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It has been known since the pio-
neering work of Hans Berger more 
than 80 years ago that the brain’s 
electrical activity can be recorded 
noninvasively through electrodes on 
the surface of the scalp.23 Berger ob-
served that a rhythm of about 10Hz 
was prominent on the posterior scalp 
and reactive to light. He called it the 
alpha rhythm. This and other obser-
vations showed the electroencepha-
logram (EEG) could serve as an index 
of the gross state of the brain. Despite 
Berger’s careful work many scientists 
were initially skeptical, with some 
suggesting that the EEG might repre-
sent some sort of artifact. However, 
subsequent work demonstrated con-
clusively that the EEG is indeed pro-
duced by brain activity.23 

Electrodes on the surface of the 
scalp are at some distance from brain 
tissue, separated from it by the cover-
ings of the brain, skull, subcutaneous 
tissue, and scalp. As a result, the signal 
is considerably degraded, and only the 
synchronized activity of large numbers 
of neural elements can be detected, 
limiting the resolution with which 
brain activity can be monitored. More-
over, scalp electrodes pick up activ-
ity from sources other than the brain, 
including environmental noise (such 
as 50Hz or 60Hz activity from power 
lines) and biological noise (such as ac-
tivity from the heart, skeletal muscles, 
and eyes). Nevertheless, since the time 
of Berger, many studies have used the 
EEG to gain insight into brain function, 
with many of them using averaging to 
separate EEG from superimposed elec-
trical noise. 

BraIn aCtIVIty ProDUCes  electrical signals detectable 
on the scalp, on the cortical surface, or within the 
brain. Brain-computer interfaces (BCIs) translate 
these signals into outputs that allow users to 
communicate without participation of peripheral 
nerves and muscles36 (see Figure 1). Because they do 
not depend on neuromuscular control, BCIs provide 
options for communication and control for people 
with devastating neuromuscular disorders (such as 
amyotrophic lateral sclerosis, or ALS, brainstem stroke, 
cerebral palsy, and spinal cord injury). The central 
purpose of BCI research and development is to enable 
these users to convey their wishes to caregivers, use 
word-processing programs and other software, and even 
control a robotic arm or neuroprosthesis. Speculation 
has suggested that BCIs could be useful even to people 
with lesser, or no, motor impairment. 
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The brain’s electrical signals enable people 
without muscle control to physically interact 
with the world. 
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 key insights
    Brain-computer interfaces provide a 

new communication-and-control option 
for individuals for whom conventional 
methods are ineffective. 

    Current BCI technology is slow, 
benefiting only those with the most 
severe disabilities.

    Research may greatly expand the 
number of people who would benefit 
from the technology. 
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EEG research reflects two major 
paradigms: evoked potentials and 
oscillatory features. Evoked poten-
tials are transient waveforms, or brief 
perturbations in the ongoing activ-
ity, that are phase-locked to an event 
(such as a visual stimulus). They are 
typically analyzed by averaging many 
similar events in the time-domain. 
Although oscillatory features in an 
EEG may occur in response to specific 
events, they are usually not phase-
locked and typically studied through 
spectral analysis. Historically, most 
EEG studies have examined phase-
locked evoked potentials. Both these 
major paradigms have been applied 
in BCIs.36 

The term “brain-computer inter-
face” can be traced to Jacques Vidal of 
the University of California, Los An-
geles who devised a BCI system in the 

1970s based on visual evoked-poten-
tials.34 His users viewed a diamond-
shape red checkerboard illuminated 
with a xenon flash. By attending to dif-
ferent corners of the flashing checker-
board, they could generate right, up, 
left, and down commands, enabling 
them to move through a maze present-
ed on a graphics terminal. An IBM360 
mainframe digitized the data, and 
an XDS Sigma 7 computer controlled 
the experimental events. Users first 
provided data to train a stepwise lin-
ear discriminant function, then navi-
gated the maze online in real time. 
Thus, Vidal34 used signal-processing 
techniques to realize real-time analy-
sis of the EEG with minimal averag-
ing. The waveforms showed by Vidal34 
suggested his BCI used EEG activity in 
the timeframe of the N100-P200 com-
ponents, with the N and P indicating 

negative and positive peaks, and the 
numbers indicating the approximate 
latency in msec. 

