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bstract

Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer through brain–computer
nterfaces (BCIs). These devices operate by recording signals from the brain and translating these signals into device commands. They can be
sed by people who are severely paralyzed to communicate without any use of muscle activity. One of the major impediments in translating this
ovel technology into clinical applications is the current requirement for preliminary analyses to identify the brain signal features best suited for
ommunication. This paper introduces and validates signal detection, which does not require such analysis procedures, as a new concept in BCI
ignal processing. This detection concept is realized with Gaussian mixture models (GMMs) that are used to model resting brain activity so that any
hange in relevant brain signals can be detected. It is implemented in a package called SIGFRIED (SIGnal modeling For Real-time Identification
nd Event Detection). The results indicate that SIGFRIED produces results that are within the range of those achieved using a common analysis
trategy that requires preliminary identification of signal features. They indicate that such laborious analysis procedures could be replaced by

erely recording brain signals during rest. In summary, this paper demonstrates how SIGFRIED could be used to overcome one of the present

mpediments to translation of laboratory BCI demonstrations into clinically practical applications.
 2007 Published by Elsevier B.V.
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. Introduction

.1. Brain–computer interface (BCI) technology

Many people with severe motor disabilities need aug-
entative communication technology. Those who are totally

aralyzed, or “locked-in,” cannot use conventional augmenta-
ive technologies, all of which require some measure of muscle
ontrol. Over the past two decades, various studies have eval-
ated the possibility that brain signals recorded from the scalp
r from within the brain could provide new augmentative tech-
ology that does not require muscle control (e.g., Birbaumer et

l., 1999; Farwell and Donchin, 1988; Hochberg et al., 2006;
ennedy et al., 2000; Kübler et al., 1999, 2005; McFarland et

l., 1993; Müller and Blankertz, 2006; Pfurtscheller et al., 1993;
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erruya et al., 2002; Sutter, 1992; Taylor et al., 2002; Vaughan et
l., 2006; Wessberg et al., 2000; Wolpaw and McFarland, 2004;
olpaw et al., 1991, 2002).
These brain–computer interface (BCI) systems measure spe-

ific features of brain activity and translate them into device
ontrol signals. Thus, a BCI system derives and utilizes control
ignals to effect the user’s intent, and it usually does so by allow-
ng the user to make a selection. This selection capacity is often
ealized using a computer cursor (e.g., Hochberg et al., 2006;

olpaw and McFarland, 2004), but also in other ways such as
ontrolling an arrow on a dial (Müller and Blankertz, 2006), a
oving robot (Millán et al., 2004), or controlling other exter-

al devices (Donoghue et al., 2007; Pfurtscheller et al., 2000).
ey performance characteristics of BCI systems are speed (i.e.,
ow long it takes to make a selection) and precision (i.e., how

ften the executed selection is the one the user intended). Cur-
ent systems allow for one selection within several seconds at a
elatively high accuracy (e.g., 90% accuracy in a binary task).
xpressed in bit rate, which combines both speed and accuracy,

mailto:schalk@wadsworth.org
dx.doi.org/10.1016/j.jneumeth.2007.08.010
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he sustained performance of typical non-invasive and invasive
CI systems is still modest (i.e., between 5 and 25 bits/min;
olpaw et al., 2002).
These studies show that non-muscular communication and

ontrol is possible and imply that BCI technologies can serve
seful purposes for those who cannot use conventional technolo-
ies.

.2. The signal identification problem

While these laboratory studies represent impressive techni-
al demonstrations of a novel way to communicate, significant
mpediments remain that make it difficult to translate this tech-
ology from the laboratory to clinical practice. One of the major
ssues is that creation and successful operation of a BCI device
epend on identification of those brain signal features and loca-
ions that are best suited for communication. This initial and
ontinual identification is necessary because these features and
ocations are usually subject-specific and may also change over
ime.

In addition, there is essentially no theoretical basis (and thus
o mathematical model) for the choice of signals for commu-
ication. All current BCI systems are based on experimental
bservations that particular mental tasks (such as imagining
and movements) have particular effects on specific brain sig-
als (such as the mu rhythm measured at a particular location).
ven with this empirical evidence, the choice of signals and

asks is difficult and is likely to be suboptimal for communi-
ation such that a completely different signal and task might
rovide better performance. Furthermore, the choice of loca-
ion, feature (e.g., frequency), and task has to be optimized for
ach individual and for each brain signal (e.g., the mu rhythm).
he difficulty of choosing signals and tasks, and the reliance on

echnical experts that this currently implies, can be regarded as
he signal identification problem for BCI communication.

Approaches to translate BCI signal features into device con-
rol signals typically use classification/regression procedures.
or example, studies reported in the literature have used linear
iscriminant analysis (Babiloni et al., 2000); neural networks
Huan and Palaniappan, 2004; Pfurtscheller et al., 1997); sup-
ort vector machines (Garrett et al., 2003; Gysels et al., 2005; Lal
t al., 2004; Müller et al., 2003); linear regression (McFarland et
l., 1993, 1997a). These procedures are summarized in a recent
eview article on BCI feature extraction and translation methods
McFarland et al., 2006). This article lists 12 different methods
or BCI feature translation and cites 26 corresponding articles.
ll these articles describe different realizations of classification
r regression procedures. Most important, all these approaches
equire that the task, location, and brain signal features be opti-
ized for each user by collecting and analyzing a comprehensive

ody of preliminary data. This requirement exists because the
ypical classification approach assumes that the brain produces

number of discrete states that are communicated using one

r more signals, and the BCI problem is framed so as to detect
hese states.

