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Classifying EEG and ECoG Signals without Subject Training for Fast BCI

Implementation: Comparison of Non-Paralysed and Completely Paralysed Subjects.

N. Jeremy Hill,1 Thomas Navin Lal,1 Michael Schröder,2 Thilo Hinterberger,3 Barbara Wilhelm,3
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Abstract— We summarize results from a series of related stud-
ies that aim to develop a motor-imagery-based brain-computer
interface using a single recording session of EEG or ECoG signals
for each subject. We apply the same experimental and analytical
methods to 11 non-paralysed subjects (8 EEG, 3 ECoG), and to
5 paralysed subjects (4 EEG, 1 ECoG) who had been unable
to communicate for some time. While it was relatively easy to
obtain classifiable signals quickly from most of the non-paralysed
subjects, it proved impossible to classify the signals obtained from
the paralysed patients by the same methods. This highlightsthe
fact that though certain BCI paradigms may work well with
healthy subjects, this does not necessarily indicate success with
the target user group. We outline possible reasons for this failure
to transfer.

I. I NTRODUCTION

W E report the results from experiments in which
auto-regressive (AR) models, Support Vector Ma-

chine (SVM) classification and Recursive Channel Elimina-
tion (RCE) were applied to electroencephalogram (EEG) or
electrocorticogram (ECoG) signals in order to implement a
Brain-Computer Interface (BCI) with two intentional control
states. We conducted four separate motor-imagery studies in
which similar task settings and analysis were employed. The
end goal is to provide a completely paralysed patient with a
means to express a binary decision as reliably as possible,
however slowly and regardless of the amount of supervision
required.

II. SUBJECTS

In the studies reported below there were 8 healthy male
subjects in their 20s (A–H), 4 patients (I, J, K and L) who had
been unable to communicate for some time due to apparent
total loss of voluntary motor control, 3 epileptic subjects(M,
N and O) with short-term ECoG implants, and one further
completely paralysed patient (P) with a long-term ECoG
implant. Before becoming paralysed, all the patients had been
able to speak German, the language in which the experiments
were conducted. The pathology of subjects I, J, K, L and P is
briefly described below:
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Patient I

The patient was a 63-year-old man who had been diagnosed
with Amyotrophic Lateral Sclerosis (ALS) 14 years before
and had been on artificial ventilation for 12 years. No com-
munication had been possible for 4 years. The patient showed
some signs of being able to follow a verbal command to move
the eyes left and right—however, this ability did not persist
beyond the first few attempts and we can present no statistical
evidence of it.

Patient J

The patient was a 61-year-old man who had had a stroke
10 months before, affecting the motor cortex of the left
hemisphere. He was not artificially ventilated, and appeared
to fixate faces or objects in the room in a relatively normal
manner. However he did not appear to be able to direct eye
movements on command or in response to a stimulus, and little
or no communication had been possible since the stroke—the
only possible signal seemed to be the ability to clench his jaws
on command, and (as reported by the patient’s wife) to tighten
his lips when he did not want to drink. There were occasional
twitches of the hand and tremors of the leg, which seemed to
be outside the patient’s voluntary control.

Patient K

The patient was a 55-year-old man who had suffered a heart
attack and postanoxic coma 11 years before and had been
on artificial ventilation since then. No communication had
been possible since the attack. Blinking and eye movements
occurred at close-to-normal frequency, as well as apparently
involuntary contractions of the facial muscles, and occasional
spasms of pathological laughter. There was no other move-
ment. He showed signs of being able to follow an object with
his right eye, and to move the right eye up, down or to the
right according to a verbal command, although this ability
was not sustained for more than a few consecutive attempts.
According to the patient’s wife, even though this behaviour
was sometimes possible, he had never been able to associate
voluntary eye movement with an “if... then...” contingencyto
produce a consistent answer to a yes/no question. This raises
the possibility that the patient may have general cognitive
deficits resulting from his condition.

Patient L

The patient was a 42-year-old woman who had been diag-
nosed with chronic Guillan-Barré syndrome 13 years before,
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and had been on artificial ventilation for 12 years. No com-
munication had been possible for 3 years, and she showed no
signs of voluntary muscle control.