Vidal’s achievement was an in-
teresting demonstration of proof of 
principle. In the early 1970s, it was far 
from practical, given that it depended 
on a time-shared system with limited 
processing capacity. Vidal34 also in-
cluded in his system online removal 
of ocular artifacts to prevent them 
from being used for control. A decade 
earlier, Edmond Dewan6 of the Air 
Force Cambridge Research Lab, Bed-
ford MA, instructed users to explicitly 
use eye movements to modulate their 
brain waves, showing that subjects 
could learn to transmit Morse code 
messages using EEG activity associ-
ated with eye movement. 

The fact that both Vidal’s and De-
wan’s BCIs depended on eye move-

BCIs are a direct communication pathway between the brain and external devices. eeG measurements at the Danish master’s program in 
medicine & technology; http://www.medicin-ing.dk/kandidat/en.
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ment made them somewhat less in-
teresting from a scientific or clinical 
point of view, since they required ac-
tual muscle control or eye movement, 
simply using EEG to reflect the result-
ing gaze direction. 

Varieties of BCI signals 
Farwell and Donchin7 reported the first 

use of a P300-based spelling device 
(see Figure 2b) in which a positive po-
tential around 300msec after an event 
significant to the subject is consid-
ered a “cognitive” potential since it is 
generated in tasks where the subject 
discriminates among stimuli. Far-
well’s and Donchin’s7 users viewed a 
6×6 matrix of the letters of the alpha-

bet and several other symbols, focus-
ing attention on the desired selection, 
as the rows and columns of the ma-
trix were repeatedly flashed to elicit 
visual evoked potentials. Farwell and 
Donchin7 found their users were able 
to spell the word “brain” through the 
P300 spelling device; in addition, they 
did an offline comparison of detection 
algorithms, finding the stepwise linear 
discriminant analysis was generally 
best. The fact that the P300 potential 
reflects attention rather than simply 
gaze-direction implied this BCI did not 
depend on muscle, or eye-movement, 
control, thus representing a significant 
advance. Several groups have since fur-
ther developed this BCI method.13

Wolpaw et al.38 reported the first use 
of sensorimotor rhythms (SMRs) for 
cursor control (see Figure 2a), or EEG 
rhythms that change with movement 
or imagination of movement and are 
spontaneous in the sense they do not 
require specific stimuli to occur. Peo-
ple learned to vary their SMRs to move 
a cursor to hit one of two targets on the 
top or bottom edge of a video screen. 
Cursor movement was controlled by 
SMR amplitude (measured by spectral 
analysis). A distinctive feature of this 
task is that it required users to rapidly 
switch between two states to select a 
particular target. The rapid bidirec-
tional nature of the Wolpaw et al.38 
paradigm made it distinct from prior 
studies that produced long-term uni-

figure 1. Basic design and operation of a BCI system. 
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signals from the brain are acquired by electrodes on 
the scalp or head and processed to extract specific 
signal features reflecting the user’s intent. These 
features are translated into commands to operate 
a device. users must develop and maintain good 
correlation between their intent and the BCI’s signal 
features. The BCI must select and extract features 
the user can control, translating them into device 
commands (adapted from Wolpaw et al.36). 

figure 2. Current human BCI systems. 

A and B are noninvasive, and C is invasive. A. In a sensorimotor rhythm BCI, scalp eeG is 
recorded over sensorimotor cortex; users control the amplitude of rhythms to move a cursor 
to a target on the screen. B. In a P300 BCI, a matrix of choices is presented on screen, and 
scalp eeG is recorded as these choices flash in succession. C. In a cortical neuronal BCI, 
electrodes implanted in the cortex detect action potentials of single neurons; users learn to 
control the neuronal firing rate to move a cursor on screen (adapted from Wolpaw et al.36). 
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directional changes in brain rhythms; 
for example, users were required to 
maintain an increase in the size of an 
EEG rhythm for minutes at a time. In 
a series of subsequent studies, this 
group showed that the signals control-
ling the cursor were actual EEG activity 
and that covert muscle activity did not 
mediate this EEG control.18,31 

These initial SMR results were sub-
sequently replicated by others21,24 and 
extended to multidimensional con-
trol.37 These P300 and SMR BCI stud-
ies together showed that noninvasive 
EEG recording of brain signals can 
serve as the basis for communication-
and-control devices. 

