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Abstract

For many years people have speculated that electroencephalographic activity or other electrophysiological measures of brain function

might provide a new non-muscular channel for sending messages and commands to the external world – a brain–computer interface (BCI).

Over the past 15 years, productive BCI research programs have arisen. Encouraged by new understanding of brain function, by the advent of

powerful low-cost computer equipment, and by growing recognition of the needs and potentials of people with disabilities, these programs

concentrate on developing new augmentative communication and control technology for those with severe neuromuscular disorders, such as

amyotrophic lateral sclerosis, brainstem stroke, and spinal cord injury. The immediate goal is to provide these users, who may be completely

paralyzed, or ‘locked in’, with basic communication capabilities so that they can express their wishes to caregivers or even operate word

processing programs or neuroprostheses. Present-day BCIs determine the intent of the user from a variety of different electrophysiological

signals. These signals include slow cortical potentials, P300 potentials, and mu or beta rhythms recorded from the scalp, and cortical neuronal

activity recorded by implanted electrodes. They are translated in real-time into commands that operate a computer display or other device.

Successful operation requires that the user encode commands in these signals and that the BCI derive the commands from the signals. Thus,

the user and the BCI system need to adapt to each other both initially and continually so as to ensure stable performance. Current BCIs have

maximum information transfer rates up to 10–25 bits/min. This limited capacity can be valuable for people whose severe disabilities prevent

them from using conventional augmentative communication methods. At the same time, many possible applications of BCI technology, such

as neuroprosthesis control, may require higher information transfer rates. Future progress will depend on: recognition that BCI research and

development is an interdisciplinary problem, involving neurobiology, psychology, engineering, mathematics, and computer science; identi-

fication of those signals, whether evoked potentials, spontaneous rhythms, or neuronal firing rates, that users are best able to control

independent of activity in conventional motor output pathways; development of training methods for helping users to gain and maintain

that control; delineation of the best algorithms for translating these signals into device commands; attention to the identification and

elimination of artifacts such as electromyographic and electro-oculographic activity; adoption of precise and objective procedures for

evaluating BCI performance; recognition of the need for long-term as well as short-term assessment of BCI performance; identification

of appropriate BCI applications and appropriate matching of applications and users; and attention to factors that affect user acceptance of

augmentative technology, including ease of use, cosmesis, and provision of those communication and control capacities that are most

important to the user. Development of BCI technology will also benefit from greater emphasis on peer-reviewed research publications and

avoidance of the hyperbolic and often misleading media attention that tends to generate unrealistic expectations in the public and skepticism

in other researchers. With adequate recognition and effective engagement of all these issues, BCI systems could eventually provide an

important new communication and control option for those with motor disabilities and might also give those without disabilities a supple-

mentary control channel or a control channel useful in special circumstances. q 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

1.1. Options for restoring function to those with motor

disabilities

Many different disorders can disrupt the neuromuscular

channels through which the brain communicates with and

controls its external environment. Amyotrophic lateral

sclerosis (ALS), brainstem stroke, brain or spinal cord

injury, cerebral palsy, muscular dystrophies, multiple

sclerosis, and numerous other diseases impair the neural

pathways that control muscles or impair the muscles them-

selves. They affect nearly two million people in the United

States alone, and far more around the world (Ficke, 1991;

NABMRR, 1992; Murray and Lopez, 1996; Carter, 1997).

Those most severely affected may lose all voluntary muscle

control, including eye movements and respiration, and may

be completely locked in to their bodies, unable to commu-

nicate in any way. Modern life-support technology can

allow most individuals, even those who are locked-in, to

live long lives, so that the personal, social, and economic

burdens of their disabilities are prolonged and severe.

In the absence of methods for repairing the damage done

by these disorders, there are 3 options for restoring function.

The first is to increase the capabilities of remaining pathways.

Muscles that remain under voluntary control can substitute

for paralyzed muscles. People largely paralyzed by massive

brainstem lesions can often use eye movements to answer

questions, give simple commands, or even operate a word

processing program; and severely dysarthric patients can use

hand movements to produce synthetic speech (e.g. Damper et

al., 1987; LaCourse and Hladik, 1990; Chen et al., 1999;

Kubota et al., 2000). The second option is to restore function

by detouring around breaks in the neural pathways that

control muscles. In patients with spinal cord injury, electro-

myographic (EMG) activity from muscles above the level of

the lesion can control direct electrical stimulation of paral-

yzed muscles, and thereby restore useful movement (Hoffer

et al., 1996; Kilgore et al., 1997; Ferguson et al., 1999).

The final option for restoring function to those with motor

impairments is to provide the brain with a new, non-muscular

communication and control channel, a direct brain–computer

interface (BCI) for conveying messages and commands to

the external world. A variety of methods for monitoring brain

activity might serve as a BCI. These include, besides electro-

encephalography (EEG) and more invasive electrophysiolo-

gical methods, magnetoencephalography (MEG), positron

emission tomography (PET), functional magnetic resonance

imaging (fMRI), and optical imaging. However, MEG, PET,

fMRI, and optical imaging are still technically demanding

and expensive. Furthermore, PET, fMRI, and optical

imaging, which depend on blood flow, have long time

constants and thus are less amenable to rapid communica-

tion. At present, only EEG and related methods, which have

relatively short time constants, can function in most environ-

ments, and require relatively simple and inexpensive equip-

ment, offer the possibility of a new non-muscular

communication and control channel, a practical BCI.

1.2. The fourth application of the EEG

In the 7 decades since Hans Berger’s original paper

(Berger, 1929), the EEG has been used mainly to evaluate

neurological disorders in the clinic and to investigate brain

function in the laboratory; and a few studies have explored

its therapeutic possibilities (e.g. Travis et al., 1975; Kuhl-

man, 1978; Elbert et al., 1980; Rockstroh et al., 1989; Rice

et al., 1993; Sterman, 2000). Over this time, people have

also speculated that the EEG could have a fourth applica-

tion, that it could be used to decipher thoughts, or intent, so

that a person could communicate with others or control

devices directly by means of brain activity, without using

the normal channels of peripheral nerves and muscles. This

idea has appeared often in popular fiction and fantasy (such

as the movie ‘Firefox’ in which an airplane is controlled in

part by the pilot’s EEG (Thomas, 1977)). However, EEG-

based communication attracted little serious scientific atten-

tion until recently, for at least 3 reasons.

First, while the EEG reflects brain activity, so that a

person’s intent could in theory be detected in it, the resolu-

tion and reliability of the information detectable in the spon-

taneous EEG is limited by the vast number of electrically

active neuronal elements, the complex electrical and spatial

geometry of the brain and head, and the disconcerting trial-

to-trial variability of brain function. The possibility of

recognizing a single message or command amidst this

complexity, distortion, and variability appeared to be extre-

mely remote. Second, EEG-based communication requires

the capacity to analyze the EEG in real-time, and until

recently the requisite technology either did not exist or

was extremely expensive. Third, there was in the past little

interest in the limited communication capacity that a first-

generation EEG-based BCI was likely to offer.

Recent scientific, technological, and societal events have

changed this situation. First, basic and clinical research has

yielded detailed knowledge of the signals that comprise the

EEG. For the major EEG rhythms and for a variety of

evoked potentials, their sites and mechanisms of origin

and their relationships with specific aspects of brain func-

tion, are no longer wholly obscure. Numerous studies have

demonstrated correlations between EEG signals and actual

or imagined movements and between EEG signals and

mental tasks (e.g. Keirn and Aunon, 1990; Lang et al.,

1996; Pfurtscheller et al., 1997; Anderson et al., 1998;

Altenmüller and Gerloff, 1999; McFarland et al., 2000a).

Thus, researchers are in a much better position to consider

which EEG signals might be used for communication and

control, and how they might best be used. Second, the extre-

mely rapid and continuing development of inexpensive

computer hardware and software supports sophisticated

online analyses of multichannel EEG. This digital revolu-

tion has also led to appreciation of the fact that simple
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communication capacities (e.g. ‘Yes’ or ‘No’, ‘On’ or ‘Off’)

can be configured to serve complex functions (e.g. word

processing, prosthesis control). Third, greatly increased

societal recognition of the needs and potential of people

with severe neuromuscular disorders like spinal cord injury

or cerebral palsy has generated clinical, scientific, and

commercial interest in better augmentative communication

and control technology. Development of such technology is

both the impetus and the justification for current BCI

research. BCI technology might serve people who cannot

use conventional augmentative technologies; and these

people could find even the limited capacities of first-genera-

tion BCI systems valuable.

In addition, advances in the development and use of elec-

trophysiological recording methods employing epidural,

subdural, or intracortical electrodes offer further options.

Epidural and subdural electrodes can provide EEG with

high topographical resolution, and intracortical electrodes

can follow the activity of individual neurons (Schmidt,

1980; Ikeda and Shibbasaki, 1992; Heetderks and Schmidt,

1995; Levine et al., 1999, 2000; Wolpaw et al., 2000a).

Furthermore, recent studies show that the firing rates of an

appropriate selection of cortical neurons can give a detailed

picture of concurrent voluntary movement (e.g. Georgopou-

los et al., 1986; Schwartz, 1993; Chapin et al., 1999; Wess-

berg et al., 2000). Because these methods are invasive, the

threshold for their clinical use would presumably be higher

than for methods based on scalp-recorded EEG activity, and

they would probably be used mainly by those with extremely

severe disabilities. At the same time, they might support

more rapid and precise communication and control than the

scalp-recorded EEG.

1.3. The present review

This review summarizes the current state of BCI research

with emphasis on its application to the needs of those with

severe neuromuscular disabilities. In order to address all

current BCI research, it includes approaches that use stan-

dard scalp-recorded EEG as well as those that use epidural,

subdural, or intracortical recording. While all these present-

day BCIs use electrophysiological methods, the basic prin-

ciples of BCI design and operation discussed here should

apply also to BCIs that use other methods to monitor brain

activity (e.g. MEG, fMRI). The next sections describe the

essential elements of any BCI and the several categories of

electrophysiological BCIs, review current research, consider

prospects for the future, and discuss the issues most impor-

tant for further BCI development and application.

2. Definition and features of a BCI

2.1. Dependent and independent BCIs

A BCI is a communication system in which messages or

commands that an individual sends to the external world do

not pass through the brain’s normal output pathways of

peripheral nerves and muscles. For example, in an EEG-

based BCI the messages are encoded in EEG activity. A

BCI provides its user with an alternative method for acting

on the world. BCIs fall into two classes: dependent and

independent.

A dependent BCI does not use the brain’s normal output

pathways to carry the message, but activity in these path-

ways is needed to generate the brain activity (e.g. EEG) that

does carry it. For example, one dependent BCI presents the

user with a matrix of letters that flash one at a time, and the

user selects a specific letter by looking directly at it so that

the visual evoked potential (VEP) recorded from the scalp

over visual cortex when that letter flashes is much larger that

the VEPs produced when other letters flash (Sutter, 1992).

In this case, the brain’s output channel is EEG, but the

generation of the EEG signal depends on gaze direction,

and therefore on extraocular muscles and the cranial nerves

that activate them. A dependent BCI is essentially an alter-

native method for detecting messages carried in the brain’s

normal output pathways: in the present example, gaze direc-

tion is detected by monitoring EEG rather than by monitor-

ing eye position directly. While a dependent BCI does not

give the brain a new communication channel that is inde-

pendent of conventional channels, it can still be useful (e.g.

Sutter and Tran, 1992).