In summary, current BCI signal processing techniques are
ll similar to the feature extraction/classification approaches

g
t
i
d

nce Methods  167 (2008) 51–62

ommonly found in communication systems, which typically
emand a detailed understanding and thus a mathematical model
f the transmitted signal. This has persisted despite the fact that
here is little a priori information about the signal best suited for
CI communication.

.3. The signal identification paradox

As described above, current BCI signal processing
pproaches focus on extracting one specific set of brain signal
eatures that is modulated by one particular mental task, i.e., on
he creation of a highly specific filter that provides useful results
nly if the user appropriately modulates that particular set of sig-
al features. Furthermore, they require data for all relevant tasks
i.e., classes) so that they can create this filter. Thus, all current
ethods require an initial procedure that identifies in each user

ut of all possible tasks those that best modulate one or some of
he many possible signal features, and the definition of a filter
hat extracts this particular brain signal. This characteristic, i.e.,
hat both features and tasks need to be identified, differentiates
he BCI signal identification problem from the typical classifi-
ation problem in which the different data classes are defined
priori and only the features need to be appropriately selected

nd combined.
Unfortunately, there is no strong a priori basis for selecting

asks and features. Hence, the number of possible choices of
eatures and tasks increases in parallel with increasing signal
delity. In addition to potential performance benefits of better
ignal fidelity, this issue also implies that the necessary sig-
al identification procedure becomes increasingly complex and
mpractical. Signal identification procedures become more com-
lex with better signal recordings because the number of tasks
hat might modulate brain signals increases, and because, with
urrent methods, subjects need to produce all of these mental
asks. They also become impractical, because it becomes pro-
ressively more difficult for subjects to consistently produce
particular mental task (e.g., to imagine a particular type of
ovement) as the specificity of the task, and thus the speci-
city of the brain signal features related to production of that

ask, increases. Furthermore, when subjects are asked to actually
se the brain signal that was identified in the initial identifica-
ion procedure for a different purpose (i.e., to control an output
evice), these brain signals (e.g., amplitudes at particular fre-
uencies and locations) may change in response to the different
ask of controlling the output device rather than producing a
articular mental task. Moreover, as the user adapts to the new
ask, brain signals change further. It can be difficult to adapt
he function that translates signal features into control signals to
hese signal changes, in particular for complex methods (such
s neural networks or support vector machines). Thus it is pos-
ible and with increasing signal specificity increasingly likely
hat these different signal features will not be optimally trans-
ated into device output signals even though the subject exerts

ood control over some aspects of detectable brain activity. In
his scenario, which is compounded as the feature/task space
ncreases with better signal recording, BCI performance may
egrade.
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In summary, these properties of current BCI methods suggest
hat better recording and feature extraction will not necessar-
ly continue to improve performance. In addition, the fact that
urrent BCI systems depend on careful initial and continual
djustments by BCI experts, impedes widespread application of
CI technology to serve the communication and control needs
f people with severe disabilities.

.4. A novel approach to BCI signal processing

In the work described in this paper, we present a method
hat overcomes some of the issues described above. We accom-
lish this by showing how BCI control signals can be effectively
xtracted after only a reference dataset has been collected. These
ontrol signals are extracted by using a set of appropriate signal
eatures to comprehensively characterize brain signals during
est and then to determine, at each point in time, by how much
he current set of signal features differs from those in the ref-
rence dataset. Assuming that the user can modulate one or
ore of the features, he/she can use this difference for BCI

ontrol. This implies that our approach translates brain signals
nto graded one-dimensional output control signals (where the
raded capacity can then be used by a specific BCI applica-
ion to select different functions) and does not directly classify
rain states into different discrete classes. In other words,
he approach here is to detect any change that occurs in an
ppropriate set of brain signal features rather than to detect a spe-
ific set of changes in specific features. Because this approach
elies on statistics derived from only one class (e.g., rest), it
oes not guarantee to provide superior performance to meth-
ds that utilize information from all possible classes (e.g., LDA,
VMs, neural networks, common spatial patterns, etc.). How-
ver, the theoretical benefit from using all possible classes is
n practice countered by the often substantial intra- and inter-
ubject differences. Thus, the benefit of the approach presented
ere is simply that signal collection from all classes is labori-
us and impractical (and increasingly so for recordings with a
arger feature/task space) and that it is likely to be less sen-
itive to intra- and inter-subject variations in brain activity
atterns.

The paper describes a comprehensive evaluation of this novel
pproach which is implemented here in a software package
alled SIGFRIED (SIGnal modeling For Real-time Identifica-
ion and Event Detection).1 We evaluate its efficacy in the BCI
ontext by determining whether it can be used to effectively dis-
riminate the data collected during two different tasks. To do
his, we sought to answer four questions: (1) which parameters

inimize BCI error rates calculated offline; (2) whether results
chieved using SIGFRIED are comparable to results achieved
sing a conventional method (i.e., linear regression) that relies
n prior analysis of data from at least two classes and thus on

signal identification procedure; (3) whether signals produced
y SIGFRIED have characteristics that make them amenable to
eal-time feedback; (4) whether a SIGFRIED model generated

1 This package is available for use by others as part of the general-purpose
CI platform BCI2000 (Schalk et al., 2004; http://www.bci2000.org).
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or data collected during rest (as opposed to during one of the
lasses in a real-time BCI experiment, which requires a trained
ubject) can be used subsequently to produce discriminating
utput for data collected during various tasks.