Patient P

The patient was a 46-year-old woman who had been di-
agnosed with ALS 5 years before, and had been artificially
ventilated for 3 years. There had been no evidence of voluntary
muscle control for 1 year. However, limited communication
had been possible via gustatory sensory imagery, which pro-
duced reliable changes in salivary pH [1]. With repeated trials
of this kind she had been able to answer questions correctly,
and to give informed consent to a surgical procedure in which,
some weeks prior to the study, she had been implanted with an
8-by-8 array of platinum ECoG electrodes with 10 mm inter-
electrode spacing, beneath the dura in the left cerebral hemi-
sphere and covering a large area of prefrontal cortex, most of
the primary motor strip, and some of the somatosensory strip.
Since the procedure, communication had not been possible
even by the mouth-pH method.

III. M ETHODS

A. Experimental Procedure

Subjects performed up to 400 trials, typically in a single
session (see table), with a few minutes’ break after every
50 (for the non-paralysed subjects) or 20 (for the paralysed
subjects). Trials were typically 6 seconds long with a short
break (randomized between 3 to 5 seconds) between each. The
subject was asked, on each trial, to imagine moving one of two
body parts. Our task was to reconstruct what the instruction
was on each trial, from motor-imagery-related brain signals.
We conducted four separate studies as follows:

i EEG recordings from 8 healthy subjects. A visual cue (an
arrow to the left or to the right) indicated whether left or
right hand motor imagery was to be performed on each
trial. An interval of 5 seconds was used for classification,
starting 500 msec after cue offset. The setup is described
in more detail in [2].

ii EEG recordings from 1 healthy subject and 4 paralysed
subjects (see above for pathology of subjects I–L). Since
at least three of the patients could not focus or reliably
direct their gaze, an auditory cue (a recorded voice saying
“left hand” or “right hand”) indicated the motor imagery
required on each trial. An interval of 3 seconds was used
for classification, starting 500 msec after cue offset (for
patients I and J, a slower time-scale was also tested:
7 seconds, beginning 2.5 seconds after cue offset—the
results were not substantially different, however).

iii ECoG recordings from 3 epileptic patients with short-
term implanted electrode arrays at the Department of
Epileptology, University of Bonn. The motor imagery
required on each trial was indicated by a visual cue: an
arrow for left/right hand, or a picture of a little finger
vs. a picture of Einstein sticking out his tongue for the
finger/tongue task (the motor imagery task chosen for
each patient depended on the exact placement of their
electrodes). An interval of 1.5 seconds was used for

classification, starting 500 msec after cue offset. The
method and results are described in more detail in [3].

iv ECoG recordings from one completely paralysed ALS
patient (subject P) with a long-term implanted electrode
array. The motor imagery required on each trial was
indicated by a recorded voice saying the German word
for “finger” or “tongue”. An interval of 3 seconds was
used for classification, starting 500 msec after cue offset.

B. Analysis (EEG)

The critical task-related modulations were expected to man-
ifest themselves in the amplitude spectra of the signals, as
event-related desynchronization (ERD) leads to a decreasein
the amplitude of sensorimotor rhythms (SMR) in cortical areas
that represent the respective body parts.

The general approach is similar to that described in [2], [3]
and [4]. Signals were processed on a per-trial basis and
classified into two classes—with already completely paralysed
patients, speed of communication is a far lower priority than
obtaining a means to express reliable binary decisions at all, so
we do not aim to implement continuous or multi-class modes
of operation. EEG signals (originally sampled at 200 or 256 Hz
depending on the equipment used) were lowpass-filtered by
a zero-phase-distortion method, with a smooth fall-off from
45 to 50 Hz (the electricity supply is at 50 Hz) and then
downsampled at 100 Hz. Each trial was then linearly detrended
and then, in a departure from [2], spatial filters were then
computed and applied in order to perform blind separation
of the EEG sources. The separating matrix was obtained by
Independent Components Analysis (ICA) on a random subset
of the signal samples from all trials concatenated together
(for 400 trials, a 10% subset was found to be sufficient).
Spatial filtering is commonly used for ERD classification (the
most popular techniques being ICA and the Common Spatial
Pattern algorithm) since it leads to significant improvements
in performance on EEG data [5]. The algorithm used here was
the EEGLAB implementation of Infomax ICA [6].

Each Independent Component was then represented by find-
ing the least-square-error coefficients of a forward-backward
autoregressive model of order 4. A linear Support Vector Ma-
chine was then trained on the coefficients, with optimization
of the regularization parameter by 10-fold cross-validation.
The sets of 4 coefficients that corresponded to each indepen-
dent component were then recursively eliminated using the
method first described in [2] and the final number of selected
components was determined based on the lowest number of
electrodes for which classification error, estimated by 10-fold
cross-validation, was within a 95% confidence interval of the
minimum, as described in [4].