In contrast, an independent BCI does not depend in any

way on the brain’s normal output pathways. The message is

not carried by peripheral nerves and muscles, and, further-

more, activity in these pathways is not needed to generate

the brain activity (e.g. EEG) that does carry the message.

For example, one independent BCI presents the user with a

matrix of letters that flash one at a time, and the user selects

a specific letter by producing a P300 evoked potential when

that letter flashes (Farwell and Donchin, 1988; Donchin et

al., 2000). In this case, the brain’s output channel is EEG,

and the generation of the EEG signal depends mainly on the

user’s intent, not on the precise orientation of the eyes

(Sutton et al., 1965; Donchin, 1981; Fabiani et al., 1987;

Polich, 1999). The normal output pathways of peripheral

nerves and muscles do not have an essential role in the

operation of an independent BCI. Because independent

BCIs provide the brain with wholly new output pathways,

they are of greater theoretical interest than dependent BCIs.

Furthermore, for people with the most severe neuromuscu-

lar disabilities, who may lack all normal output channels

(including extraocular muscle control), independent BCIs

are likely to be more useful.

2.2. BCI use is a skill

Most popular and many scientific speculations about

BCIs start from the ‘mind-reading’ or ‘wire-tapping’

analogy, the assumption that the goal is simply to listen in

on brain activity as reflected in electrophysiological signals

and thereby determine a person’s wishes. This analogy
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ignores the essential and central fact of BCI development

and operation. A BCI changes electrophysiological signals

from mere reflections of central nervous system (CNS)

activity into the intended products of that activity: messages

and commands that act on the world. It changes a signal

such as an EEG rhythm or a neuronal firing rate from a

reflection of brain function into the end product of that

function: an output that, like output in conventional neuro-

muscular channels, accomplishes the person’s intent. A BCI

replaces nerves and muscles and the movements they

produce with electrophysiological signals and the hardware

and software that translate those signals into actions.

The brain’s normal neuromuscular output channels

depend for their successful operation on feedback. Both

standard outputs such as speaking or walking and more

specialized outputs such as singing or dancing require for

their initial acquisition and subsequent maintenance contin-

ual adjustments based on oversight of intermediate and final

outcomes (Salmoni, 1984; Ghez and Krakauer, 2000).

When feedback is absent from the start, motor skills do

not develop properly; and when feedback is lost later on,

skills deteriorate.

As a replacement for the brain’s normal neuromuscular

output channels, a BCI also depends on feedback and on

adaptation of brain activity based on that feedback. Thus, a

BCI system must provide feedback and must interact in a

productive fashion with the adaptations the brain makes in

response to that feedback. This means that BCI operation

depends on the interaction of two adaptive controllers: the

user’s brain, which produces the signals measured by the

BCI; and the BCI itself, which translates these signals into

specific commands.

Successful BCI operation requires that the user develop

and maintain a new skill, a skill that consists not of proper

muscle control but rather of proper control of specific elec-

trophysiological signals; and it also requires that the BCI

translate that control into output that accomplishes the

user’s intent. This requirement can be expected to remain

even when the skill does not require initial training. In the

independent BCI described above, the P300 generated in

response to the desired letter occurs without training. Never-

theless, once this P300 is engaged as a communication chan-

nel, it is likely to undergo adaptive modification (Rosenfeld,

1990; Coles and Rugg, 1995), and the recognition and

productive engagement of this adaptation will be important

for continued successful BCI operation.

That the brain’s adaptive capacities extend to control of

various electrophysiological signal features was initially

suggested by studies exploring therapeutic applications of

the EEG. They reported conditioning of the visual alpha

rhythm, slow potentials, the mu rhythm, and other EEG

features (Wyricka and Sterman, 1968; Dalton, 1969;

Black et al., 1970; Nowles and Kamiya, 1970; Black,

1971, 1973; Travis et al., 1975; Kuhlman, 1978; Rockstroh

et al., 1989) (reviewed in Neidermeyer (1999)). These

studies usually sought to produce an increase in the ampli-

tude of a specific EEG feature. Because they had therapeutic

goals, such as reduction in seizure frequency, they did not

try to demonstrate rapid bidirectional control, that is, the

ability to increase and decrease a specific feature quickly

and accurately, which is important for communication.

Nevertheless, they suggested that bidirectional control is

possible, and thus justified and encouraged efforts to

develop EEG-based communication. In addition, studies

in monkeys showed that the firing rates of individual corti-

cal neurons could be operantly conditioned, and thus

suggested that cortical neuronal activity provides another

option for non-muscular communication and control (Fetz

and Finocchio, 1975; Wyler and Burchiel, 1978; Wyler et

al., 1979; Schmidt, 1980).

At the same time, these studies did not indicate to what

extent the control that people or animals develop over these

electrophysiological phenomena depends on activity in

conventional neuromuscular output channels (e.g. Dewan,

1967). While studies indicated that conditioning of hippo-

campal activity did not require mediation by motor

responses (Dalton, 1969; Black, 1971), the issue was not

resolved for other EEG features or for cortical neuronal

activity. This question of independent control of the various

electrophysiological signal features used in current and

contemplated BCIs is important both theoretically and prac-

tically, and arises at multiple points in this review.

2.3. The parts of a BCI

Like any communication or control system, a BCI has

input (e.g. electrophysiological activity from the user),

output (i.e. device commands), components that translate

input into output, and a protocol that determines the onset,

offset, and timing of operation. Fig. 1 shows these elements

and their principal interactions.

2.3.1. Signal acquisition

In the BCIs discussed here, the input is EEG recorded

from the scalp or the surface of the brain or neuronal activity

recorded within the brain. Thus, in addition to the funda-

mental distinction between dependent and independent

BCIs (Section 2.1 above), electrophysiological BCIs can

be categorized by whether they use non-invasive (e.g.

EEG) or invasive (e.g. intracortical) methodology. They

can also be categorized by whether they use evoked or

spontaneous inputs. Evoked inputs (e.g. EEG produced by

flashing letters) result from stereotyped sensory stimulation

provided by the BCI. Spontaneous inputs (e.g. EEG rhythms

over sensorimotor cortex) do not depend for their generation

on such stimulation. There is, presumably, no reason why a

BCI could not combine non-invasive and invasive methods

or evoked and spontaneous inputs. In the signal-acquisition

part of BCI operation, the chosen input is acquired by the

recording electrodes, amplified, and digitized.
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2.3.2. Signal processing: feature extraction

The digitized signals are then subjected to one or more of a

variety of feature extraction procedures, such as spatial filter-

ing, voltage amplitude measurements, spectral analyses, or

single-neuron separation. This analysis extracts the signal

features that (hopefully) encode the user’s messages or

commands. BCIs can use signal features that are in the

time domain (e.g. evoked potential amplitudes or neuronal

firing rates) or the frequency domain (e.g. mu or beta-rhythm

amplitudes) ( Farwell and Donchin, 1988; Lopes da Silva and

Mars, 1987; Parday et al., 1996; Lopes da Silva, 1999;

Donchin et al., 2000; Kennedy et al., 2000; Wolpaw et al.,

2000b; Pfurtscheller et al., 2000a; Penny et al., 2000; Kostov

and Polak, 2000). A BCI could conceivably use both time-

domain and frequency-domain signal features, and might

thereby improve performance (e.g. Schalk et al., 2000).

In general, the signal features used in present-day BCIs

reflect identifiable brain events like the firing of a specific

cortical neuron or the synchronized and rhythmic synaptic

activation in sensorimotor cortex that produces a mu

rhythm. Knowledge of these events can help guide BCI

development. The location, size, and function of the cortical

area generating a rhythm or an evoked potential can indicate

how it should be recorded, how users might best learn to

control its amplitude, and how to recognize and eliminate

the effects of non-CNS artifacts. It is also possible for a BCI

to use signal features, like sets of autoregressive parameters,

that correlate with the user’s intent but do not necessarily

reflect specific brain events. In such cases, it is particularly

important (and may be more difficult) to ensure that the

chosen features are not contaminated by EMG, electro-

oculography (EOG), or other non-CNS artifacts.
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Fig. 1. Basic design and operation of any BCI system. Signals from the brain are acquired by electrodes on the scalp or in the head and processed to extract

specific signal features (e.g. amplitudes of evoked potentials or sensorimotor cortex rhythms, firing rates of cortical neurons) that reflect the user’s intent. These

features are translated into commands that operate a device (e.g. a simple word processing program, a wheelchair, or a neuroprosthesis). Success depends on

the interaction of two adaptive controllers, user and system. The user must develop and maintain good correlation between his or her intent and the signal

features employed by the BCI; and the BCI must select and extract features that the user can control and must translate those features into device commands

correctly and efficiently.



2.3.3. Signal processing: the translation algorithm

The first part of signal processing simply extracts specific

signal features. The next stage, the translation algorithm,

translates these signal features into device commands-

orders that carry out the user’s intent. This algorithm

might use linear methods (e.g. classical statistical analyses

(Jain et al., 2000) or nonlinear methods (e.g. neural

networks). Whatever its nature, each algorithm changes

independent variables (i.e. signal features) into dependent

variables (i.e. device control commands).

Effective algorithms adapt to each user on 3 levels. First,

when a new user first accesses the BCI the algorithm adapts

to that user’s signal features. If the signal feature is mu-

rhythm amplitude, the algorithm adjusts to the user’s

range of mu-rhythm amplitudes; if the feature is P300

amplitude, it adjusts to the user’s characteristic P300 ampli-

tude; and if the feature is the firing rate of a single cortical

neuron, it adjusts to the neuron’s characteristic range of

firing rates. A BCI that possesses only this first level of

adaptation, i.e. that adjusts to the user initially and never

again, will continue to be effective only if the user’s perfor-

mance is very stable. However, EEG and other electrophy-

siological signals typically display short- and long-term

variations linked to time of day, hormonal levels, immediate

environment, recent events, fatigue, illness, and other

factors. Thus, effective BCIs need a second level of adapta-

tion: periodic online adjustments to reduce the impact of

such spontaneous variations. A good translation algorithm

will adjust to these variations so as to match as closely as

possible the user’s current range of signal feature values to

the available range of device command values.

While they are clearly important, neither of these first two

levels of adaptation addresses the central fact of effective

BCI operation: its dependence on the effective interaction of

two adaptive controllers, the BCI and the user’s brain. The

third level of adaptation accommodates and engages the

adaptive capacities of the brain. As discussed in Section

2.2, when an electrophysiological signal feature that is

normally merely a reflection of brain function becomes

the end product of that function, that is, when it becomes

an output that carries the user’s intent to the outside world, it

engages the adaptive capacities of the brain. Like activity in

the brain’s conventional neuromuscular communication and

control channels, BCI signal features will be affected by the

device commands they are translated into: the results of BCI

operation will affect future BCI input. In the most desirable

(and hopefully typical) case, the brain will modify signal

features so as to improve BCI operation. If, for example, the

feature is mu-rhythm amplitude, the correlation between

that amplitude and the user’s intent will hopefully increase

over time. An algorithm that incorporates the third level of

adaptation could respond to this increase by rewarding the

user with faster communication. It would thereby recognize

and encourage the user’s development of greater skill in this

new form of communication. On the other hand, excessive

or inappropriate adaptation could impair performance or

discourage further skill development. Proper design of this

third level of adaptation is likely to prove crucial for BCI

development. Because this level involves the interaction of

two adaptive controllers, the user’s brain and the BCI

system, its design is among the most difficult problems

confronting BCI research.

