEG activity as
described in Methods; 3, the cursor reaches the target; 4, the target flashes for
1 s; 5, the screen is blank for 1 s and then the next trial begins. (Step 2 lasts up
to 10 s. If the cursor does not reach the target in this time, the trial jumps to
step 5.) (B) Topographical and spectral properties of user A’s EEG control. In
this user, vertical movement was controlled by a 24-Hz beta rhythm and
horizontal movement by a 12-Hz mu rhythm. (Top) Scalp topographies (nose
at top) of the correlations of the 24-Hz and 12-Hz rhythms with vertical and
horizontal target levels, respectively. The sites of the left- and right-side scalp
electrodes [locations C3 and C4 over sensorimotor cortex (21)] that controlled
the cursor are marked. Vertical correlation is greater on the left side, whereas
horizontal correlation is greater on the right side. The topographies are for R
rather than R2 to show the opposite (i.e., positive and negative, respectively)
correlations of right and left sides with horizontal target level. (Middle)
Voltage spectra (i.e., the weighted combinations of right-side and left-side
spectra) from which were derived the vertical and horizontal variables and
their corresponding R2 spectra. Voltage spectra are shown for the four vertical
target levels [targets 1 and 2 (solid), 3 and 8 (long dash), 4 and 7 (short dash),
and 5 and 6 (dotted)] and for the four horizontal target levels [targets 3 and
4 (solid), 2 and 5 (long dash), 1 and 6 (short dash), and 7 and 8 (dotted)],
respectively. For the R2 spectra, the arrows point to the frequency bands used
for the vertical and horizontal variables, respectively. (Bottom) Samples of EEG
activity from single trials. On the Left are traces from electrode C3 (i.e., the
major contributor to the vertical variable) for trials in which the target was at
the top (target 1 in Fig. 1A) or bottom (target 6) screen edge. On the Right are
traces from electrode C4 (the major contributor to the horizontal variable) for
trials in which the target was at the right (target 3) or left (target 8) edge. They
illustrate the sensorimotor rhythm control that enabled the user to move the
cursor to the target.
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Ancillary Studies. Additional sessions addressed two important
ancillary issues: (i) users’ ability to move the cursor to targets at
novel locations and (ii) whether users used covert muscle
contractions to control sensorimotor rhythms. To determine
how well users could move the cursor to novel locations, targets
were presented at 16 possible locations consisting of the original
8 (Fig. 1 A) and 8 more that were on the periphery between the
original 8 and did not overlap with them. Target location was
block-randomized (i.e., each occurred once in 16 trials). We
compared the average movement times to the original and novel
locations.

To confirm previous evidence (28) that BCI users do not use
limb muscle contractions to control sensorimotor rhythms, we
recorded electromyographic (EMG) activity from forearm
flexor and extensor muscle groups during a standard session.
These muscle groups were selected because they are strongly
represented in the areas of sensorimotor cortex over which EEG
control was focused (e.g., Fig. 1B). EMG activity was recorded
(amplification 5,000; filter 1–400 Hz) from two electrode pairs
(each pair oriented longitudinally with a 2-cm interelectrode
distance), one pair on the flexor and one pair on the extensor
surface of the forearm midway between wrist and elbow. From
these data, we calculated EMG activity (average amplitude of
rectified signal as a percent of value for maximum voluntary
contraction) during cursor movement for each direction of each
dimension of target location and also calculated the correlations
(measured as R2) between EMG activity and the vertical and
horizontal levels of target location.

Results
For each user, performance gradually improved over the training
sessions as he or she gradually gained better control over the
rhythm amplitudes that controlled the cursor and as the adaptive
algorithm gradually adjusted the weights so as to vest control of
cursor movement in those amplitudes that the user was best able
to control. As described in refs. 1, 18, and 24, users tended to
employ motor imagery to control the cursor, particularly early in
training. The data presented here are those of each user’s final
three sessions, comprising 742 trials for user A, 521 for user B,
528 for user C, and 717 for user D. From these data we assessed
both EEG control and the cursor movement control that it
provided. A video of this performance is Movie 1, which is
published as supporting information on the PNAS web site.