A number of laboratories have ex-
plored the possibility of developing 
BCIs using single-neuron activity de-
tected by microelectrodes implanted 
in the cortex12,30 (see Figure 2c). Much 
of the related research has been done 
in non-human primates, though trials 
have also been done with humans.12 
Other studies have shown that record-
ings of electrocorticographic (ECoG) 
activity from the surface of the brain 
can also provide signals for a BCI15; 
to date they indicate that invasive re-
cording methods can also serve as the 
basis for BCIs. Meanwhile, important 
issues concerning their suitability for 
long-term human use have yet to be 
resolved. 

Earlier studies demonstrating oper-
ant conditioning of single units in the 
motor cortex of primates,9 hippocam-
pal theta rhythm of dogs,2 and senso-
rimotor rhythm in humans29 showed 
brain activity could be trained with 
operant techniques. However, these 
studies were not demonstrations of 
BCI systems for communication and 
control since they required subjects 
to increase brain activity for periods 
of many minutes, showing that brain 
activity could be tonically altered in 
a single direction through training. 
However, communication-and-control 
devices require that users be able to 
select from at least two distinct alter-
natives; that is, there must be at least 
one bit of information per selection. 
Effective communication-and-control 
devices require users to rapidly switch 
between multiple alternatives. 

In addition to electrophysiological 
measures, researchers have also dem-
onstrated the feasibility of magneto-

encephalography (MEG),20 functional 
magnetic resonance imaging (fMRI),28 
and near-infrared systems (fNIR).4 
Current technology for recording 
MEG and fMRI is both expensive and 
bulky, making it unlikely for practical 
applications in the near term; fNIR is 
potentially cheaper and more com-
pact. However, both fMRI and fNIR are 
based on changes in cerebral blood 
flow, an inherently slow response.11 
Electrophysiological features repre-
sent the most practical signals for BCI 
applications today. 

system Design 
Communication-and-control applica-
tions are interactive processes requir-
ing users observe the results of their 
effort to maintain good performance 
and correct mistakes. For this reason, 
BCIs must run in real time and provide 
real-time feedback to users. While 
many early BCI studies satisfied this 
requirement,24,38 later studies were 
often based on offline analyses of pre-
recorded data1; for example, the Lotte 
et al.16 review of studies evaluating BCI 
signal-classification algorithms found 
most used offline analyses. Indeed, 
the current popularity of BCI research 
is probably due in part to the ease of-
fline analyses are performed on pub-
licly available data sets. While such 
offline studies may help guide actual 
online BCI investigations, there is no 
guarantee that offline results will gen-
eralize to online performance. Users’ 
brain signals are often affected by BCI 
outputs that are in turn determined 

by the algorithm the BCI is using. It 
is thus not possible to predict results 
precisely from offline analyses that 
cannot account for these effects. 

Blankertz et al.3 identified several 
trends in the results of a BCI data-
classification competition. Most win-
ning entries used linear classifiers, 
the most popular being Fisher’s dis-
criminant and linear support vector 
machines (SVMs). The winning entries 
for data sets with multichannel oscil-
latory features often used common 
spatial patterns. In their review of the 
literature on BCI classifiers, Lotte et 
al.16 concluded that SVMs are particu-
larly efficient, attributing the efficien-
cy to their regularization property and 
immunity to the curse of dimensional-
ity. They also concluded that combina-
tions of classifiers seem efficient, not-
ing a lack of comparison of classifiers 
within the same study using otherwise 
identical parameters. 

Muller and Blankertz21 advocated a 
machine-learning approach to BCIs in 
which a statistical analysis of a calibra-
tion measurement is used to train the 
system. The goal is to develop a “zero-
training” method providing effective 
performance from the first session, 
contrasting it with one based on train-
ing users to control specific features 
of brain signals.38 A system that can 
be used without extensive training is 
appealing since it requires less initial 
effort on the part of both the BCI user 
and the system operator. Operation 
of such a system is based on the as-
yet uncertain premise that users can 

figure 3. three approaches to BCI design. 

user user user

BCI system BCI system BCI system

Arrows indicate the element that adapts; the BCI, the user, or both adapt  
to optimize and maintain BCI performance (adapted from McFarland et al.17). 
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ger necessary to operate a sensorimo-
tor rhythm-based BCI. As is typical 
of many simple motor tasks, perfor-
mance becomes automatized through 
extended practice. Automatized per-
formance may be less likely to inter-
fere with mental operations users 
might wish to engage in concurrent 
with their BCI use; for example, com-
posing a manuscript is much easier 
if the writer does not need to think 
extensively about each individual key-
stroke. 