. Methods

In this paper, we used data that were collected during online
CI experiments and during a typical signal identification proce-
ure, and analyzed them offline as described later in this section.

.1. BCI data collection

The BCI data were collected from three male adults (sub-
ects A–C, ages 29–40). Two had no disability. One had a spinal
njury at the level of T7 and was confined to a wheelchair. All
ave informed consent for the study, which had been reviewed
nd approved by the New York State Department of Health
nstitutional Review Board. After an initial evaluation defined
he frequencies and scalp locations of each subject’s mu and
eta rhythm activity, the subject learned EEG-based cursor
ontrol over several months. Thus, the subjects had extensive
xperience with BCI operation prior to data collection for this
tudy.

Each subject sat in a reclining chair facing a video screen and
as asked to remain motionless during performance. Scalp elec-

rodes recorded 64 channels of EEG (Sharbrough et al., 1991),
ach referred to an electrode on the right ear (amplification
0,000; band-pass 0.1–60 Hz). The BCI2000 software system
Schalk et al., 2004) was used to acquire signals from 64 chan-
els (digitized at 160 Hz) and to implement a one-dimensional
our-target BCI experiment as described below. Data from these
xperiments were originally used in the 2001 and 2003 NIPS
ata competition (Blanchard and Blankertz, 2004; Blankertz,
003; Blankertz et al., 2004) and were the basis for the offline
nalyses in the present paper.

The subjects used mu or beta rhythm amplitude (i.e., subject-
pecific frequencies in the 8–12 or 18–24 Hz band, respectively)
o control vertical cursor movement toward the vertical position
f a target located at one of four evenly spaced positions at
he right edge of the video screen. Data were collected from
ach subject for 8–10 sessions. Each session consisted of six
uns of 180–182 s each, separated by 1 min breaks, and each
un consisted of 32–35 individual trials. The total number of
rials was 1681–1920. Each trial began with a 1.1 s period during
hich the screen was blank. Then, the target appeared at one
f four possible positions (i.e., top, up, down, bottom) on the
ight edge. After the target was on the screen for 1.1 s, a cursor
ppeared at the middle of the left edge of the screen and started
raveling across the screen from left to right at a constant speed
i.e., movement period). Its vertical position was controlled by
he subject’s EEG as described below. The subject’s goal was to

ove the cursor to the height of the target. The movement period

asted between 1.9 and 2.3 s for the different subjects. When the
ursor reached the right edge, the selected target flashed for 1.1 s.
hen, the screen went blank for 1.1 s. This event signaled the
nd of the trial.

http://www.bci2000.org


5 oscie

s
n
L
m
(
s
b
c
g
i
E
a

c
u
a
t
d
c

2

6
n
e
n
r
m
r
n
t
b
t
i
i

2

s
B
m
h
B

s

F
(
a
s

m
s
w

(
c
(
a

A

F
t
(
1
s
p
e
s

2

c
m
e
s
c
s
2
a

d
n
(
1
e
F
p
d
e
P
t

g
d
G
G
p

a
(
G
d

4 G. Schalk et al. / Journal of Neur

Cursor movement was controlled as follows. Ten times per
econd, the last 200 ms of digitized EEG from one to two chan-
els over sensorimotor cortex was re-referenced using a large
aplacian spatial filter (McFarland et al., 1997b) and then sub-
itted to frequency analysis by an autoregressive algorithm

McFarland et al., 1997a) to estimate the amplitude (i.e., the
quare root of power) in a mu and/or beta rhythm frequency
and. The amplitudes for the one to two channels at frequencies
entered at 12 or 13.5 Hz (3 Hz bandwidth) were combined to
ive a control signal that was used as the independent variable
n a linear equation that controlled vertical cursor movement.
lectrode position and center frequency remained constant for
particular subject (see Appendix A for further details.)

In summary, these online BCI experiments produced four
lasses of data (i.e., one for each target) in which three subjects
sed mu or beta rhythms at particular scalp locations to move
computer cursor in one dimension. Unless otherwise noted,

he analyses described in the following sections are confined to
ata from two of the four classes in these experiments (i.e., those
orresponding to top and bottom targets).

.2. Additional data collection

In additional data collection, we also recorded data from
4 channels from four additional subjects (D–G) who were
aive to BCI control. First, we collected 6 min of data from
ach subject during rest, i.e., while the subject was relaxed and
ot actively engaged in motor performance. We subsequently
ecorded 12 min of data while the subjects performed different
otor tasks (i.e., moving both hands, both feet, or the left or

ight fist). Performance was visually cued and randomly alter-
ated among the four tasks (each lasting 4.05 s), where each
ask period was followed by rest (4.05 s). The 88 rest periods
etween motor performance were not analyzed. There were 22
rials for each of the tasks. These motor tasks, and their imag-
ned counterparts, are characteristic of those usually employed
n BCI signal identification procedures.