We assessed EEG control by spectral and topographical
analysis of the correlations (measured as R2) (18, 24, 29) between
target location and the average values for the trial of the vertical
and horizontal variables (Eqs. 1 and 2), respectively. For each
user, each variable correlated strongly with its own dimension of
target location and did not correlate with the other variable’s
dimension (Table 1). Thus, each user developed two indepen-
dent control signals: one for vertical movement and one for
horizontal movement.

To assess further the independence of the vertical and hori-
zontal variables, we evaluated the individual movements, which
occurred every 50 ms, to determine whether a vertical (or
horizontal) movement that was correct (i.e., toward the target)

affected the probability that the simultaneous horizontal (or
vertical) movement was also correct. For each user, the proba-
bility that a correct movement in one dimension was accompa-
nied by a correct movement in the other dimension was almost
identical to the probability predicted by simply multiplying the
fraction of all vertical movements that were correct by the
fraction of all horizontal movements that were correct (i.e.,
103%, 99%, 107%, and 104% of expected for users A–D,
respectively). Thus, vertical and horizontal control did not
appear to interfere with each other; users controlled movements
in both dimensions simultaneously.

Fig. 1B shows the topographical and spectral properties of user
A’s control. Vertical movement was controlled by 24-Hz beta
activity and horizontal movement by 12-Hz mu activity. At Top
are scalp topographies (nose at top) of the correlations of the
24-Hz and 12-Hz rhythms with vertical and horizontal target
levels, respectively. The sites of the left and right scalp electrodes
(C3 and C4 over sensorimotor cortex) (21) that controlled the
cursor are marked. [The topographies are for R rather than R2

to show the opposite (i.e., positive and negative, respectively)
correlations of right and left sides with horizontal target level.]
In Fig. 1B Middle, for the four vertical and the four horizontal
target levels, the voltage spectra are shown from which the
vertical and horizontal variables (Eqs. 1 and 2), respectively,
were derived with their corresponding R2 spectra. The arrows
point to the frequency bands used in these variables. The weights
in the variables show that vertical movement was determined
more by 24-Hz amplitude on the left, whereas horizontal move-
ment was determined mainly by 12-Hz amplitude on the right.
These weights are consistent with the relative magnitudes of the
correlations seen in the topographies. In Fig. 1B Bottom are
samples of EEG activity from electrodes that contributed to the
vertical and horizontal variables for trials in which the target was
at the top or bottom or at the right or left screen edge. They
illustrate the strong sensorimotor rhythm control that the user
employed to move the cursor to the target. Whereas mu and beta
rhythms each changed with both dimensions of target location
(e.g., Fig. 1B spectra and traces), the adaptive algorithm’s focus
on beta for vertical control and mu for horizontal control gave
independent vertical and horizontal variables.

The EEG control summarized in Table 1 and illustrated in Fig.
1B gave each user effective cursor movement control. Users A–D
reached the target within the 10 s allowed in 89%, 70%, 78%, and
92% of the trials, respectively, and their average movement times
for these trials were 1.9, 3.9, 3.3, and 1.9 s, respectively. [Fur-
thermore, the first of the eight possible target locations reached
by the cursor correlated with the actual target location (P �
0.001 for each user), indicating that cursor movement was not
random.] To evaluate the trajectories of cursor movement, we
determined for each user the cursor’s average path to each of the
eight target locations and the timing of its movement along this
path. Fig. 2 shows the results. User A moved most quickly along
an axis from location 2 to location 6. He reached the other six
locations by curved paths (convex upward) that took somewhat
longer. His paths to locations 4 and 7 are particularly interesting:
the cursor moved rapidly across the screen and then slowed as

Table 1. Correlations of the vertical and horizontal variables with their appropriate and
inappropriate dimensions of target location