2.3.4. The output device

For most current BCIs, the output device is a computer

screen and the output is the selection of targets, letters, or

icons presented on it (e.g. Farwell and Donchin, 1988;

Wolpaw et al., 1991; Perelmouter et al., 1999; Pfurtscheller

et al., 2000a). Selection is indicated in various ways (e.g. the

letter flashes). Some BCIs also provide additional, interim

output, such as cursor movement toward the item prior to its

selection (e.g. Wolpaw et al., 1991; Pfurtscheller et al.,

2000a). In addition to being the intended product of BCI

operation, this output is the feedback that the brain uses to

maintain and improve the accuracy and speed of commu-

nication. Initial studies are also exploring BCI control of a

neuroprosthesis or orthesis that provides hand closure to

people with cervical spinal cord injuries (Lauer et al.,

2000; Pfurtscheller et al., 2000b). In this prospective BCI

application, the output device is the user’s own hand.

2.3.5. The operating protocol

Each BCI has a protocol that guides its operation. This

protocol defines how the system is turned on and off,

whether communication is continuous or discontinuous,

whether message transmission is triggered by the system

(e.g. by the stimulus that evokes a P300) or by the user,

the sequence and speed of interactions between user and

system, and what feedback is provided to the user.

Most protocols used in BCI research are not completely

suitable for BCI applications that serve the needs of people

with disabilities. Most laboratory BCIs do not give the user

on/off control: the investigator turns the system on and off.

Because they need to measure communication speed and

accuracy, laboratory BCIs usually tell their users what

messages or commands to send. In real life the user picks

the message. Such differences in protocol can complicate

the transition from research to application.

3. Present-day BCIs

While many studies have described electrophysiological

or other measures of brain function that correlate with

concurrent neuromuscular outputs or with intent and

might therefore function in a BCI system, relatively few

peer-reviewed articles have described human use of systems

that satisfy the BCI definition given in Section 2.1 and illu-

strated in Fig. 1, systems that give the user control over a

device and concurrent feedback from the device. These

studies are reviewed here. Studies from the vast group

describing phenomena that might serve as the basis for a
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BCI are mentioned only when they relate directly to actual

BCI systems.

Present-day BCIs fall into 5 groups based on the electro-

physiological signals they use. The first group, those using

VEPs, are dependent BCIs, i.e. they depend on muscular

control of gaze direction. The other 4 groups, those using

slow cortical potentials, P300 evoked potentials, mu and

beta rhythms, and cortical neuronal action potentials, are

believed to be independent BCIs (Section 2.1), though this

belief remains to some extent an assumption still in need of

complete confirmation.

3.1. Visual evoked potentials

In the 1970s, Jacques Vidal used the term ‘brain–compu-

ter interface’ to describe any computer-based system that

produced detailed information on brain function. This early

usage was broader than current usage, which applies the

term BCI only to those systems that support communication

and control by the user. Nevertheless, in the course of his

work, Vidal developed a system that satisfied the current

definition of a dependent BCI (Vidal, 1973, 1977). This

system used the VEP recorded from the scalp over visual

cortex to determine the direction of eye gaze (i.e. the visual

fixation point), and thus to determine the direction in which

the user wished to move a cursor.

Sutter (1992) described a similar BCI system called the

brain response interface (BRI). It uses the VEPs produced

by brief visual stimuli and recorded from the scalp over

visual cortex. The user faces a video screen displaying 64

symbols (e.g. letters) in an 8 £ 8 grid and looks at the

symbol he or she wants to select. Subgroups of these 64

symbols undergo an equiluminant red/green alternation or

a fine red/green check pattern alternation 40–70 times/s.

Each symbol is included in several subgroups, and the entire

set of subgroups is presented several times. Each subgroup’s

VEP amplitude about 100 ms after the stimulus is computed

and compared to a VEP template already established for the

user. From these comparisons, the system determines with

high accuracy the symbol that the user is looking at. A

keyboard interface gives access to output devices. Normal

volunteers can use it to operate a word processing program

at 10–12 words/min. In users whose disabilities cause

uncontrollable head and neck muscle activity, scalp EMG

can impede reliable VEP measurement and reduce perfor-

mance. For one such user, a man with ALS, this problem

was solved by placing a strip of 4 epidural electrodes over

visual cortex. With this implant, he could communicate 10–

12 words/min (Sutter, 1984, 1992).

Middendorf et al. (2000) reported another method for

using VEPs to determine gaze direction. Several virtual

buttons appear on a screen and flash at different rates. The

user looks at a button and the system determines the

frequency of the photic driving response over visual cortex.

When this frequency matches that of a button, the system

concludes that the user wants to select it.

These VEP-based communication systems depend on the

user’s ability to control gaze direction. Thus, they perform

the same function as systems that determine gaze direction

from the eyes themselves, and can be categorized as depen-

dent BCI systems. They show that the EEG can yield precise

information about concurrent motor output, and might prove

superior to other methods for assessing gaze direction. It is

possible that VEP amplitude in these systems reflects atten-

tion as well as gaze direction (e.g. Teder-Sälejärvi et al.,

1999), and thus that they may be to some extent independent

of neuromuscular function.

3.2. Slow cortical potentials

Among the lowest frequency features of the scalp-

recorded EEG are slow voltage changes generated in cortex.

These potential shifts occur over 0.5–10.0 s and are called

slow cortical potentials (SCPs). Negative SCPs are typically

associated with movement and other functions involving

cortical activation, while positive SCPs are usually asso-

ciated with reduced cortical activation (Rockstroh et al.,

1989; Birbaumer, 1997). In studies over more than 30

years, Birbaumer and his colleagues have shown that people

can learn to control SCPs and thereby control movement of

an object on a computer screen (Elbert et al., 1980, Birbau-

mer et al., 1999, 2000). This demonstration is the basis for a

BCI referred to as a ‘thought translation device’ (TTD). The

principal emphasis has been on developing clinical applica-

tion of this BCI system. It has been tested extensively in

people with late-stage ALS and has proved able to supply

basic communication capability (Kübler, 2000).

In the standard format (Fig. 2A), EEG is recorded from

electrodes at the vertex referred to linked mastoids. SCPs

are extracted by appropriate filtering, corrected for EOG

activity, and fed back to the user via visual feedback from

a computer screen that shows one choice at the top and one

at the bottom. Selection takes 4 s. During a 2 s baseline

period, the system measures the user’s initial voltage

level. In the next 2 s, the user selects the top or bottom

choice by decreasing or increasing the voltage level by a

criterion amount. The voltage is displayed as vertical move-

ment of a cursor and final selection is indicated in a variety

of ways. The BCI can also operate in a mode that gives

auditory or tactile feedback (Birbaumer et al., 2000).

Users train in several 1–2 h sessions/week over weeks or

months. When they consistently achieve accuracies $75%,

they are switched to a language support program (LSP).

The LSP (Perelmouter et al., 1999; Perelmouter and

Birbaumer, 2000) enables the user to choose a letter or letter

combination by a series of two-choice selections. In each

selection, the choice is between selecting or not selecting a

set of one or more letters. The first two selections choose

between the two halves of the alphabet, the next two

between the two quarters of the selected half, and so on

until a single letter is chosen. A backup or erase option is

provided. With this program, users who have two-choice
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accuracies of 65–90% can write 0.15–3.0 letters/min, or 2–

36 words/h. While these rates are low, the LSP has proved

useful to and highly valued by people who cannot use

conventional augmentative communication technologies.

Furthermore, a predictive algorithm that uses the first two

letters of a word to select the word from a lexicon that

encompasses the user’s vocabulary can markedly increase

the communication rate. A new protocol provides Internet

access to one disabled user (Birbaumer et al., 2000). A

stand-by mode allows users wearing collodium-fixed elec-

trodes to access the system 24 h/day by producing a specific

sequence of positive and negative SCPs (Kaiser et al.,

2001). This sequence is essentially a key for turning the

BCI on and off.

3.3. P300 evoked potentials

Infrequent or particularly significant auditory, visual, or

somatosensory stimuli, when interspersed with frequent or

routine stimuli, typically evoke in the EEG over parietal

cortex a positive peak at about 300 ms (Walter et al.,

1964; Sutton et al., 1965; Donchin and Smith, 1970).

Donchin and his colleagues have used this ‘P300’, or
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Fig. 2. Present-day human BCI system types. (Modified from Kübler et al. (2001).) A–C are non-invasive methods, D is invasive. (A) SCP BCI. Scalp EEG is

recorded from the vertex. Users learn to control SCPs to move a cursor toward a target (e.g. a desired letter or icon) at the bottom (more positive SCP) or top

(more negative SCP) of a computer screen (Kübler et al., 2001;Birbaumer et al., 1999, 2000). (B) P300 BCI. A matrix of possible choices is presented on a

screen and scalp EEG is recorded over the centroparietal area while these choices flash in succession. Only the choice desired by the user evokes a large P300

potential (i.e. a positive potential about 300 ms after the flash) (Farwell and Donchin, 1988; Donchin et al., 2000). (C) Sensorimotor rhythm BCI. Scalp EEG is

recorded over sensorimotor cortex. Users control the amplitude of a 8–12 Hz mu rhythm (or a 18–26 Hz beta rhythm) to move a cursor to a target at the top of

the screen or to a target at the bottom (or to additional targets at intermediate locations). Frequency spectra (top) for top and bottom targets show that control is

clearly focused in the mu-rhythm frequency band. Sample EEG traces (bottom) also indicate that the mu rhythm is prominent when the target is at the top and

minimal when it is at the bottom (Wolpaw et al., 1991, 2000b; McFarland et al., 1997a). (D) Cortical neuronal BCI. Cone electrodes implanted in motor cortex

detect action potentials of single cortical neurons (traces). Users learn to control neuronal firing rate(s) to move a cursor to select letters or icons on a screen

(Kennedy and Bakay, 1998; Kennedy et al., 2000).



‘oddball’ response in a BCI (Farwell and Donchin, 1988;

Donchin et al., 2000).

The user faces a 6 £ 6 matrix of letters, numbers, and/or

other symbols or commands. Every 125 ms, a single row or

column flashes; and, in a complete trial of 12 flashes, each

row or column flashes twice. The user makes a selection by

counting how many times the row or column containing the

desired choice flashes. EEG over parietal cortex is digitized,

the average response to each row and column is computed,

and P300 amplitude for each possible choice is computed.

As Fig. 2B shows, P300 is prominent only in the responses

elicited by the desired choice, and the BCI uses this effect to

determine the user’s intent. In online experiments and

offline simulations, a variety of different algorithms (e.g.

stepwise discriminant analysis, discrete wavelet transform)

for recognizing the desired choice have been evaluated, and

the relationship between the number of trials per selection

and BCI accuracy has been described. These analyses

suggest that the current P300-based BCI could yield a

communication rate of one word (i.e. 5 letters) per minute

and also suggest that considerable further improvement in

speed should be possible. In people with visual impair-

ments, auditory or tactile stimuli might be used (Glover et

al., 1986; Roder et al., 1996). In related work, Bayliss and

Ballard (2000) recorded P300s in a virtual environment.

Offline analyses suggested that single-trial P300 amplitudes

might be used for environmental control.

A P300-based BCI has an apparent advantage in that it

requires no initial user training: P300 is a typical, or naive,

response to a desired choice. At the same time, P300 and

related potentials change in response to conditioning proto-

cols (Glover et al., 1986; Miltner et al., 1988; Sommer and

Schweinberger, 1992; Roder et al., 1996). A P300 used in a

BCI is also likely to change over time. Studies up to the

present have been short-term. In the long term, P300 might

habituate (Ravden and Polich, 1999) so that BCI perfor-

mance deteriorates, or it might get larger so that perfor-

mance improves. Thus, appropriate adaptation by the

translation algorithm is likely to be important for this

BCI, as it is for others.