.3. Feature extraction

A number of studies (e.g., McFarland et al., 1997b) have
hown that spatial filtering improves signal quality in EEG-based
CI systems. We applied one realization of such a filter, the com-
on average reference (CAR), to the signal sh(k) from electrode
(where h referred to location C3 (subject A) or CP3 (subjects
and C)) at each time point k:

′(k) = sh(k) − 1

H

H∑
i=1

si(k) (1)

or the BCI data collected during the 1.9–2.3 s movement period
i.e., while the subjects actively modulated mu/beta rhythm
mplitude), we converted the CAR-filtered time-domain signal

′(k) into frequency domain amplitudes a(n). We did this by sub-
itting windows of 400 ms (no overlap) to the maximum entropy

pectral estimation technique (Marple, 1987; Priestley, 1981),
hich is based on an autoregressive model. This model of order p

p

w
w

nce Methods  167 (2008) 51–62

s′(k) + c1s
′(k − 1) + · · · + cps′(k − p) = εp) is defined by its

oefficients c1 to cp which are estimated using the Burg method
Burg, 1967, 1968). These coefficients are converted into the
mplitude spectrum A(f ) using:

(f ) =
√

εp∣∣∣∣∣1 −
p∑

k=1

ck e−j2πk(f/fs)

∣∣∣∣∣
(2)

inally, we first discretized (step size 0.2 Hz) and then averaged
hese amplitudes A(f ) in 10 frequency bins from 10 to 30 Hz
bandwidth was 2 Hz unless otherwise noted). This resulted in
0 frequency domain features af (n) that we combined, for each
ample n, into a feature vector �a(n) = [a1(n), . . . , a10(n)]. This
rocedure resulted in four to five feature samples per trial for
ach of the 1681–1920 trials (i.e., a total of 6720–9600 feature
amples per subject).

.4. Signal detection

To translate these feature samples into control signals, the
haracteristics of feature samples during one class are first
odeled. For each new feature sample, the difference to the

stablished model is derived. This difference yields a control
ignal that may drive an output device. This procedure, which
ombines existing modeling techniques with automatic model
election, is described in this section and in Sections 2.5 and
.6. It is implemented in the SIGFRIED package that is made
vailable with BCI2000.

A number of mathematical techniques could be used to
escribe aspects of signal distributions that could be used for sig-
al detection. These include one or more Gaussian distributions
i.e., Gaussian mixture models (GMMs); Stauffer and Grimson,
999), k-Nearest Neighbors (kNN) (Cover and Hart, 1967; Duda
t al., 2001), Parzen Windows (Parzen, 1962), Radial Basis
unctions (Cacoullos, 1966; Haykin, 1998), or one-class Sup-
ort Vector Machines (SVMs) (Schölkopf et al., 2001). While
etection approaches based on such techniques have been used
xtensively in other domains such as image processing (e.g.,
less, 2003; Radke et al., 2005; Stauffer and Grimson, 1999),

hey have not been used in BCI processing.
Results in image processing applications (Pless, 2003) sug-

ested a Gaussian model and indicated that multiple Gaussian
istributions (i.e., GMMs) may improve performance over one
aussian distribution. Thus, we chose GMMs (Stauffer and
rimson, 1999) to implement our detection approach for BCI
rocessing.

A Gaussian distribution c can be described by its mean �μc

nd its covariance matrix Σc. Introducing the prior probability
i.e., weight) ωc as the proportion of data points assigned to this
aussian distribution, the probability density function can be
efined (Duda et al., 2001) and weighted with ωc:
(�a(n)|c) = ωc

(2π)D/2|Σc|1/2
e(−(�a(n)−�μc)T Σ−1

c (�a(n)−�μc))/2 (3)

here D is the number of dimensions in the feature vector. Σc

as calculated as the covariance matrix of samples assigned to
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provides an estimate of the probability that this sample was

2 We also evaluated another criterion, the Bayesian Information Criterion. Its
use gave results similar to those reported here for the AIC.
G. Schalk et al. / Journal of Ne

luster c and ωc was calculated as the proportion of the number
f samples Nc assigned to that cluster compared to the total
umber of samples N.

The number of free parameters for each of C Gaussian distri-
utions (i.e., clusters) is the sum of parameters in the covariance
atrix Σc, the cluster mean �μc, and its weight ωc. Thus, the total

umber of parameters Np in the signal model can be determined
s follows:

p =
[
D(D + 1)

2
+ D + 1

]
C (4)

.5. Parameterization

Gaussian mixture models (GMMs) can be used to approx-
mate signal distributions and can thereby form the basis for
he BCI detection approach proposed in this paper by modeling
he probability density function of signals recorded during one
ondition. Four sets of variables must be determined to define a
MM (C, the number of clusters); and for each cluster c, �μc, Σc,
c, the feature mean, covariance matrix, and prior probability,

espectively.
To determine those �μc, Σc, ωc that produce an effective

pproximation of the original sample distribution given the num-
er of clusters C, various algorithms have been proposed. One
f the best known of these is the Expectation Maximization
EM) algorithm (Dempster et al., 1977). Each iteration of the
M algorithm consists of two steps: an Estimation (E) step
nd a Maximization (M) step. The M step maximizes a like-
ihood function that is redefined in each iteration by the E
tep. The Competitive EM (CEM) algorithm (Biernacki et al.,
003; Celeux and Govaert, 1992) improves on the EM algorithm
ainly with regard to speed of convergence (and thus execution

peed). It does this by assigning, in a C step, each sample to the
ost likely cluster, whereas the EM algorithm requires accu-
ulation of fractional statistics. Because speed of execution is

n important criterion for our application, we chose the CEM
lgorithm over the EM algorithm.