Correlation

R2

User A User B User C User D

Vertical variable with vertical target level 0.44 0.31 0.40 0.54
Vertical variable with horizontal target level 0.00 0.00 0.01 0.01
Horizontal variable with horizontal target level 0.48 0.29 0.27 0.54
Horizontal variable with vertical target level 0.00 0.00 0.01 0.01
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it turned down to the target. He stated that he tried to go above
these targets and then drop down on them. User B, who was less
skilled, started in one of three directions (i.e., upper left, upper
right, or lower left) and then diverged to the individual targets.
User C showed more early precision than user B and less than
user A. User D diverged in eight different directions quite early
and then followed a straight or slightly curved path to each
location.

Users A, C, and D each completed eight additional sessions in
which targets appeared at 16 possible locations [8 original (Fig.
1A) and 8 novel]. In the first of these sessions, movement time
averaged 10% more for the novel locations than for the original
locations. For the next seven sessions, it averaged 5% more. For
none of the users was this slight difference significant (P � 0.05
for each user by F test).

In these same users, EMG activity was recorded from forearm
flexor and extensor muscle groups. Fig. 3 summarizes (A) and
illustrates (B) the data. EMG amplitude during cursor move-
ment for each direction of each dimension of target location was
low, usually averaging �10% of maximum voluntary contrac-
tion. Most important, for each muscle group of each user, the
correlations between EMG amplitude and the vertical and
horizontal levels of target location were extremely low (i.e., all
R2 values were �0.03). Thus, the users’ sensorimotor rhythm-
based cursor control did not depend on covert contractions of
muscle groups strongly represented in the areas of sensorimotor
cortex producing the rhythms.

Discussion
The results show that people can learn to use scalp-recorded
EEG rhythms to control rapid and accurate movement of a
cursor in two dimensions. Control develops gradually over
training sessions as the user gradually acquires better EEG
control and as the BCI system gradually focuses on those rhythm
amplitudes that the user is best able to control. Thus, the
two-dimensional movement control demonstrated in this study is
a skill that the user and the system gradually master together. As
cursor control improves, the motor imagery users employ early

in training tends to become less important and performance
becomes more automatic.

A user’s previous one-dimensional experience, which as noted
above was extensive for user A, limited for user B, absent for user
C, and in the distant past for user D, appeared to have little
impact on two-dimensional performance (Table 1 and Fig. 2).
On the other hand, users A and D, who had spinal cord injuries,
achieved substantially better performance than users B and C,
who were not disabled. If future studies show this to be a
consistent finding, it could reflect motivational differences
and�or sensorimotor cortex plasticity associated with spinal cord
injury (30).

Comparisons with Previous Noninvasive Control. The multidimen-
sional control achieved here is particularly striking when com-
pared with the weak phenomenon described in our first effort to
achieve such control (24). Fig. 4 compares the 1994 study (24)
and the present study in terms of their correlations (measured as
R2) between the vertical and horizontal variables and the vertical
and horizontal dimensions of target location. [The very brief
description of a second early study by Kostov and Pollock (31)
does not give sufficient information for inclusion in this com-
parison. It appears to describe a low level of control like that of
our 1994 study (24).] For each control variable (i.e., horizontal
or vertical), correlation with its dimension of target location is
several times higher for the present study than for our early
study. Furthermore, correlation with the other (i.e., the wrong)
dimension, which for the vertical variable was substantial in the
early study, is almost entirely absent in the present study.

Fig. 2. Cursor trajectories. Each user’s average cursor path to each target for
all trials in which the cursor reached the target within 2 s for user A, 5 s for user
B, 4 s for user C, and 2 s for user D (i.e., the fastest 53–75% of the user’s target
hits, so as to best reveal the movement path and timing). Each path is divided
by crosses into tenths of the time taken to reach the target, and the average
time is shown in the target. The circled numbers are the target locations as in
Fig. 1A. A video of user A’s real-time performance is shown in Movie 1.