3.4. Mu and beta rhythms and other activity from

sensorimotor cortex

In awake people, primary sensory or motor cortical areas

often display 8–12 Hz EEG activity when they are not

engaged in processing sensory input or producing motor

output (Gastaut, 1952; Kozelka and Pedley, 1990; Fisch,

1999) (reviewed in Neidermeyer, 1999). This idling activ-

ity, called mu rhythm when focused over somatosensory or

motor cortex and visual alpha rhythm when focused over

visual cortex, is thought to be produced by thalamocortical

circuits (Lopes da Silva, 1991; Neidermeyer, 1999). Unlike

the visual alpha rhythm, which is obvious in most normal

people, the mu rhythm was until quite recently found only in

a minority (Chatrian, 1976). However, computer-based

analyses reveal the mu rhythm in most adults (Pfurtscheller,

1989). Such analyses also show that mu-rhythm activity

comprises a variety of different 8–12 Hz rhythms, distin-

guished from each other by location, frequency, and/or rela-

tionship to concurrent sensory input or motor output. These

mu rhythms are usually associated with 18–26 Hz beta

rhythms. While some beta rhythms are harmonics of mu

rhythms, some are separable from them by topography

and/or timing, and thus are independent EEG features

(Pfurtscheller and Berghold, 1989; Pfurtscheller, 1999;

McFarland et al., 2000a).

Several factors suggest that mu and/or beta rhythms could

be good signal features for EEG-based communication.

They are associated with those cortical areas most directly

connected to the brain’s normal motor output channels.

Movement or preparation for movement is typically accom-

panied by a decrease in mu and beta rhythms, particularly

contralateral to the movement. This decrease has been

labeled ‘event-related desynchronization’ or ERD

(Pfurtscheller and Lopes da Silva, 1999b; Pfurtscheller,

1999). Its opposite, rhythm increase, or ‘event-related

synchronization’ (ERS) occurs after movement and with

relaxation (Pfurtscheller, 1999). Furthermore, and most

relevant for BCI use, ERD and ERS do not require actual

movement, they occur also with motor imagery (i.e.

imagined movement) (Pfurtscheller and Neuper, 1997;

McFarland et al., 2000a). Thus, they might support an inde-

pendent BCI. Since the mid-1980s, several mu/beta rhythm-

based BCIs have been developed.

3.4.1. The Wadsworth BCI

With the BCI system of Wolpaw, McFarland, and their

colleagues (Wolpaw et al., 1991, 2000b; McFarland et al.,

1997a), people with or without motor disabilities learn to

control mu- or beta-rhythm amplitude and use that control to

move a cursor in one or two dimensions to targets on a

computer screen. Fig. 2C shows the basic phenomenon. In

this example, the user increases the amplitude of a 8–12 Hz

mu rhythm to move a cursor to a target at the top of the

screen or decreases it to move to a target at the bottom.

Frequency spectra (top) for top and bottom targets show

that control is clearly focused in the mu-rhythm frequency

band. Sample EEG traces (bottom) also show that the mu

rhythm is prominent with the top target and minimal with

the bottom target.

For each dimension of cursor control, a linear equation

translates mu- or beta-rhythm amplitude from one or several

scalp locations into cursor 10 times/s. Users learn over a

series of 40 min sessions to control cursor movement.

They participate in 2–3 sessions per week, and most (i.e.

about 80%) acquire significant control within 2–3 weeks. In

the initial sessions, most employ motor imagery (e.g. imagi-

nation of hand movements, whole body activities, relaxa-

tion, etc.) to control the cursor. As training proceeds,

imagery usually becomes less important, and users move
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the cursor like they perform conventional motor acts, that is,

without thinking about the details of performance.

While EEG from only one or two scalp locations controls

cursor movement online, data from 64 locations covering

the entire scalp are gathered for later offline analysis that

defines the full topography of EEG changes associated with

target position and helps guide improvements in online

operation. This analysis relies largely on the measure r2,

which is the proportion of the total variance in mu- or

beta-rhythm amplitude that is accounted for by target posi-

tion and thus reflects the user’s level of EEG control. The r2

topographical analyses (e.g. Fig. 3C) show that control is

sharply focused over sensorimotor cortex and in the mu-

and/or beta-rhythm frequency bands. With this control,

users can move the cursor to answer spoken yes/no ques-

tions with accuracies .95% (Miner et al., 1998; Wolpaw et

al., 1998). They can also achieve independent control of two

different mu- or beta-rhythm channels and use that control

to move a cursor in two dimensions (Wolpaw and McFar-

land, 1994). Recent work has concentrated on developing

precise one-dimensional control, and on applying it to

choosing among up to 8 different targets. Users have

achieved information transfer rates up to 20–25 bits/min

(McFarland et al., 2000b).

Research with this BCI has focused on defining the topo-

graphical, spectral, and temporal features of mu- and beta-

rhythm control and on optimizing the mutually adaptive

interactions between the user and the BCI system. Improve-

ments include: spatial filters that match the spatial frequen-

cies of the user’s mu or beta rhythms (Fig. 3), autoregressive

frequency analysis which gives higher resolution for short

time segments and thus permits more rapid device control,

and better selection of the constants in the equations that

translate EEG control into device control (e.g. McFarland et

al., 1997a,b; Ramoser et al., 1997). Recent studies have also

explored incorporation of other EEG features into this BCI.

In well-trained users, errors in target selection are associated

with a positive potential centered at the vertex (Schalk et al.,

2000). This potential might be used to recognize and cancel

mistakes. While work to date has used cursor control as a

prototype BCI application and has concentrated on improv-

ing it, effort is also being devoted to applications like

answering simple questions or basic word processing

(Miner et al., 1998; Wolpaw et al., 1998; Vaughan et al.,

2001).

3.4.2. The Graz BCI

This BCI system is also based on ERD and ERS of mu

and beta rhythms. Research up to the present has focused on

distinguishing between the EEG associated with imagina-

tion of different simple motor actions, such as right or left

hand or foot movement, and thereby enabling the user to

control a cursor or an orthotic device that opens and closes a

paralyzed hand (Pfurtscheller et al., 1993, 2000a,b; Neuper

et al., 1999). In the standard protocol, the user first partici-

pates in an initial session to select a motor imagery para-

digm. In each of a series (e.g. 160) of 5.25 s trials, the user

imagines one of several actions (e.g. right or left hand or

foot movement, tongue movement) while EEG from elec-

trodes over sensorimotor cortex is submitted to frequency

analysis to derive signal features (e.g. the powers in the

frequency bands from 5 to 30 Hz). For each imagined

action, an n-dimensional feature vector is defined. These

vectors establish a user-specific linear or non-linear classi-

fier (e.g. linear discriminant analysis, distinction sensitive

learning vector quantization (DSLVQ), or a neural network)

that determines from the EEG which action the user is

imagining (Pregenzer et al., 1996; Pfurtscheller et al.,

1996; Pregenzer and Pfurtscheller, 1999; Müller-Gerking

et al., 1999). In subsequent sessions, the system uses the

classifier to translate the user’s motor imagery into a contin-

uous output (e.g. extension of a lighted bar or cursor move-

ment) or a discrete output (e.g. selection of a letter or other

symbol), which is presented to the user as online feedback

on a computer screen. Normally, the classification algorithm

is adjusted between daily sessions. Over 6–7 sessions with

two-choice trials (i.e. left hand vs. right hand imagery) users

can reach accuracies over 90%. About 90% of people can

use this system successfully. The signal features that reflect

motor imagery and are used by the classifier are concen-

trated in the mu- and beta-rhythm bands in EEG over

sensorimotor cortex (Pfurtscheller and Neuper, 1997).

Current studies seek modifications that improve classifi-

cation. These include use of parameters derived by autore-

gressive frequency analysis (instead of the values for power

in specific frequency bands) and use of alternative spatial

filters. Additional effort has been devoted to developing

remote control capabilities that allow the BCI to function

in users’ homes while the classification algorithm is updated

in the laboratory. With this remote control system, a user

paralyzed by a mid-cervical spinal cord injury uses hand and

foot motor imagery to control an orthosis that provides hand

grasp. EEG over sensorimotor cortex is translated into hand

opening and closing by autoregressive parameter estimation

and linear discriminative classification (Obermaier et al.,

2001; Guger et al., 1999; Pfurtscheller et al., 2000b;

Pfurtscheller and Neuper, 2001).

3.4.3. Other systems

Kostov and Polak (2000) report BCI control of one- and

two-dimensional cursor movement. EEG is recorded with a

28-electrode array and a linked-ear reference, digitized at

200 Hz, and analyzed. Autoregressive parameters from 2 to

4 locations are translated into cursor movements by an adap-

tive logic network (Armstrong and Thomas, 1996). User

training is important (Polak, 2000).

Penny et al. (2000) describe a BCI that also uses EEG

over sensorimotor cortex to control cursor movement. They

concentrate on detecting the EEG associated with imagery

of actions like right or left hand movements, and/or tasks

like simple calculations. Their translation algorithm uses

autoregressive parameters and a logistic regression model
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Fig. 3. (A) Electrode locations used by 4 different spatial filters for EEG recorded from C3 (red). During data acquisition, all 64 electrodes are referred to the ear

reference. For the common average reference (CAR) and Laplacian methods, EEG at the green electrodes is averaged and subtracted from EEG at C3. (B)

Spatial band-pass. For each method, the trace shows the square root of the root-mean-square values (amplitude in mV) of a signal that varies sinusoidally in

amplitude across the scalp as its spatial frequency varies from 6 cm, twice the inter-electrode distance (i.e. the highest spatial frequency that would not cause

spatial aliasing), to 60 cm (i.e. approximate head circumference). (C) Average r2 topography, and amplitude and r2 spectra for each spatial filter method for

trained BCI users at the frequency and electrode location, respectively, used online. Each method is applied to the same body of data. With each method, EEG

control (measured as r2, the proportion of the variance of the signal feature that is accounted for by the user’s intent) is focused over sensorimotor cortices and

in the mu- and beta-rhythm frequency bands. The value of r2 is highest for the CAR and large Laplacian spatial filters and lowest for the ear reference.

(Modified from McFarland et al. 1997b.)



trained with a Bayesian evidence framework. They report

user success in controlling one-dimensional cursor move-

ment (Roberts and Penny, 2000).

Other groups have explored offline a variety of

approaches not yet tested online. Birch and Mason (Birch

et al., 1993; Birch and Mason, 2000; Mason and Birch,

2000) describe methods for recognizing potentials related

to voluntary movement (VMRPs) in EEG over sensorimotor

and supplementary motor cortices, and for using that recog-

nition to control cursor movement. Their translation algo-

rithm uses features extracted from the 1–4 Hz band in

bipolar EEG channels. They have focused on recognizing

VMRPs in ongoing EEG rather than in the EEG associated

with externally paced trials. Thus, they are addressing a

problem important for practical applications: detection of

user commands without the timing cues provided by struc-

tured trials. Levine et al. (2000) recorded electrocortico-

gram (EcoG) activity from 17 patients temporarily

implanted with 16–126 subdural electrodes prior to epilepsy

surgery. They found topographically focused potentials

associated with specific movements and vocalizations.

These potentials might provide the basis for a BCI with

multiple control channels. Pineda and Allison (Pineda et

al., 2000, Allison et al., 2000) explored the relationship

between single and combined movements as seen in the

mu rhythm and the readiness potential. Babiloni et al.