As noted, EEG recording may be 
contaminated by non-brain activity 
(such as line noise and muscle activ-
ity); see Fatourechi et al.8 for a review. 
Activity recorded from the scalp rep-
resents the superposition of many 
signals, some originating in the brain, 
some elsewhere. These signals include 
potentials generated by retinal dipoles, 
or eye movement and blinks, and facial 
muscles. It is noteworthy that mental 
effort is often associated with changes 
in eye-blink rate and muscle activity.35 
BCI users might generate these arti-
facts without being aware of what they 
are doing simply by making facial ex-
pressions associated with effort. 

Facial muscles can generate sig-
nals with energy in the spectral bands 
used as features in an SMR-based 
BCI18 Muscle activity can also modu-
late SMR activity; for example, users 
can move their right hands in order 
to desynchronize the mu rhythm over 
the left hemisphere. This sort of me-
diation of the EEG through peripheral 
muscle movements was a concern in 
the early days of BCI development. 
As noted earlier, Dewan6 trained us-
ers to send Morse code messages us-
ing occipital alpha rhythms modu-
lated by voluntary movements of eye 
muscles. For this reason, Vaughan 
et al.33 recorded EMG from 10 distal 
limb muscles, while BCI users used 
central mu or beta rhythms to move 
a cursor to targets on a video screen. 
EMG activity was very low in these 
well-trained users. Most important, 
the correlations between target po-
sition and EEG activity could not be 
accounted for through EMG activity. 
Similar studies have been done with 
BCI users moving a cursor in two di-
mensions,37 showing that SMR modu-
lation does not require actual move-
ments or muscle activity. 

repeatedly and reliably maintain the 
specified correlations between brain 
signals and intent. Figure 3 outlines 
three different conceptualizations of 
where adaptation might take place to 
establish and maintain good BCI per-
formance: In the first, the BCI adapts 
to the user; in the second, the user 
adapts to the BCI; and, in the third, 
user and system adapt to each other. 

A number of BCI systems are de-
signed to detect user performance of 
specific cognitive tasks. Curran et al.3 

suggested that cognitive tasks (such 
as navigation and auditory imagery) 
might be more useful in driving a BCI 
than motor imagery. However, senso-
rimotor rhythm-based BCIs may pro-
vide several advantages over systems 
that depend on complex cognitive op-
erations; for example, the structures 
involved in auditory imagery are also 
likely to be driven by auditory sen-
sory input. Wolpaw and McFarland37 
reported that with extended practice 
users report motor imagery is no lon-

figure 5. hardware in the Wadsworth Center’s home BCI system, including 16-channel 
electrode cap for signal recording, solid-state amplifier, laptop, and additional monitor  
as user display. 

figure 4. BCI2000 design consists of four modules: operator, source, signal processing,  
and application. 
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Operator deals with system configuration and online presentation of results to the 
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to user application and back to source (adapted from schalk et al.25). 
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applications 
Several recent BCI spelling systems 
are based on different EEG signals, 
including the mu rhythm22,26 and the 
P300.31 The Mu rhythm systems made 
use of machine-learning paradigms 
that minimized training, with users 
of both mu-based systems reportedly 
averaging between 2.3–7 characters/
minute22 and 2.85–3.38 characters/
minute.26 The P300 system averaged 
3.66 selections/minute.31 Townsend et 
al.24  noted the reported rate depends 
on how the figure is computed, but 
study authors do not always provide 
details. Omitting time between trials 
increased Townsend et al.31 results 
from 3.66 to 5.92 characters/second. 
In any case, these systems perform 
within a similar general range. At cur-
rent BCI character rates, only users 
with limited options could benefi. 