Each of these two algorithms requires definition of the num-
er of Gaussian clusters C, which is typically done manually.
his was not acceptable because our goal was to minimize the
xpert oversight required. Optimization of the number of clus-
ers is not a straightforward problem, because the approximation
f the GMM model to the source distribution improves with the
umber of clusters. In the end, the source distribution would be
ost accurately described by a model with as many Gaussian
ixtures as data points. This is not resource efficient and may

ot provide the best level of generalization. Thus, we consid-
red penalizing the performance of the model by a factor that
eflected the complexity of the model. In the literature, such
erms are generally referred to as information criteria and are
ypically in the form of Eq. (5):
nformation criterion = measure of fit + complexity penalty (5)

number of these information criteria have been described in the
iterature (e.g., the Akaike Information Criterion (AIC): Akaike,

s
c
E
m

ience Methods 167 (2008) 51–62 55

973; Vapnik’s Structural Risk Minimization (SRM): Vapnik
nd Chervonenkis, 1974; Schwarz’s Bayesian Information Cri-
erion (BIC): Schwarz, 1978; Rissanen’s Minimum Description
ength (MDL) and Shortest Data Description (SSD): Rissanen,
978 and Bozdogan’s Corrected Akaike Information Crite-
ion (CAICF) and Consistent Akaike Information Criterion:
ozdogan, 1974) (see Torr, 1997 for a comprehensive review).

Because there was no theoretical basis for selecting one of
hese criteria over the others, we arbitrarily picked the Akaike
nformation Criterion.2 This criterion (KAIC in Eq. (6)) is not
nfluenced by the number of observations N (Akaike, 1973):

AIC = −2L + 2Np (6)

here the maximized likelihood L is defined as

=
N∑

n=1

log(p(�a(n)|cbest(n))) (7)

is the total number of samples and cbest(n) is derived as

best(n) = argmax
ci ∈N

p(�a(n)|ci) (8)

e implemented automatic model selection (i.e., automated
etermination of the number of clusters C) by optimizing KAIC
s a function of C. This optimization was performed by starting
ith a predefined number of clusters (10) and then iteratively

esting whether increase or decrease of the number of clusters
mproved KAIC. The number of clusters was increased if split-
ing any existing cluster into two new clusters improved KAIC.
he number of clusters was decreased (i.e., the cluster with the
mallest contribution to the maximized likelihood L was deleted)
f that improved KAIC. These two steps were performed after
very fifth iteration of the CEM algorithm. On average, this
ptimization resulted in a model with 30 clusters.

.6. Using signal detection for BCI signal translation

The previous two sections describe a technique that can be
sed to model the probability density function of brain signal fea-
ures recorded during one condition (e.g., rest). This technique
onstructs a Gaussian mixture model with C clusters, feature
eans �μc, covariance matrices Σc, and prior probabilities ωc.
he value of C is automatically determined. This model of rest-

ng activity can be used to convert brain signal features into
utput control signal features as described below.

A model of brain activity is first established.3 Subsequently,
or any new signal sample, the posterior probability p(�a(n))
nd its negative log-likelihood LL(�a(n)) can be calculated. This
3 For the application of SIGFRIED to BCI data (Sections 3.1–3.3), explicit rest
ignal recordings were not available. For these data, we modeled brain activity
orresponding to the target for which the subjects produced desynchronized
EG. For the application of SIGFRIED to the motor tasks (Section 3.4), we
odeled brain activity corresponding to the recorded rest period.
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that make them amenable to real-time BCI control; (4) whether

F
f
(
o
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roduced by the modeled reference data distribution:

(�a(n)) =
C∑

c=1

p(�a(n)|c) (9)

L(�a(n)) = − log(p(�a(n))) (10)

he negative log-likelihood LL can be expected to be small for
amples that are likely to belong to the modeled data distribu-
ion (e.g., samples collected during rest), and large for samples
hat are unlikely (e.g., samples collected during imagined hand

ovement), and thus it produces an output signal that is under
ser control. In essence, this procedure translates a feature vec-
or into a control signal that can be used for device control.
n this respect, it is similar in function to traditional classifica-
ion/regression methods (see Fig. 1). The critical difference from
raditional approaches is that the proposed approach requires
rior data samples from only one class (e.g., rest), and not from
ultiple classes (e.g., signals associated with a variety of differ-

nt actual or imagined movements). Thus, it does not require the
xtensive initial signal identification procedures that currently
mpede clinical application of BCI technology.

In summary, we extracted feature samples (10 features per
00 ms sample corresponding to frequencies between 10 and
0 Hz) that were associated with one of two classes of data col-
ected during an online BCI experiment. We then used parts of
he data (i.e., the training set) to model one of the two classes, and
alculated LL(�a(n)) values for the two classes on the remaining
ata (i.e., test set). Our primary interest was to determine how
ell LL(�a(n)) (i.e., the output of the proposed feature transla-

ion method) would discriminate between the two distributions,
nd not how well the model accounted for the original data
istribution. We thus validated our method using a measure
f discrimination (rather than a measure of model fit such as
AIC).