Fig. 3. EMG activity during cursor control. (A) EMG amplitudes [in percent of
maximum voluntary contraction (MVC)] during cursor movement for each
direction (top or left, open bars; bottom or right, hatched bars) of each
dimension (vertical or horizontal) of target location and its corresponding R2

value (filled circle) for right and left forearm flexor (RF and LF) and extensor
(RE and LE) muscle groups of users A, B, and D. EMG amplitudes are low, and
(as the R2 values show) EMG is not correlated with target direction in either
dimension of target location. (B) Samples of right forearm extensor EMG
activity from user D. The top trace shows a MVC. The other traces are from
trials in which the target was at the top (Fig. 1A, target 1), bottom (target 6),
right (target 3), or left (target 8) screen edge. As they illustrate, EMG activity
during cursor control was very low and was not correlated with target
location.
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Correlation with the wrong dimension produces a bias in cursor
control: movement to targets near either of two opposite corners
(e.g., upper right and lower left) is easy, whereas movement to
targets near the other two corners is difficult or impossible.

The much stronger and more independent control shown here
is the product of two critical advances. The first comprises
changes in signal processing (e.g., autoregressive frequency
bands, multiple frequency bands, and spatial filtering) (18, 22,
25) that increase the correlation between the user’s intent (i.e.,
which way to move the cursor) and the EEG features (i.e.,
sensorimotor rhythm amplitudes) that convey that intent. The
second advance is the adaptive algorithm that focuses on those
features the user is best able to control and encourages further
improvement in control. The present study applies these ad-
vances to EEG-based multidimensional control. As Fig. 4 and
Table 1 show, and as Fig. 2 illustrates, they give vertical and
horizontal variables that are each strongly correlated with its
appropriate dimension and uncorrelated with the other dimen-
sion (thereby making all locations on the screen equally acces-
sible to the user). These advances transform EEG-based multi-
dimensional control from a weak phenomenon of little practical
value into a strong control technology with practical implications
for people with severe motor disabilities. The present study’s
confirmation of previous data (28) indicating that EEG-based
control does not depend on muscle contractions further supports
the potential value for people who are paralyzed.

Comparison with Invasive Studies. Whereas this study uses a
noninvasive method for recording brain signals, other current
efforts to develop BCI control of multidimensional movement
use invasive methods in which electrodes implanted in the brain
record action potentials of single cortical neurons (5–9) or local
field potentials (10, 11). All of these invasive multidimensional
studies have to date been confined to nonhuman primates, and
most have been limited to observation (i.e., to showing that the
activity recorded by these electrodes during or immediately
before a normal muscle-controlled limb movement can provide

a good picture of that movement). Actual BCI operation, in
which the monkey uses its brain signals (rather than its limb
muscles) to control multidimensional movement, has been de-
scribed in studies from three laboratories, those of Donoghue
[Serruya et al. (6)], Schwartz [Taylor et al. (7)], and Nicolelis
[Carmena et al. (9)]. Although the protocols and objectives of
these three invasive studies differ in some respects from each
other and from the present noninvasive study, all four share the
goal of controlling multidimensional point-to-point movement
and, thus, they can be compared in terms of their success in
achieving this goal.

Performance on a point-to-point movement task can be
summarized in three measures: movement time (i.e., the lower
the better); movement precision (i.e., target size as percentage
of workspace; the smaller the better); and hit rate (percent of
targets reached in the time allotted; the higher the better). Table
2 presents these measures for the three invasive studies and the
present noninvasive study. The values given are those of each
study’s best user (whether monkey or human).