Offline performance estimates were computed by 2 repeats
(with different random seeds) of 10-fold cross-validation. Two-
tier cross-validation was used wherever necessary: i.e. toavoid
overfitting, trials of each outer test fold were excluded from the
inner cross-validation procedures used for model selection—
this is a standard rule of good practice in machine-learning, as
laid out in the context of BCI in [7] and also described in detail
in [2]. Test trials were also excluded from the computation of
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spatial filters, even though class label information is not used
by the ICA.

C. Analysis (ECoG)

Analysis of the ECoG signals, which were sampled at
1 kHz, was identical to the EEG analysis, with the following
exceptions (the analysis is described in more detail in [3]):

• The signals were not downsampled.
• The signals were not temporally filtered for subjects M–

O, who were measured in a well-shielded environment.
Subject P was tested at home, and the signal was subject
to pollution by mains electricity artefacts at 50 and
150 Hz. FIR notch filters were used to remove these.

• ICA was not employed—the ECoG signals were used
without spatial filtering.

• An AR model of order 3 was found to be best for the
data.

We do not attempt an in-depth comparison of performance in
EEG vs. ECoG in the current paper—however, see [5].

IV. RESULTS

Table I reports the results of the four motor-imagery studies.
With the exception of D(b), all the entries in the table report
the first time that the respective subjects had performed a
motor-imagery experiment.

The “SMR” column gives a rough indication of the strength
of the subject’s sensorimotor rhythm: an amplitude spectrum
was computed for each trial and each Independent Component
or electrode. The spectra were then averaged across trials,then
expressed in log units (dB). For EEG, the final SMR value is
the largest peak-to-trough difference in the 7–30 Hz range,
among Independent Components judged to be focused close
to C3 or C4. For ECoG, the SMR value is simply the largest
such peak-to-trough value on the grid.

The “performance” column gives an estimate of the percent-
age of single trials that could be correctly classified offline,
plus or minus one standard error. Chance performance is 50%
correct. Better-than-chance performance is marked in bold.

For 6 out of 8 of the healthy subjects in EEG experiments,
classification based on the first recording session is possible
at up to 97% accuracy, (average 79% across those 6, or
72% across all 8). For the non-paralysed subjects in ECoG,
classification was also possible at around 75% accuracy despite
the smaller number of trials. However, for the five completely
paralysed patients, irrespective of the amount of background
SMR energy and of the number of trials we were able to
record, classification was not possible.

V. D ISCUSSION

The results of our motor-imagery studies indicate that it is
possible to achieve accurate single-trial classification of EEG
and ECoG signals from unpracticed subjects, using automatic
classification and feature selection techniques. However,we
have only been able to show this for subjects who can actually
move their muscles. It is, of course, impossible to prove any-
thing by failing to observe a phenomenon. Given the complete

inability of the paralysed subjects to communicate at the time
of the study, we cannot yet, without extensive additional work,
distinguish between a large number of hypotheses at a number
of different levels, any of which might explain their inability
to yield signals that are classifiable in the same way as those
of the non-paralysed subjects. These include:

1) inability to modulate SMR by imagined movement, as a
direct neurophysiological consequence of the paralysing
motor system pathology;

2) inability to modulate SMR by imagined movement, due
to long disuse of the required premotor-motor pathways;

3) difficulty in performing the cognitive task of imagining
movement, due to long periods of immobility;

4) general cognitive deficits, resulting in an inability to
understand and follow the task instructions;

5) temporary distractedness, lack of alertness, or non-
conducive emotional state at the particular time of the
experimental session;

6) unwillingness to cooperate in the experiment.

“Cognitive deficits” might be expected in some cases as
a direct consequence of the original cause of paralysis (for
example, extensive lesions due to stroke, or the global effects
of anoxia). However, according to one line of reasoning,
difficulties may also arise at this level simply from prolonged
existence in a paralysed state. A series of studies on rats
paralysed with curare (see [8]) shows that operant conditioning
becomes impossible when an animal has been unable to affect
its environment for an extended period of time. This leads
to the hypothesis that a long period without environmental
reinforcement of one’s intentions leads to the extinction of
the ability to generate intentional states voluntarily—extending
this idea to the domain of human cognition, we might call
it the extinction of intentional thought. Since falsification of
this hypothesis has not been possible thus far, either in the
current study or elsewhere, it remains as a challenge to the
BCI community. If the hypothesis is correct, it reinforces the
idea that BCI training should begin before complete loss of
muscle control, or as soon as possible afterwards.