BCI systems have also been de-
veloped for control applications; for 
example, several groups have shown 
that human subjects can use their EEG 
activity to drive a simulated wheel-
chair.10,14 Bell et al.1 showed the P300 
could be used to select among complex 
commands to a partially autonomous 
humanoid robot; for a review of the 
use of BCI for robotic and prosthetic 
devices see McFarland and Wolpaw.19 

Several commercial concerns re-
cently produced inexpensive devices 
purported to measure EEG. Both Emo-
tiv and Neurosky developed products 
with a limited number of electrodes 
that do not use conventional gel-based 
recording technology27 and are intend-
ed to provide input for video games. 
Not clear is the extent to which they use 
actual EEG activity, as opposed to scalp-
muscle activity or other non-brain 
signals. Given the well-established 
prominence of EMG activity in activity 
recorded from the head, it seems likely 
that such signals account for much of 
the control these devices provide.27 

Conclusion 
In a review of the use of BCI technology 
for robotic and prosthetic devices, Mc-
Farland and Wolpaw19 concluded that 
the major problem facing BCI applica-
tions is how to provide fast, accurate, 
reliable control signals, as well as other 
uses of BCIs. Current BCI systems that 
operate using actual brain activity can 
provide communication-and-control 

options of practical value mainly for 
people severely limited in their motor 
skills and thus have few other options. 
Widespread use of BCI technology by 
individuals with little or no disability 
is unlikely in the short-term and would 
require much greater speed and accu-
racy than has so far been demonstrat-
ed in the scientific literature. 

Noninvasive and invasive methods 
would both benefit from improved 
recording methods. Current invasive 
methods do not deal adequately with 
the need for long-term performance 
stability. The brain’s complex reac-
tion to an implant is still imperfectly 
understood and might impair long-
term performance. Noninvasive EEG 
electrodes require some level of skill 
in the person placing them, as well as 
in periodic maintenance to ensure suf-
ficiently good contact with the skin; 
more convenient and stable electrodes 
are under development. Improved 
methods for extracting key EEG fea-
tures and translating them into device 
control, as well as user training, would 
also help improve BCI performance. 

Recent developments in computer 
hardware provide compact portable 
systems that are extremely powerful. 
Use of digital electronics has also led 
to improved size and performance of 
EEG amplifiers. Thus it is no longer 
necessary to use a large time-shared 
mainframe, as it was with Vidal34; stan-
dard laptops easily handle the vast ma-
jority of real-time BCI protocols. Sig-
nal-processing and machine-learning 
algorithms have also been improved. 
Coupled with discovery of new EEG 
features for BCI use and development 
of new paradigms for user training, 
such improvements are gradually in-
creasing the speed and reliability of 
BCI communication and control, de-
velopments facilitated by the BCI2000 
software platform.25 

BCI2000 is a general-purpose re-
search-and-development system in-
corporating any brain signal, signal-
processing method, output device, 
and operating protocol. BCI2000 
consists of a general standard for cre-
ating interchangeable modules de-
signed according to object-oriented 
principles (see Figure 4), including a 
source module for signal acquisition, 
signal-processing module, and user-
application module. Configuration 

sensorimotor 
rhythm-based 
BCIs may provide 
several advantages 
over systems 
that depend on 
complex cognitive 
operations. 
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and coordination of these modules is 
accomplished through a fourth opera-
tor module; several source modules, 
signal-processing modules, and user 
applications have been created for the 
BCI2000 standard (see http://www.
bci2000.org/BCI2000/Home.html). 

The Wadsworth Center recently be-
gan developing a system for home use 
by individuals with severe motor im-
pairments.32 Its basic hardware (see 
Figure 5) consists of a laptop comput-
er with 16-channel EEG acquisition, a 
second screen placed in front of the 
user, and an electrode cap; software is 
provided by the BCI2000 general-pur-
pose system.25 The initial users had 
late-stage ALS, with little or no volun-
tary movement, and found conven-
tional assistive communication de-
vices inadequate for their needs. The 
P300-based matrix speller is used for 
these applications due to its relatively 
high throughput for spelling and sim-
plicity of use. A 49-year-old scientist 
with ALS has used this BCI system on 
a daily basis for approximately three 
years, finding it superior to his eye-
gaze system (a letter-selection device 
based on eye-gaze direction) and us-
ing it from four to six hours per day 
for email and other communication 
purposes.32 

How far BCI technology will go and 
how useful it will be depend on future 
research developments. However, it is 
apparent that BCIs can serve the ba-
sic communication needs of people 
whose severe motor disabilities pre-
vent them from using conventional 
augmentive communications devices, 
all of which require muscle control. 
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