.7. Performance calculation
To measure discrimination performance in our offline anal-
ses, we first averaged LL(�a(n)) values within each trial (i.e.,
uring the time the subject moved the cursor towards the cur-

a
o
m
f

ig. 1. Detection vs. regression. (A) Traditionally used classification (dashed line) or r
rom two classes (indicated by dots and ×). Definition of these functions requires prio
B) Signal detection (symbolized here by one Gaussian distribution modeling the ×) c
ne class (e.g., signals recorded during rest).
nce Methods  167 (2008) 51–62

ent target). This produced one value of LLt = (1/(n2 − n1 +
))

∑n2
n=n1

LL(�a(n)) for each trial t. These values were typically
maller for trials with the same target that was used as input to
he SIGFRIED modeling procedure compared to the values for
he opposite target. We then selected the threshold k that mini-

ized the error rate E for the two classes ω1 and ω2 of top and
ottom target, thereby determining a measure that indicated how
ell the two class distributions can be separated:

=
∫ ∞

k

P(ω1|LL) +
∫ k

−∞
P(ω2|LL) (11)

n this equation, P corresponds to the discrete probabilities of
lassifying LL into the two classes ω1 and ω2. Thus, each com-
arison of two distributions of LL values resulted in one measure
f the minimum error rate. This error rate reflected the fraction
f incorrect target classifications (e.g., top instead of bottom
arget) given an optimally chosen threshold k.

We then determined this error rate (%) using 20-fold cross-
alidation (i.e., dividing data into 20 subsets, determining model
arameters from 19 subsets, determining the minimum error rate
n the remaining subset, and repeating this procedure for all 20
est subsets), which resulted, for each subject, in 20 measure-

ents of the minimum error rate for each evaluated method. We
sed this set of 20 error measures, calculated between the dis-
ributions of LL for top and bottom targets, as a performance
etric for each of the evaluations described in the subsequent

ections.

. Results

The following sections address the four key questions in this
rticle, i.e.: (1) which parameters minimize BCI error rates cal-
ulated offline; (2) whether results achieved using SIGFRIED
re comparable to results achieved using linear regression; (3)
hether signals produced by SIGFRIED have characteristics
SIGFRIED model generated for data collected during rest (as
pposed to during one of the classes in a real-time BCI experi-
ent) can be used subsequently to produce discriminating output

or data collected during various tasks.

egression functions (dash-dotted line) can be used to discriminate between data
r analysis of data from both classes, and thus a signal identification procedure.
an be used to discriminate between the two classes, but requires data from only
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Table 2
Full or diagonal covariance matrices

Subject Full Diagonal Diagonal est.

Error (%) Error (%) p-Value Error (%) p-Value

A 3.8 2.3 <0.01 2.2 <0.01
B 9.7 9.4 � 0.05 7.5 <0.05
C 11.4 9.4 >0.05 9.6 <0.05

Error rates achieved using full covariance matrices (full), or covariance matrices
in which all non-diagonal elements were set to zero after estimation of the
full matrix (diagonal), or using covariance matrices for which only diagonal
elements were estimated (diagonal est.). Error rates for diagonalized covariance
m
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.1. Effect of SIGFRIED parameters on error rates

We first determined how SIGFRIED should be configured
nd used so that it maximizes performance in the BCI context.
he following sections discuss evaluations of different feature

ransformation and processing methods (i.e., use of diagonal
ersus full covariance matrices) and of the amount of necessary
raining data.

.1.1. Effect of feature transformation
Signal features can be pre-processed using a variety of trans-

ormations. In our analyses, untransformed frequency features
ere usually not Gaussian distributed. (When we applied the
illiefors test (an adaptation of the Kolmogorov–Smirnov test)

o test for normality, none of the 30 features (10 features per
ubject, 3 subjects) were normally distributed at the 0.05 level.)
ome transformations of the features tended to produce distri-
utions that were more similar to Gaussian distributions (e.g.,
or log-transformed features, 16 of 30 features were normally
istributed). Thus, it might seem natural to choose such transfor-
ations if signals are modeled with Gaussians, as they are with

ur methodology. However, we felt an evaluation of this issue
as warranted, first, because a good model fit on signals from
ne class does not guarantee that discrimination performance
ill also be maximized, and second, because SIGFRIED imple-
ents a GMM with automatic model selection, which further

omplicates interpretations.
To determine which of the selected feature transformations

i.e., no transformation, square root or log transformation) pro-
ides the best performance, we determined the classification
rror rates for each subject using each of the three transfor-
ations. The results of this evaluation are shown in Table 1.

rrespective of feature transformation, the achieved error rates
re low. This demonstrates that SIGFRIED can discriminate
ata from two conditions in a BCI experiment with high accu-
acy. Furthermore, the error rates for the square root and log
ransformation are higher than those for features that are not
ransformed. Statistical analysis (using a paired t-test) indicates
hat at least for the comprehensive dataset (8–10 sessions per
ubject) used in this study, the use of features that are not trans-
ormed was significantly better than the use of features that are
og transformed.
.1.2. Effect of using full/diagonalized covariance matrices
In its standard configuration, SIGFRIED models feature vari-

nces using full covariance matrices. That is, not only are the
able 1
eature transformation

ubject Normal Sqrt Log

Error (%) Error (%) p-Value Error (%) p-Value

3.8 4.3 � 0.05 7.7 	 0.001
9.7 10.5 >0.05 14.6 	 0.001
11.4 13.5 <0.05 17.6 	 0.001

rror rates achieved using features that were not transformed (normal), square-
oot transformed (sqrt), or log-transformed (log). Error rates for log transform
re significantly higher than those for no transformation (see p-values, which
ere calculated using a paired t-test compared to normal).