(2000) are developing a Laplacian EEG analysis and a

signal-space projection algorithm to detect imagined move-

ments in EEG over sensorimotor cortex.

3.5. Cortical neurons

Since the 1960s, metal microelectrodes have been used to

record action potentials of single neurons in the cerebral

cortices of awake animals during movements (e.g. Evarts,

1966; Humphrey, 1986). While most studies focused on the

relationships between this neuronal activity and simple or

complex sensorimotor performances, a few have explored

the capacity of animals to learn to control neuronal firing

rates. With operant conditioning methods, several studies

showed that monkeys could learn to control the discharge

of single neurons in motor cortex (Fetz and Finocchio, 1975;

Wyler and Burchiel, 1978; Wyler et al., 1979; Schmidt,

1980). From such work came the expectation that humans,

including many with motor disabilities, could develop simi-

lar control and use it to communicate or to operate neuro-

prostheses.

Evaluation of this possibility was delayed by lack of

intracortical electrodes suitable for human use and capable

of stable long-term recording from single neurons. Conven-

tional implanted electrodes induce scar tissue and/or move

in relation to individual neurons, so that over time recording

deteriorates or neurons come and go. In 1989, Kennedy

described an intracortical electrode consisting of a hollow

glass cone containing recording wires (Kennedy, 1989).

Neural tissue or neurotrophic factors placed inside the

cone induced cortical neurons to send processes into the

cone so that their action potentials could be recorded (Fig.

2D). These electrodes, implanted in motor cortices of

monkeys and several humans nearly locked-in by ALS or

brainstem stroke, have provided stable neuronal recordings

for more than a year (Kennedy and Bakay, 1998; Kennedy

et al., 2000).

Up to now, one user has learned to control neuronal firing

rates and uses this control to move a cursor to select icons or

letters on a computer screen. By using neuronal activity to

control one dimension of cursor movement and residual

EMG control to control the other dimension and final selec-

tion, communication rates up to about 3 letters/min (i.e.

about 15 bits/min) have been achieved. While training has

been limited by recurring illness and medication effects, the

results have been encouraging and suggest that more rapid

and accurate control should be possible in the future.

Furthermore, by demonstrating this control in people who

are almost totally paralyzed, these initial data suggest that

cortical neurons can support an independent BCI system.

Several laboratories have used multielectrode arrays to

record from single neurons in motor cortex of monkeys or

rats during learned movements (Georgopoulos et al., 1986;

Schmidt et al., 1988; Schwartz, 1993; Donoghue and Sanes,

1994; Heetderks and Schmidt, 1995; Nicolelis et al., 1998;

Liu et al., 1999; Williams et al., 1999; Chapin et al., 1999;

Isaacs et al., 2000; Wessberg et al., 2000). The results show

that the firing rates of a set of cortical neurons can reveal the

direction and nature of movement. At the same time, almost

all of this work has studied neuronal activity associated with

actual movement. It is not clear whether the same patterns of

neuronal activity, or other stable patterns, will be present

when the movements are not made, and, most important,

when the animal is no longer capable of making the move-

ments (due, for example, to a spinal cord injury). Limited

data suggest that the patterns persist for at least a time in the

absence of movement (Craggs, 1975; Chapin et al., 1999;

Taylor and Schwartz, 2001).

4. The future of BCI-based communication and control:
key issues

Non-muscular communication and control is no longer

merely speculation. The studies reviewed in the previous

section show that direct communication from the brain to

the external world is possible and can serve useful purposes.

At the same time, the reality does not yet match the fantasy

(e.g. Thomas, 1977): BCIs are not yet able to fly airplanes

and are not likely to be doing so anytime soon. Present

independent BCIs in their best moments reach 25 bits/min.

For those who have no voluntary muscle control whatsoever

or in whom remaining control (e.g. eye movement) is weak,

easily fatigued, or unreliable, this modest capacity may be

valuable. For people who are totally paralyzed (e.g. by ALS,

brainstem stroke, or severe polyneuropathy) or lack any
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useful muscle control (e.g. due to severe cerebral palsy), a

BCI might give the ability to answer simple questions

quickly (i.e. 20 bits/min is 20 ‘yes/no’ questions/min, or

one/3 s), control the environment (e.g. lights, temperature,

television, etc.), perform slow word processing (i.e. with a

predictive program, 25 bits/min could produce 2 words/

min), or even operate a neuroprosthesis (reviewed in

Wolpaw et al., 2000a; Kübler et al., 2001). Nevertheless,

the future value of BCI technology will depend substantially

on how much information transfer rate can be increased.

BCI development is still in its earliest stages. It is not yet

clear how far the field can or will go. What is clear is that

how far it does go will depend on a number of crucial issues.

These include: BCI independence from normal neuromus-

cular communication channels and dependence on internal

aspects of normal brain function; selection of signal acqui-

sition methods, signal features, feature extraction methods,

translation algorithms, output devices, and operational

protocols; development of user training strategies; attention

to psychological and behavioral factors that affect user

motivation and success; adoption of standard research meth-

ods and evaluation criteria; choice of applications and user

groups; and the largely unknown capacities and limitations

of non-muscular communication channels.

4.1. Independence from neuromuscular output channels

While a dependent BCI, which simply reflects activity in

conventional neuromuscular output channels, can be useful

(e.g. Sutter, 1984, 1992), the future importance of BCI tech-

nology will hinge on the extent to which its function can be

independent of conventional neuromuscular output chan-

nels. The BCIs in Fig. 2 are thought to be independent,

but this issue is yet to be completely settled.

The generally successful application of an SCP-based

BCI to people with late-stage ALS who lack almost all

voluntary movement is persuasive evidence that SCPs can

support independent BCIs (Birbaumer et al., 1999, 2000).

The P300-based BCI is also likely to be independent

(Donchin et al., 2000). P300s are believed to reflect the

significance of the stimulus, that is, in the case of the

P300- based BCI, whether it is the choice that the user

wants to select. At the same time, however, the visual

stimuli needed to elicit P300 may depend to some degree

on control of eye gaze (Michalski, 1999; Teder-Sälejärvi et

al., 1999; Nobre et al., 2000). Available data suggest that mu

and beta rhythms from sensorimotor cortex can support

independent BCIs. These rhythms are affected by motor

imagery in the absence of movement (e.g. McFarland et

al., 2000a). Furthermore, mu- or beta-rhythm based cursor

control does not depend on activity in cranial or limb

muscles (Vaughan et al., 1998). Finally, mu rhythm-based

BCI operation was achieved by a user almost totally locked

in by ALS (Miner et al., 1996).

The cortical and subcortical neuronal activity that accom-

panies voluntary movement is in part a function of the

proprioceptive and other sensory feedback that occurs

during that movement (e.g. Houk and Rymer, 1981). It is

not yet clear to what extent users can produce this activity or

comparably controlled activity without actual movement,

nor to what extent other sensory modalities, e.g. vision or

audition, can substitute effectively for the somatosensory

feedback associated with normal voluntary motor function.

Initial studies (Craggs, 1975; Kennedy and Bakay, 1998;

Chapin et al., 1999; Kennedy et al., 2000; Taylor and

Schwartz, 2001; Serruya et al., 2002) suggest that neuronal

activity can function without movement, but the long-term

stability of this function is not yet established.

4.2. Degree of dependence on normal brain function

While BCIs based on SCPs, P300s, mu and beta rhythms,

or cortical neuronal activity may not require voluntary

muscle control, they certainly depend to some degree on

normal brain function. Each of these electrophysiological

phenomena reflects the combined function of cortical and

subcortical areas. Impairments of cortex (e.g. with ALS or

stroke), basal ganglia or other subcortical areas that interact

with cortex (e.g. with cerebral palsy) or loss of ascending

sensory input (e.g. with brainstem stroke or spinal cord

injury) could affect the user’s ability to achieve control of

cortical potentials, mu or beta rhythms, or cortical neurons.

Thus, the ability to use BCIs and the best choice among the

different BCIs, are likely to differ among users. Studies that

evaluate specific BCIs in specific user groups are needed,

and should include long-term assessments of performance.

4.3. Non-CNS artifacts

Muscle activation and eye movement can contribute to

the electrical activity recorded from the scalp (Anderer et

al., 1999; Croft and Barry, 2000). At frontal, temporal, and

occipital locations particularly, EMG and/or EOG can

exceed EEG, even in the characteristic EEG frequency

bands (McFarland et al., 1997a; Goncharova et al., 2000).

While EMG and EOG may serve in their own rights in

augmentative communication systems (ten Kate and Hepp,

1989; Tecce et al., 1998; Barreto et al., 2000), in the context

of BCI research they are simply artifacts that must be recog-

nized and addressed. They can mislead investigators by

mimicking actual EEG-based control and/or can impede

measurement of the EEG features used for control. For

example, frontalis muscle EMG can dominate the beta- or

mu-rhythm frequency range at frontal locations, and eye-

blinks can affect the theta- or even mu-rhythm range at

frontal or central locations (e.g. McFarland et al., 1997a;

Goncharova et al., 2000). Thus, a user might control BCI

output by raising his eyebrows or blinking her eyes; or such

activity might obscure the user’s actual EEG control.

Spectral and topographic analyses can usually detect non-

CNS artifacts. However, studies that look only at one

frequency band or scalp location, or rely completely on

signal features, such as autoregressive parameters, that
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may be complex functions of EEG and non-CNS activity,

risk contamination by non-CNS artifacts. These artifacts can

produce misleading results that lead to erroneous conclu-

sions about the characteristics, capacities, and limitations of

EEG-based BCIs, and can thereby impede research and

development. A recent preliminary study (Lauer et al.,

1999) that purported to show control of a neuroprosthesis

by EEG over frontal cortex illustrates this danger. Subse-

quent work showed that frontalis EMG was largely or

wholly responsible for the control (Lauer et al., 2000).

The spectral and topographical analyses that can detect

such artifacts and the procedures that can prevent them

from affecting BCI operation or misleading investigators

are extremely important in BCI research (Wolpaw et al.,

2000a).

4.4. Signal features

Most current BCIs use electrophysiological signal

features that represent brain events that are reasonably

well-defined anatomically and physiologically. These

include rhythms reflecting oscillations in particular neuronal

circuits (e.g. mu or beta rhythms from sensorimotor cortex),

potentials evoked from particular brain regions by particular

stimuli (e.g. VEPs or P300s), or action potentials produced

by particular cortical neurons (Kennedy et al., 2000). A few

are exploring signal features, such as autoregressive para-

meters, that bear complex and uncertain relationships to

underlying brain events (Lopes da Silva and Mars, 1987;

Parday et al., 1996; Lopes da Silva, 1999).

The special characteristics and capacities of each signal

feature will largely determine the extent and nature of its

usefulness. SCPs are, as their name suggests, slow. They

develop over 300 ms to several seconds. Thus, if an SCP-

based BCI is to exceed a bit rate of one every 1–2 s, users

will need to produce more than two SCP levels at one loca-

tion, and/or control SCPs at several locations independently.

Initial studies suggest that such control may be possible

(Kotchoubey et al., 1996, 1997; Hardman et al., 1997).

While mu and beta rhythms have characteristic frequencies

of 8–12 and 18–26 Hz, respectively, change in mu- or beta-

rhythm amplitude appears to have a latency of about 0.5 s

(Wolpaw et al., 1997; Pfurtscheller, 1999; Pfurtscheller and

Lopes da Silva, 1999a). On the other hand, users are

certainly able to provide more than two amplitude levels,

and can achieve independent control of different rhythms

(Wolpaw and McFarland, 1994; Vaughan et al., 1999).