It was our intention to take a design that is known to
work well with non-paralysed subjects and transfer it to
paralysed subjects for direct comparison. However, though
a trial-based motor-imagery paradigm without feedback or
extensive training is sufficient to achieve good results from
normals, it is clear that there are many aspects of such a design
that may be unsuitable for paralysed subjects:

• motor imagery may not be the best neurological phe-
nomenon to choose, because of points (1), (2) and
(3) above—it may be better to use an exogenous BCI
paradigm, or to look for alternative features that appear
to cluster over time into two or more states in the patient’s
endogenous EEG/ECoG;

• the patient may require feedback—with training, this may
help overcome problems (2), (3) and perhaps also (4);

• patients may be unable to keep up with a rapid, reg-
imented trial-based design—a much slower pace, or a
slow asynchronous BCI design, may be necessary;

• multiple sessions, conducted at different times of day, are
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study subject paralysed task signal channels trials sessions SMR (dB) performance notes

i A no L/R hand EEG 39 400 1 14.2 65.5± 1.6 1

B no L/R hand EEG 39 400 1 6.0 80.9± 1.0 1

C no L/R hand EEG 39 400 1 10.1 93.4± 0.8 1

D(a) no L/R hand EEG 39 400 1 14.4 96.9± 0.7 1,2

E no L/R hand EEG 39 400 1 3.2 75.4± 1.7 1

F no L/R hand EEG 39 400 1 6.1 50.4± 1.1 1

G no L/R hand EEG 39 400 1 6.2 53.4± 1.6 1

H no L/R hand EEG 39 400 1 7.2 61.6± 1.9 1

ii D(b) no L/R hand EEG 64 160 1 11.9 84.7± 2.1 2

I yes L/R hand EEG 64 448 2 7.8 50.9± 2.0

J yes L/R hand EEG 64 120 1 8.9 46.7± 3.1

K yes L/R hand EEG 64 240 1 4.4 49.1± 1.9

L yes L/R hand EEG 64 200 1 3.3 45.5± 2.0

iii M no L/R hand ECoG 74 200 1 14.2 75.7± 0.4 3

N no finger/tongue ECoG 64 150 1 9.9 73.2± 0.7 3

O no finger/tongue ECoG 84 100 1 6.9 76.7± 1.3 3

iv P yes finger/tongue ECoG 64 775 8 10.6 51.2± 1.1

Notes:
1 The experiments from subjects A-H were reported by [2]. Quantitative data from F–H were not previously reported since they were unclassifiable.

Performance rates reported here are the result of re-analysis of the same data. The use of Independent Components Analysis explains the 5–10%
improvement relative to the figures previously published for A–E, and the above-chance performance on previously unclassifiable subject H.

2 Subject D performed two experiments—hence entries for D(a) and D(b). The second occasion was to test the new hardware and software that was to
be used with the four paralysed patients I, J, K and L.

3 Results for subjects M, N and O are taken directly with permission from [3]—q.v. for more details.

TABLE I: SUMMARY OF RESULTS

desirable to maximize the chances of avoiding problem
(5), and may be necessary in order to allow enough
time for feedback training to be effective, and to collect
enough data in a slower-paced experiment.

It is known that motor-imagery training can be successful
in patients if started sufficiently earlybefore complete loss of
muscle control: Kübler et al. [9] have recently shown that 20
sessions of SMR-modulation training can allow even patients
with advanced ALS to exceed the∼70% level of performance
that has been suggested [10] to be the minimum requirement
for use in a language support program such as that described
by [11]. Thus, there is the potential for such an approach to
help the totally paralysed, although as yet there have been
no published results to show whether a patient who begins
training while able to move can retain the ability to modulate
SMR once movement control is lost.

The current study, however, compares subjects from the two
extreme ends of the spectrum of disability: subjects without
any paralysing symptoms against patients who were already
unable to communicate when the study started. There has been
no report of a patient of the latter type learning to modulate
SMR, but we cannot rule out the potential that further work
with these five paralysed patients might succeed in training
them to do so, or to communicate using some other kind of
Brain-Computer Interface.
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