r
2
(
d
t
s

3
r

S
t
r
r

atrices are lower than those for full covariance matrices (see p-values, which
ere calculated using a paired t-test compared to full). See Section 4 for further

nterpretation.

ariances of each feature estimated, but so are all covariances
etween all combinations of any two features. We also studied
he effect of diagonalization of the covariance matrix so that only
he feature variances, but not the covariances calculated between
eatures were evaluated. We did this in two ways. First, we exe-
uted our algorithm and estimated a full covariance matrix (i.e.,
02 = 100 coefficients), but then set all non-diagonal coeffi-
ients to zero (i.e., diagonal). Second, we estimated only feature
ariances during the execution of the algorithm (i.e., 10 coeffi-
ients, estimated diagonal). We then again calculated error rates
or each subject.

The results of this evaluation are shown in Table 2. They indi-
ate the surprising finding that diagonalized covariance matrices
ave lower error rates than full covariance matrices (see Sec-
ion 4 for interpretation). Therefore, we used estimated diagonal
ovariance matrices for all subsequent evaluations.

.1.3. Effect of amount of training data
It is important to know how much training data SIGFRIED

equires to provide consistent results. It would seem likely that
ore features should require longer training time. To evaluate

he effect of training time on performance, we evaluated the
verage error rates for each subject. For each evaluation, we
sed 1, 2, and 4 Hz frequency bins for the 10–30 Hz band (i.e.,
esulting in 20, 10, and 5 features, respectively) and we varied the
mount of training time from 2.15 to 9.75 min (corresponding
o 15–65% of the available training time in 10% increments,
espectively). The results of this evaluation are shown in Fig.
. They indicate no consistent effect of the number of features
indicated for 20, 10, and 5 features by dash-dotted, solid, and
ashed lines, respectively), and only a modest effect of training
ime. This suggests that good performance can be achieved with
mall amounts of training data.

.2. Comparison of results achieved using SIGFRIED with
esults achieved using linear regression

The second question was whether the results using

IGFRIED are comparable to those achieved using a conven-

ional method that relies on initial analysis of data from all
elevant classes. We chose to compare SIGFRIED to linear
egression as this is a widely used method for BCI feature
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Fig. 2. Effect of training time on performance. Dash-dotted, solid, and dash

ranslation (e.g., McFarland and Wolpaw, 2005). To do this, we
alculated average error rates using linear regression. Input to
inear regression were the same features used for SIGFRIED
i.e., frequency amplitudes af calculated in 2 Hz bins from 10
o 30 Hz). The predicted variable was +1 or −1 for the two
argets, respectively. This produced a weight vector �w, i.e., one
eight wi for each feature af . Output control signal values cs(n)
ere derived using the dot product of this weight vector with

he feature vector at each time point n: cs(n) = �w · �a(n). Just
s with SIGFRIED above, this procedure produced output con-
rol signal values that discriminated between the two targets.
o quantitatively assess the degree of discrimination, we cal-
ulated error rates the same way as described in Section 2.7
or LL(�a(n)) values. The results of this evaluation are shown
n Table 3. Error rates with SIGFRIED were lower than those
or linear regression in subjects A and C and comparable in
ubject B.

.3. Characteristics of BCI control signals calculated by
IGFRIED

The third question was whether control signals produced by
IGFRIED have characteristics that would make them amenable

o real-time BCI experiments. In these BCI experiments, users
an modulate brain signal features so as to increase or decrease
he resulting SIGFRIED control signal. The amplitude of this
ontrol signal could be mapped to the velocity of a cursor, and
ntegrated cursor velocity (i.e., cursor position) could be mapped
o one of n possible choices, similar to the experiments described

n this paper. In this example, the final classification (i.e., a par-
icular choice) would be determined by a particular sequence of
ontrol signal values (e.g., by maintaining a certain value for a
articular period).

able 3
etection vs. regression

ubject SIGFRIED Linear regression

Error (%) Error (%) p-Value

2.2 29.6 	 0.001
7.5 6.8 � 0.05
9.6 38.0 	 0.001

he results indicate that SIGFRIED produces better results than linear regression
n subjects A and C, and comparable results in subject B.
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es correspond to results achieved using 20, 10, and 5 features, respectively.

Irrespective of how these control signals are utilized, such
xperiments demand two relevant requirements that go beyond
he question of how much control the user has over these signals.
irst, control signals must be derived using causal procedures
i.e., procedures that use past data) and their extraction must
upport rapid feedback. Because SIGFRIED can be applied to
he same features as conventional methods in a causal fashion,
nd because the generation of control signals is computation-
lly simple, SIGFRIED meets this first requirement. The second
equirement is that a subject should be able to produce the whole
ange of possible control signal values equally easily and that
nevitable signal variations be normally distributed around the
esired control signal value. For example, if the task is to pro-
uce a particular mean level of control signal values (e.g., so
s to maintain cursor position at a particular level), the signal
ariations around this mean value should ideally be normally
istributed. Because the present dataset was recorded from a
our-target task in which the targets were evenly spaced long the
-axis of the screen (implying that the control signals determined
nline were evenly spread along the value axis), we were able
o evaluate the output of SIGFRIED according to this second
equirement.