Projecting from results to date, a mu/beta rhythm BCI

might select among 4 or more choices every 2–3 s (McFar-

land et al., 2000b). While the possibility for distinguishing

more than two amplitude ranges from VEPs or P300 poten-

tials has not been explored, these potentials can be evoked in

partially overlapping series of trials, so that selection rate

can be increased (Donchin et al., 2000). Alternatively or in

addition, selection rate might be increased if users could

learn to control shorter-latency evoked potentials (e.g.

Finley, 1984). The firing rates of individual cortical

neurons, if they prove to be independently controllable in

the absence of the concurrent motor outputs and sensory

inputs that normally accompany and reflect their activity,

might support quite high information transfer rates.

The key determinant of a signal feature’s value is its

correlation with the user’s intent, that is, the level of volun-

tary control the user achieves over it. Users are likely to

differ in the signal features they can best control. In 3

users nearly locked in by ALS, Kübler (2000) found that

one used a positive SCP, another a relatively fast negative-

positive SCP shift, and a third a P300. Once developed,

these strategies were extremely resistant to change. Particu-

larly early in training, BCI systems should be able to iden-

tify, accommodate, and encourage the signal features best

suited to each user.

User training may be the most important and least under-

stood factor affecting the BCI capabilities of different signal

features. Up to now, researchers have usually assumed that

basic learning principles apply. However, BCI signal

features are not normal or natural brain output channels.

They are artificial output channels created by BCI systems.

It is not yet clear to what extent these new artificial outputs

will observe known conditioning principles. For example,

mu rhythms and other features generated in sensorimotor

cortex, which is directly involved in motor output, may

prove more useful than alpha rhythms generated in visual

or auditory cortex, which is strongly influenced by sensory

input. The success of neuronally based BCI methods will

presumably also vary from area to area. Initial efforts have

focused on neurons in motor cortex (Kennedy, 1989;

Kennedy and Bakay, 1998). While this focus is logical,

other cortical areas and even subcortical areas warrant

exploration (e.g. Chapin et al., 1999). For example, in a

user paralyzed by a peripheral nerve or muscle disorder,

the activity of spinal cord motoneurons controlling specific

muscles, detected by implanted electrodes (e.g. Nuwer,

1999; Mushahwar et al., 2000), might prove most useful

for communication and control.

4.5. Signal processing: feature extraction

The performance of a BCI, like that of other communica-

tion systems, depends on its signal-to-noise ratio. The goal

is to recognize and execute the user’s intent, and the signals

are those aspects of the recorded electrophysiological activ-

ity that correlate with and thereby reveal that intent. The

user’s task is to maximize this correlation; and the system’s

first task is to measure the signal features accurately, i.e. to

maximize the signal-to-noise ratio. When the features are

mu rhythms from sensorimotor cortex, noise includes visual

alpha rhythms, and when the features are the firing rates of

specific neurons, noise includes activity of other neurons. Of

particular importance for EEG-based BCIs is the detection

and/or elimination of non-CNS activity, such as EMG from

cranial or facial muscles and EOG (Section 4.3).
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Feature extraction methods can greatly affect signal-to-

noise ratio. Good methods enhance the signal and reduce

CNS and non-CNS noise. This is most important and diffi-

cult when the noise is similar to the signal. For example,

EOG is of more concern than EMG for a BCI that uses SCPs

as signal features (Birbaumer et al., 1990), because EOG

and SCPs have overlapping frequency ranges; and for the

same reason EMG is of more concern than EOG for BCIs

that use beta rhythms (Goncharova et al., 2000).

A variety of options for improving BCI signal-to-noise

ratios are under study. These include spatial and temporal

filtering techniques, signal averaging, and single-trial recog-

nition methods. Much work up to now has focused on show-

ing by offline data analyses that a given method will work.

Careful comparisons of alternative methods are also essen-

tial. A statistical measure useful in such comparisons is r2,

the proportion of the total variance in the signal feature that

is accounted for by the user’s intent. Alternative feature

extraction methods can be compared in terms of r2. (At

the same time, of course, it is essential to insure that a

high r2 is not being achieved by non-CNS activity such as

EMG.) Finally, any method must ultimately be shown to be

useful for actual online operation.

Spatial filters derive signal features by combining data

from two or more locations so as to focus on activity with

a particular spatial distribution. The simplest spatial filter is

the bipolar derivation, which derives the first spatial deriva-

tive and thereby enhances differences in the voltage gradient

in one direction. The Laplacian derivation is the second

derivative of the instantaneous spatial voltage distribution,

and thereby emphasizes activity in radial sources immedi-

ately below the recording location (Zhou, 1993; Nunez et

al., 1997). It can be computed by combining the voltage at

the location with the voltages of surrounding electrodes (e.g.

Hjorth, 1991; Nunez et al., 1994). As the distance to the

surrounding electrodes decreases, the Laplacian becomes

more sensitive to voltage sources with higher spatial

frequencies (i.e. more localized sources) and less sensitive

to those with lower spatial frequencies (i.e. more broadly

distributed sources).

The choice of a spatial filter can markedly affect the

signal-to-noise ratio of a BCI that uses mu and beta rhythms

(McFarland et al., 1997b). Fig. 3 displays the results for 4

different spatial filters applied to the same data from trained

users. It shows that a Laplacian with an inter-electrode

distance of 6 cm (or a common average reference method)

provides a much higher signal-to-noise ratio (measured as

r2) than does either a Laplacian with a distance of 3 cm or a

monopolar derivation. On the other hand, a spatial filter best

suited for mu and beta rhythms, which are relatively loca-

lized, would probably not be the best choice for measure-

ment of SCPs or P300s, which are more broadly distributed

over the scalp.

Laplacian and common average reference spatial filters

apply a fixed set of weights to a linear combination of

channels (i.e. electrode locations). Both use weights that

sum to zero so that the result is a difference and the spatial

filter has high-pass characteristics. Other spatial filters are

available. Principal components, independent components,

and common spatial patterns analyses are alternative meth-

ods for deriving weights for a linear combination of chan-

nels (e.g. Müller-Gerking et al., 1999; Jung et al., 2000). In

these methods, the weights are determined by the data. Prin-

cipal components analysis, which produces orthogonal

components, may not be appropriate for separation of signal

features from overlapping sources. Independent compo-

nents analysis can, in principle, distinguish between mu

rhythms from such sources (Makeig et al., 2000). These

methods have yet to be compared to simpler spatial filters

like the Laplacian, in which the channel weights are data-

independent.

Appropriate temporal filtering can also enhance signal-to-

noise ratios (e.g. McFarland et al., 1997a). Oscillatory

signals like the mu rhythm can be measured by the inte-

grated output of a band-pass filter (Pfurtscheller and Arani-

bar, 1979) or by the amplitude in specific spectral bands of

Fourier or autoregressive analysis (Marple, 1987). Because

BCIs must provide relatively rapid user feedback and

because signals may change rapidly, frequency analysis

methods (e.g. band-pass filters or autoregressive methods)

that need only relatively short time segments may be super-

ior to methods like Fourier analysis that need longer

segments. The choice of temporal filtering method, particu-

larly for research studies, should also consider the need to

detect non-CNS artifacts. A single band-pass filter cannot

identify a broad-band artifact like EMG; a representative set

of such filters is needed. Similarly, when autoregressive

parameters are used as signal features (e.g. Pfurtscheller et

al., 1998), additional spectral-band analyses are needed to

detect artifacts like EMG. For SCP recording, the focus on

extremely-low frequency activity (e.g. high-pass filter cutoff

#0.1 Hz) requires attention to eye-movement (Gratton et

al., 1983) and other low-frequency artifacts like those due

to amplifier drift or changes in skin resistance (e.g. with

sweating).

The signal-to-noise ratios of evoked time-domain signals

like P300 can be enhanced by averaging. The accompanying

loss in communication rate may be minimized by overlap-

ping the trials (e.g. Donchin et al., 2000). A variety of

methods have been proposed for detecting signals in single

trials (Arpaia et al., 1989; Hufschmidt et al., 1990; Birch et

al., 1993; Lange et al., 1995; Mineva and Popivanov, 1996;

Schlögl et al., 1997; Samar et al., 1999; Birch and Mason,

2000). These methods have yet to be extensively applied in

BCI research. Thus, their potential usefulness is unclear.

Invasive methods using epidural, subdural, or intracorti-

cal electrodes might give better signal-to-noise ratios than

noninvasive methods using scalp electrodes. At the same

time, the threshold for their use will presumably be higher.

They will be used only when they can provide communica-

tion clearly superior to that provided by noninvasive meth-

ods, or when they are needed to avoid artifacts or other
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problems that can impede noninvasive methods (e.g.

uncontrollable head and neck EMG in a user with cerebral

palsy).

4.6. Signal processing: translation algorithms

BCI translation algorithms convert independent vari-

ables, that is, signal features such as rhythm amplitudes or

neuronal firing rates, into dependent variables (i.e. device

control commands). Commands may be continuous (e.g.

vertical cursor movements) or discrete (e.g. letter selection).

They should be as independent of each other (i.e. orthogo-

nal) as possible, so that, for example, vertical cursor move-

ment and horizontal cursor movement do not depend on

each other. The success of a translation algorithm is deter-

mined by the appropriateness of its selection of signal

features, by how well it encourages and facilitates the user’s

control of these features, and by how effectively it translates

this control into device commands. If the user has no control

(i.e. if the user’s intent is not correlated with the signal

features), the algorithm can do nothing, and the BCI will

not work. If the user has some control, the algorithm can do

a good or bad job of translating that control into device

control.

Initial selection of signal features for the translation algo-

rithm can be based on standard guidelines (e.g. the known

locations and temporal and spatial frequencies of mu and

beta rhythms) supplemented by operator inspection of initial

topographical and spectral data from each user (Rockstroh

et al., 1984; McFarland et al., 1997a). These methods may

be supplemented or even wholly replaced by automated

procedures. For example, Pregenzer et al. (1996), used the

learning vector quantizer (LVQ) to select optimal electrode

positions and frequency bands for each user.

Extant BCIs use a variety of translation algorithms,

ranging from linear equations, to discriminant analysis, to

neural networks (e.g. Wolpaw et al., 2000b; Pfurtscheller et

al., 2000a; Kostov and Polak, 2000). In the simplest case, in

which only a single signal feature is used, the output of the

translation algorithm can be a simple linear function of the

feature value (e.g. a linear function of mu-rhythm ampli-

tude). The algorithm needs to use appropriate values for the

intercept and the slope of this function (McFarland et al.,

1997a). If the command is vertical cursor movement, the

intercept should ensure that upward and downward move-

ment are equally possible for the user. Ramoser et al. (1997)

found that the mean value of the signal feature over some

interval of immediately preceding performance provides a

good estimate of the proper intercept. The slope determines

the scale of the command (e.g. the speed of cursor move-

ment). When a single signal feature is used to select among

more than two choices, the slope also affects the relative

accessibility of the choices (e.g. McFarland et al., 1999,

2000b). A wide variety of more complex translation algo-

rithms are possible. These include supervised learning

approaches such as linear discriminate analysis (e.g. Jain

et al., 2000) and non-linear discriminate analysis (e.g. an

adaptive logic network (Kostov and Polak, 2000).