Movement times are similar across the studies (and are 2–3
times what would be expected for hand-operated joystick cursor
control). Hit rates are also similar. Target size varies more, with
the smallest targets those of Taylor et al. (7) and Serruya et al.
(6), the largest target that of Carmena et al. (9), and the target
of the present noninvasive study falling in between. This quan-
titative comparison indicates that the noninvasive BCI described
here supports point-to-point movement control that falls in the
range reported for invasive BCIs that use electrodes implanted
in the cortex. Furthermore, the finding that movements to novel
target locations entailed only a slight, statistically insignificant
increase in movement time shows that the users’ control is not
limited to movements that have been practiced but rather can be
readily applied to reach new target locations. Although the
present study does not assess other aspects of movement control
(e.g., moving the cursor to a location and then holding it in
place), a recent study of one-dimensional control indicates that
such aspects are within the capacities of a noninvasive BCI (32).
Together with these results, the impressive noninvasive multi-
dimensional control achieved in the present study suggests that
a noninvasive BCI could support clinically useful operation of a
robotic arm, a motorized wheelchair, or a neuroprosthesis.

Potential Improvements. Movement control by this noninvasive
BCI could be further improved in speed and accuracy (and

Fig. 4. Comparison with previous noninvasive control. Average (�SE) cor-
relations (measured as R2) between the vertical and horizontal variables and
the vertical and horizontal dimensions of target location for our initial (1994)
study of multidimensional EEG control (24) and for the present study. Gray
bars, correlations with the appropriate dimension of target location; black
bars, correlations with the inappropriate dimension. The present study
achieves much higher correlations with the appropriate dimension and avoids
correlations with the inappropriate dimension. The R2 values of the 1994 study
(24) are from its table 1 (i.e., average R2 for the appropriate dimension for the
four users who achieved two-dimensional control) and its figure 3 (i.e.,
average R2 for the inappropriate dimension. The R2 values for the present
study are averages from Table 1.

Table 2. Comparison of point-to-point movement control
achieved in invasive BCI studies in monkeys and in the present
noninvasive BCI study in humans

Study
Movement

time, s

Movement precision,
target size as % of

workspace
Hit rate,

%

Serruya et al. (6) 1.5 2.3 ?
Taylor et al. (7) 1.5 1.3 86
Carmena et al. (9) 2.2 7.7 89
Present study 1.9 4.9 92

The values of each study’s best user (monkey or human) are shown. Move-
ment precisions are calculated from the dimensions of the targets, the cursors,
and the workspaces. The values for Serruya et al. (6) (except for hit rate, which
is not stated in the paper) are taken from that paper’s text and its figure 1, a
and d. The values for Taylor et al. (7) are derived from that paper’s text and its
table 2 (Monkey M, 2.0-cm targets). For Carmena et al. (9), movement time and
hit rate are derived from sessions 19–21 of Monkey 2 as displayed in that
study’s figure 1C and the target, cursor, and workspace dimensions needed to
calculate movement precision, which are not stated in the paper, are derived
from its figure 1B (Task 1). The resulting value for target size was confirmed
by the magnitude of movement evident in individual trials in the paper’s
figure 6G during the g phase (in which the cursor must remain in the target).
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extended to three dimensions) in several ways: by expanding the
adaptive algorithm to include additional EEG recording loca-
tions, additional frequency bands, and�or time-domain EEG
features; by refining the user training protocol; and by improving
the translation of EEG features into cursor movements (18).
Furthermore, recent studies (33, 34) suggest that the EEG-based
BCI methods described here could be even more effective if they
were applied to activity recorded from the cortical surface [i.e.,
electrocorticographic (ECoG) activity], which has greater spa-
tial resolution and frequency range than scalp EEG activity and
does not require that electrodes be implanted within the brain.
The present methods applied to ECoG activity could constitute
a minimally invasive BCI technology that might ultimately yield
the best results: excellent movement control without the level of
technical difficulty and clinical risk associated with inserting
electrodes into the brain.

Conclusions. This study extends the possible applications of
noninvasive BCI technology to include real-time multidimen-

sional movement control. The results suggest that it may not
be necessary to implant electrodes in the brain to achieve
multidimensional control, and they thereby increase the prob-
ability that BCIs will eventually become an important com-
munication and control option for people with severe motor
disabilities.
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