The evaluation of a translation algorithm reduces to

determining how well it accomplishes the 3 levels of adap-

tation described in Section 2.3.3: initial adaptation to the

individual user; continuing adaptation to spontaneous

changes in the user’s performance (e.g. fatigue, level of

attention); and continuing adaptation that encourages and

guides the user’s adaptation to the BCI (i.e. user training).

Up to the present, most evaluations have concentrated on the

first and simplest level of adaptation. In these evaluations,

alternative algorithms are applied offline to a body of data

gathered from one or more users. Typically, portions of the

data are used to set the parameters of the algorithm (e.g. to

train the neural network), which is then applied to the rest of

the data (i.e. the test data) (Pregenzer et al., 1996; Müller-

Gerking et al., 1999). The algorithm is rated according to the

accuracy with which it derives the user’s intent from the test

data. While such evaluations are convenient and certainly

valuable in making gross distinctions between algorithms,

they do not take into account spontaneous changes in the

signal features, nor can they assess user adaptation to the

algorithm.

The second level of adaptation – continual adjustments

for spontaneous changes in signal features – can be

addressed by offline analysis that mimics the online situa-

tion, that is, if adaptation is based on earlier data and applied

to later data (e.g. Ramoser et al., 1997). This analysis needs

substantial bodies of data gathered over substantial periods

of time, so that all major kinds of spontaneous variation can

be assessed. The need for this second level of adaptation

tends to favor simpler algorithms. Parameter adaptation is

likely to be more difficult and more vulnerable to instabil-

ities for complex algorithms like those using neural

networks or non-linear equations, than it is for simple algo-

rithms like those using linear equations with relatively few

variables.

The third level of adaptation – adaptation to the user’s

adaptation to the BCI system – is not accessible to offline

evaluation. Because this level responds to and affects the

continual interactions between the user and the BCI, it can

only be assessed online. The goal of this adaptation is to

induce the user to develop and maintain the highest possible

level of correlation between his or her intent and the signal

features that the BCI employs to decipher that intent. The

algorithm can presumably accomplish these aims by

rewarding better performance – by moving the cursor or

selecting the letter more quickly when the signal feature

has a stronger correlation with intent. At the same time,

such efforts at shaping user performance risk making the

task too difficult. As with acquisition of conventional skills,

anxiety, frustration, or fatigue can degrade performance

(e.g. Dibartolo et al., 1997). Particularly in the first stages

of training, the user is easily overwhelmed by the difficulty

of the task. User success may correlate with self-perception

of brain states, and may be promoted by procedures that
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increase this perception (Lang and Kotchoubey, 2000).

Because the translation algorithm’s adaptations are likely

to shape the user’s adaptations, and because users are likely

to differ from one another, the selection of methods for this

third level of adaptation inevitably requires prolonged

online studies in large numbers of representative users.

This level of adaptation might also help address the

problem of artifacts, such as EMG or EOG for scalp EEG

or extraneous neuronal activity for neuronal recording. It

may be possible to induce the user to reduce or eliminate

such artifacts by making them impediments to performance.

Thus, a specific measure of EMG activity, like amplitude in

a high frequency band at a suitable location, could be moni-

tored, and, by exceeding a criterion value, could halt BCI

operation.

The mutual adaptation of user and BCI is likely to be

important even for BCIs that use signal features (e.g.

P300 evoked potentials, or mu- or beta-rhythm amplitude

changes accompanying specific motor imagery) that are

already present in users at the very beginning of training.

Once these features are used for communication and

control, they can be expected to change. Like the activity

responsible for the brain’s neuromuscular outputs, these

electrophysiological phenomena are likely to be continu-

ously adjusted on the basis of feedback. The process of

mutual adaptation of the user to the system and the system

to the user is likely to be a fundamental feature of the opera-

tion of any BCI system (McFarland et al., 1998; Siniatchkin

et al., 2000). Thus, the value of starting from signal features

that are already correlated with specific intents in the naive

user (e.g. P300) is an empirical issue. That is, does BCI

training that begins with such features ultimately lead to

faster and more accurate communication and control than

does training that begins with other features?

These adaptations by the translation algorithm may be

more difficult in actual BCI applications than in the labora-

tory. In the usual laboratory situation, user intent is defined by

the research protocol (i.e. the user is told what to select), so

that the translation algorithm knows whether the user’s selec-

tions are correct and can use this knowledge in its adapta-

tions. In real life, the user decides what to select, so that the

translation algorithm does not have this knowledge and adap-

tation is therefore more difficult. Possible solutions are to

configure applications so as to insure fairly predictable sets

of past intents, to incorporate calibration routines that consist

of series of trials with defined intents, and/or to include meth-

ods for error correction (e.g. a backspace key) that permit the

translation algorithm to assume that all or most final selec-

tions are correct. Unsupervised learning approaches, like

cluster or principal components analysis, which can be

trained without knowledge of correct results, might also be

effective (Müller-Gerking et al., 1999; Jung et al., 2000).

4.7. Operating protocols

Ideally, a BCI would be available at all times. Such avail-

ability might be provided either by always translating input

into output, or by a BCI-based on/off switch. Continuous

translation could produce much unintended, meaningless, or

random output. One research group is now evaluating this

option (Birch and Mason, 2000; Mason and Birch, 2000).

Another possibility is a BCI-based on/off key, such as a

distinctive pattern of signal features that is extremely unli-

kely to occur spontaneously (e.g. a specific pattern of SCP

shifts (Birbaumer et al., 2000; Kaiser et al., 2001).

In voice communication, the speaker controls when

words are said and the rate at which they are said. In

contrast, present-day BCIs usually control timing and rate

and indicate them to the user by visual or auditory means.

To some extent, the system control of timing and rate results

from the requirements of research: to assess BCI perfor-

mance it is necessary to know user intent, and the simplest

way to do this is to have the system tell the user what to

communicate and when. In actual BCI applications, control

of timing and rate might be vested wholly or partially in the

user (e.g. McFarland et al., 1999).

4.8. Applications and users

Practical applications depend first on speed and accuracy.

Current BCIs are suitable for basic environmental control

(e.g. temperature, lights, television), for answering yes/no

questions, and for word processing at slow rates (e.g. 1–2

words/min). They might also operate devices like a wheel-

chair. In this application, in which errors are dangerous, the

system could be configured to ensure very high accuracy at

the expense of speed. These BCIs might also operate simple

neuroprostheses or orthoses, like those providing hand grasp

to people with cervical spinal cord injuries (Lauer et al.,

2000; Pfurtscheller et al., 2000b).

At the same time, while current BCIs might provide such

functions, most potential users have better conventional

options. Those who retain control of only a single muscle

(e.g. eyebrow, finger flexor, diaphragm) can often use it for

communication and control that is faster and more accurate

than that provided by current BCIs. Thus, immediate users

will be mainly those who lack all muscle control or whose

remaining control is easily fatigued or otherwise unreliable.

They include those who are totally paralyzed (e.g. by ALS

or brainstem stroke) or have movement disorders (e.g.

severe cerebral palsy) that abolish muscle control. Conven-

tional augmentative communication methods may have

little to offer them, so that even the simplest BCI-based

communication, like the ability to say ‘yes’ or ‘no’, could

be valuable. Recent data indicate that their incidence of

depression is not necessarily higher than that of the general

population (e.g. Robbins et al., 2002). This suggests that, if

their communication and control needs can be satisfied, they

can lead enjoyable and productive lives.

Efforts to provide BCI-based communication to users

who are locked-in may encounter several difficult issues.

First, a user’s lack of conventional communication ability
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can make it hard to assess his or her cognition or even

consciousness, and may impede the operator/user interac-

tions important in initial BCI training. Kotchoubey et al.

(2002) describe a set of event-related potential-based tests

designed to assess cortical sensory and cognitive processing

in such users and evaluate their capacity for mastering BCI

use. Second, the deficits that abolish all voluntary muscle

control may also impair user control of the signal features

used by a BCI. The loss of cortical neurons that can occur

with ALS or the extensive cortical and/or subcortical

damage typically associated with severe cerebral palsy

may affect generation or control of the rhythms, evoked

potentials, or neuronal activity used for BCI-based commu-

nication. Damage to prefrontal cortex (e.g. with multiple

sclerosis, Parkinson’s disease, or ALS) can impair attention

and thereby adversely affect BCI use (Rockstroh et al.,

1989; Müller et al., 1997). Third, motivational factors can

be critically important (Birbaumer et al., 2000). Changes in

an individual’s physical environment or social interactions

can greatly affect the extent of BCI use. Effective BCI appli-

cation in clinical situations requires careful and continual

assessment of quality of life. Standard quality of life

measures may not be appropriate for people who are

severely paralyzed. Their emotional and psychological

well being does not necessarily worsen as motor function

declines (e.g. Robbins et al., 2001). In sum, BCI applica-

tions require expertise in and attention to a complex set of

human factors.

People who retain minimal voluntary movement might

use hybrid systems that combine BCI-based control with

conventional control (e.g. Kennedy et al., 2000). BCIs

might also serve those whose communication and control

capacities are impaired by aphasias, apraxias, or autism

(Birbaumer, 1999).

If BCI speed and accuracy can be substantially improved,

the range of applications and the number of potential users

would greatly increase. At the same time, speed and accu-

racy are not the only important factors. The extent to which

BCI use can be integrated with other activities is crucial. Up

to now, most BCIs have been tested in the laboratory with

the users totally involved in their operation. A few studies

have explored BCI integration into normal life. The Wads-

worth BCI can be used to answer spoken questions, and the

Tuebingen TTD to communicate user-chosen messages

(Miner et al., 1998; Birbaumer et al., 1999). Much more

information concerning such integration with other brain

functions is needed.

BCI success will hinge also on the extent to which opera-

tion is standardized. Most present BCIs operate in the

laboratory with expert oversight. Even the Tuebingen

TTD, which has been taken out of the laboratory, still

requires frequent adjustment by skilled personnel (Kübler

et al., 2001; Kaiser et al., 2001). If BCIs are to function in

homes or long-term care facilities, this dependence must be

greatly reduced.

Especially important in determining the practical value of

BCI systems will be their success in satisfying the user (e.g.

De Foa and Loeb, 1991; Scherer and Lane, 1997; Stroh

Wuolle et al., 1999). Satisfaction will not depend only, or

perhaps even mainly, on speed and accuracy. The level of

user acceptance of a new technology depends on more than

the theoretical value of the technology, and is often unpre-

dictable or even inexplicable. Kübler et al. (1999) found that

several users preferred slow selection of single letters to

faster computer-aided word completion because letter-by-

letter selection, which was completely under their control,

made them feel more independent. Ease of use is also

important. Factors such as the need for constantly wearing

an electrode cap or constantly confronting a particular

visual display can have tremendous influence. Cosmesis is

often crucial; that is, how the system looks and how the user

looks while employing it. Users are likely to differ consid-

erably in their needs and desires, and BCI success will

depend in large part on recognition and accommodation of

this reality. The primary emphasis should be on identifying

and providing those BCI applications most desired by the

user.

4.9. Research methods and standards

BCI research is an interdisciplinary endeavor. The

phenomena that comprise BCI signal features arise in the

brain and reflect its anatomy, chemistry, and physiology.

BCIs perform signal processing, and depend on computer

hardware and software. They incorporate adaptation

routines that depend on learning principles and on other

human factors like attention, motivation, and fatigue. BCI

outputs control devices that have specific electronic and/or

mechanical characteristics and provide feedback that

engages the user’s perceptive and reactive capacities.

Finally, BCI operating protocols orchestrate operation in

accord with the characteristics of the inputs, feature extrac-

tion methods, translation algorithms, and outputs. Thus, BCI

research involves neurobiology, psychology, engineering,

applied mathematics, and computer science. Success

depends on expertise in all these disciplines and on effective

interactions between them.

While all BCI research programs share the same goal –

rapid and accurate communication and control – they differ

widely not only in their inputs, feature extraction methods,

translation algorithms, outputs, and operating protocols, but

also in their immediate objectives. Some focus on specific

applications like word processing or neuroprosthesis

control, while others concentrate on establishing general

features of BCI design and operation and use a prototype

application like cursor control to do so. Whatever their

objectives, all need hardware and software that can acquire

electrophysiological input with sufficient rate and precision,

translate it into output quickly enough to control devices

with acceptable delays, and manage adaptive interactions

between user and system. Because their purpose is research,

they also need to store complete data for later evaluation.
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Furthermore, if their efforts are to be productive and their

results credible, BCI research programs must adhere to

certain principles in experimental design, data evaluation,

and documentation and dissemination of results.

4.9.1. Assessment of inter- and intra-user variations

Users are likely to differ greatly in the prominence and

stability of specific signal features, and in their capacities

for initially demonstrating or acquiring and subsequently

maintaining control over these features. Users with disabil-

ities are likely to display even more variation. Thus, BCI

methods should be tested in more than one or a few users,

and the test populations should include users with relevant

disabilities. Intra-individual variation is an equally impor-

tant issue. Those few research programs that have acquired

long-term data have found that marked variations in perfor-

mance typically occur over minutes, hours, days, weeks, and

months. Thus, data should be gathered from each user many

times over substantial periods. Furthermore, appropriate and

comprehensive statistical tests should be applied. Simply

describing the single best result or the performance for a

few sessions is not enough.

4.9.2. Online validation of offline analyses

Offline analyses of data stored during BCI operation are

not by themselves sufficient for assessing and comparing

alternative signal features, feature extraction routines, trans-

lation algorithms, etc. While they can suggest which meth-

ods are likely to work best online, they cannot predict the

short- or long-term effects of differences among methods in

the user feedback. Methods that appear promising in offline

analyses must ultimately be validated by extensive online

testing over prolonged periods in adequate numbers of

users, and this testing should incorporate to the greatest

extent possible appropriate internal (i.e. intra-individual)

and/or external (i.e. inter-individual) controls.

4.9.3. Assessment of both user performance and system

performance

Effective assessment of BCI performance requires two

levels of evaluation: the user and the system. The user must

control the signal features, and the system must recognize

that control and translate it into device control effectively and

consistently. User performance can be defined as the level of

correlation between user intent and the signal feature(s) the

BCI employs to recognize that intent. One useful measure of

this correlation is r2 (Section 4.5). Perfect correlation

produces an r2 value of 1.00. As illustrated in Fig. 3, this

measure proved very useful in choosing the best spatial filter

method for extracting mu- or beta-rhythm signal features

(McFarland et al., 1997b). It is also valuable for selecting

the electrode location and frequency band used to determine

mu- or beta-rhythm amplitude (e.g. Wolpaw et al., 2000b).

Evaluation of system performance has two parts: perfor-

mance in a specific application, assessed as speed and/or

accuracy, and theoretical performance, measured as infor-

mation transfer rate. Up to now, most studies have simply

reported the accuracy and/or speed for specific applications.

These data are certainly important. At the same time, they

are affected by the characteristics of the application and the

success with which the system interfaces the user’s control

of the signal features with that application. Thus, they make

comparisons between different studies difficult, and they do

not reveal what might theoretically be done with the degree

of control that the user has.

The standard method for measuring communication and

control systems is information transfer rate, or bit rate. It is

the amount of information communicated per unit time.

Derived from Shannon and Weaver (1964) (summarized

in Pierce, 1980), this measure incorporates both speed and

accuracy in a single value. Fig. 4 shows the relationship

between accuracy and bit rate for different numbers of

choices. Bit rate is shown both as bits/trial (i.e. bits/selec-

tion), and as bits/min when 12 selections are made per min

(a rate comparable to that of several current BCIs (e.g.

Birbaumer et al., 2000; Donchin et al., 2000; Pfurtscheller

et al., 2000a; Wolpaw et al., 2000b)). For example, the bit

rate of a BCI that selects between two choices with 90%

accuracy is equal to that of a BCI that selects among 4

choices with 65% accuracy. The great importance of accu-

racy, shown in Fig. 4, has often not received proper recogni-

tion in BCI research. With two choices, 90% accuracy is
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Fig. 4. Information transfer rate in bits/trial (i.e. bits/selection) and in bits/

min (for 12 trials/min) when the number of possible choices (i.e. N) is 2, 4,

8, 16, or 32. As derived from Pierce (1980) (and originally from Shannon

and Weaver, 1964), if a trial has N possible choices, if each choice has the

same probability of being the one that the user desires, if the probability (P)

that the desired choice will actually be selected is always the same, and if

each of the other (i.e. undesired) choices has the same probability of selec-

tion (i.e. ð1 2 PÞ=ðN 2 1Þ), then bit rate, or bits/trial (B), is:

B ¼ log2 N 1 P log2 P 1 ð1 2 PÞlog2½ð1 2 PÞ=ðN 2 1Þ�. For each N, bit

rate is shown only for accuracy $ 100=N (i.e. $chance) (from Wolpaw

et al., 2000a).



literally twice as good as 80%, and only half as good as

100%. Bit rate is an objective measure for measuring

improvement in a BCI and for comparing different BCIs.

It can also help select applications (Wolpaw et al., 2000a).

4.9.4. Evaluation in relevant situations

BCI evaluation should also include testing in circum-

stances like those of real-life applications. As noted

above, assessment of online performance is essential. In

addition, BCIs should be tested under conditions in which

the user chooses the message or command. This testing can

reveal how well the BCI adapts to spontaneous variation in

the signal features when it does not have the advantage of

knowing what the output is supposed to be. It is also impor-

tant to evaluate how well BCI operation combines with

other brain functions. A BCI that requires total user atten-

tion might not support a conversation or other interaction in

which the user must continually choose the messages to

send and evaluate the responses they elicit from the other

person or from an external device.

4.9.5. A general purpose BCI system for research and

development

In order to facilitate and encourage accommodation to

these important principles across BCI research efforts,

several groups are currently collaborating on development

of a general purpose BCI system, called BCI2000 (Wolpaw

et al., 2000c; Schalk et al., 2001). The rationale for this effort

is that, while different BCI systems differ widely in their

signal features, feature extraction methods, translation algo-

rithms, output devices, and operating protocols, they all need

these basic components (Fig. 1). BCI2000 is a documented,

distributed, and open general purpose BCI system, with 4

interacting processes: signal acquisition and storage; feature

extraction and translation; device control; and operating

protocol. Each process is independently executable in

Windows NT/2000 on the same machine or on several

networked machines. The processes interact through a prede-

fined interface, so that different versions of each are inter-

changeable, and so that different languages can be used. The

plan is to make BCI2000, with associated data storage and

analysis tools, available to those engaged in BCI research and

development. The goal is to facilitate progress and promote

use of standard methods for evaluating performance.

4.9.6. Documentation and dissemination of results

Finally, if the recent interest and progress in BCI research

is to develop into a stable and successful research endeavor,

the focus must be on production of peer-reviewed primary

articles in high-quality scientific and engineering journals.

Furthermore, researchers should recognize that the intense

and often distorted media attention that the idea of direct

brain-computer communication attracts, while an advantage

in some respects, is also a problem, because it engenders

unrealistic expectations in the public and skepticism in

scientists. Thus, it is important for researchers to be conser-

vative in their interactions with the media, and to adhere as

closely as possible to ‘the Ingelfinger rule’, the principle that

peer-reviewed publication should precede any other detailed

dissemination of research results. While studies are often

first reported in meeting presentations and abstracts, and

may reach the popular media in that way, their first complete

description and documentation should be in a peer-reviewed

format (Relman, 1981).

5. Conclusions

A BCI allows a person to communicate with or control

the external world without using the brain’s normal output

pathways of peripheral nerves and muscles. Messages and

commands are expressed not by muscle contractions but

rather by electrophysiological phenomena such as evoked

or spontaneous EEG features (e.g. SCPs, P300, mu/beta

rhythms) or cortical neuronal activity. BCI operation

depends on the interaction of two adaptive controllers, the

user, who must maintain close correlation between his or her

intent and these phenomena, and the BCI, which must trans-

late the phenomena into device commands that accomplish

the user’s intent.

Present-day BCIs have maximum information transfer

rates #25 bits/min. With this capacity, they can provide

basic communication and control functions (e.g. environ-

mental controls, simple word processing) to those with the

most severe neuromuscular disabilities, such as those locked

in by late-stage ALS or brainstem stroke. They might also

control a neuroprosthesis that provides hand grasp to those

with mid-level cervical spinal cord injuries. More complex

applications useful to a larger population of users depend on

achievement of greater speed and accuracy, that is, higher

information transfer rates.

Future progress hinges on attention to a number of crucial

factors. These include: recognition that BCI development is

an interdisciplinary problem, involving neurobiology,

psychology, engineering, mathematics, computer science,

and clinical rehabilitation; identification of the signal

features, whether evoked potentials, spontaneous rhythms,

or neuronal firing rates, that users are best able to control;

the extent to which this control can be independent of activ-

ity in conventional motor output and sensory input channels;

the extent to which this control depends on normal brain

function; identification of the best feature extraction meth-

ods and the best algorithms for translating these features

into device control commands; development of methods

for maximizing each user’s control of these signal features;

attention to the identification and elimination of artifacts

such as EMG and EOG activity; adoption of precise and

objective procedures for evaluating BCI performance;

recognition of the need for long-term as well as short-term

assessment of performance; identification of appropriate

applications; proper matching of BCI applications and

users; close attention to factors that determine user accep-
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tance of augmentative technology; and emphasis on peer-

reviewed publications and appropriately conservative

response to media attention. With adequate recognition

and effective engagement of these issues, BCI systems

could provide an important new communication and control

option for those with disabilities that impair normal commu-

nication and control channels. They might also provide to

those without disabilities a supplementary control channel

or a control channel useful in special circumstances.
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Birbaumer N, Kübler A, Ghanayim N, Hinterberger T, Perelmouter J,

Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H. The thought

translation device (TTD) for completely paralyzed patients. IEEE Trans

Rehabil Eng 2000;8:190–192.

Birch GE, Lawrence PD, Hare RD. Single-trial processing of event-related

potentials using outlier information. IEEE Trans Biomed Eng

1993;40:59–73.

Birch GE, Mason SG. Brain–computer interface research at the Neil Squire

Foundation. IEEE Trans Rehabil Eng 2000;8:193–195.

Black AH, Young GA, Batenchuk C. Avoidance training of hippocampal

theta waves in flaxedilized dogs and its relation to skeletal movement. J

Comp Physiol Psychol 1970;70:15–24.

Black AH. The direct control of neural processes by reward and punish-

ment. Am Sci 1971;59:236–245.

Black AH. The operant conditioning of the electrical activity in the brain as

a method for controlling neural and mental processes. In: McGuigan FJ,

Schoonover RA, editors. The psychology of thinking, New York, NY:

Academic Press, 1973. pp. 35–68.

Carter GT. Rehabilitation management in neuromuscular disease. J Neurol

Rehabil 1997;11:69–80.

Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of

a robot arm using simultaneously recorded neurons in the motor cortex.

Nat Neurosci 1999;2:664–670.
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