We first calculated one average control signal value for each
rial and compiled these values from all cross-validation folds.
his produced one distribution of control signal values for each
f the four targets. We then log-transformed SIGFRIED out-
ut values (i.e., deriving log(LL(�a(n)))),4 and normalized mean
arget value to the means of top and bottom target to facilitate
omparison. Fig. 3 shows the results for SIGFRIED and linear
egression (top and bottom panel, respectively) for each of the
hree subjects A–C. These results demonstrate that SIGFRIED
an be used with more than two targets provided that these targets
orrespond to progressive modulation of signal features. They
lso show that the distributions of log-transformed SIGFRIED
ontrol signal values have means that are evenly spaced along
he value axis, that the standard deviations of the distributions

re roughly similar for all targets, and that in these two char-
cteristics SIGFRIED compares favorably to linear regression.
hese results indicate that users should be able to produce dif-

4 We performed this log transformation because it tended to produce normal
istributions. While this transformation of the one-dimensional output values
ill not change classification results, normally distributed control signal values

re desirable for BCI purposes as described above.
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ig. 3. Plots of averages of log-transformed control signals derived using SIGF
ach of the four target locations and for each patient. Bars represent a quarter o

erent value ranges of SIGFRIED output control signals equally
asily. This should make these signals amenable to real-time
CI operation. Together with the results in Section 3.2, these

esults further suggest that when used in real-time experiments,
IGFRIED should perform comparable to linear regression.

In summary, we showed that signal detection is an effective
odality for BCI operation and that it can deliver results that

re comparable to a widely used approach that requires signal
dentification.

.4. Application of SIGFRIED to data collected during rest

In previous sections, we demonstrated that SIGFRIED can
ffectively discriminate between data from two classes collected
uring a BCI experiment. However, this requires a trained sub-
ect. In the end, the use of SIGFRIED will be most beneficial if
t can be used to provide discriminating control signals without
he signal identification procedures that are currently required.
onsequently, the fourth question in our evaluation was whether
IGFRIED can model data collected during rest and subse-
uently be used to detect data collected during different kinds
f tasks.

To answer this question, we analyzed the data from the
our additional subjects (D–G) who were naive to BCI con-
rol. Using the same features and techniques described before,
e derived a model of EEG activity for the resting dataset for

ach electrode location. Subsequently, we calculated, for each
ocation and task, the error rate between data collected during
est and the task. These error rates were derived from averaged

IGFRIED output values for each 4.05 s cue period, and from
s epochs during the 6 min rest dataset. This procedure thus

esulted in one measure of error rate for each electrode, task, and
ubject.

t
t
B
i

(upper panel) and control signals derived using regression (bottom panel) for
tandard deviation. See text for details.

The topographies for these error rates are shown in Fig. 4.
hese results indicate that SIGFRIED gave low error rates when

t is applied to resting data in subjects who are naive to BCI
sage. Furthermore, the topographies indicate those electrode
ocations that change with execution of the different tasks. As
xpected, these locations are centered on relevant sensorimotor
ortices. While there is individual variability in these topogra-
hies, their averages are comparable to those previously reported
ith conventional methods (McFarland et al., 2000).

. Discussion

This paper describes a novel approach to BCI signal pro-
essing implemented in a package called SIGFRIED. It detects
hanges in brain signals without the need for prior determina-
ion of the specific brain signal features and tasks that produce
he greatest brain signal changes. Thus, it has the potential to
vercome one of the major impediments to translation of labo-
atory BCI demonstrations into clinical applications. The results
f our study indicate that the BCI configuration problem could
e reduced from a problem of identifying both the location and
he frequency of the signal that the subject can modulate to the
roblem of merely choosing an appropriate location. Because
ith EEG only one or more of a few locations are usually used

or BCI control (e.g., C3, Cz, C4), configuration for each new
ser should be relatively easy. Ultimately, it may be possible to
ombine all features from select locations into one model so that
ven the location would not have to be selected. In this paper we

ested models that used all relevant frequency bands in one par-
icular location. In this situation, SIGFRIED is able to support
CI control even if the frequency that is modulated by the user

s unknown or changes over time.
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ig. 4. Topographies of error rates for the additional subjects D–G with differen
s similar to patterns given by conventional methods.

SIGFRIED is of value to BCI research mostly because of
he increased practicality it provides. While we showed in this
aper that SIGFRIED provides favorable performance com-
ared to linear regression, SIGFRIED relies on the statistics
f only one class. While this approach will always function
roperly as long as the data corresponding to the tested class
re different to those for the modeled class, it may not provide
ptimal performance. In other words, it is likely that compre-
ensive optimization of signal classification using all available
ignal classes will outperform results achieved using only one
lass. For two reasons, signal detection will likely remain of
alue. First, there are several avenues to further optimize the
echnique that is presented here. For example, automatic fea-
ure selection, which has proven effective for data with more
han one class, may also be possible with data from only one
lass. For example, one may include only those frequency
eatures that are identified by typical mu/beta peaks. Further-
ore, adaptation of the resting signal model to reflect ongoing

hanges in brain signals may improve performance. Second,
he unique value of the detection approach is that it requires
ess a priori information. Thus, detection will always be valu-
ble when little such information is available such as during
arly subject training and/or when using signals with a high
eature/task space such as electrocorticographic (ECoG) sig-
als.

One surprising result of the present study is that full covari-
nce matrices typically produced results inferior to those of
iagonalized covariance matrices. This was true whether we
stimated all parameters of the covariance matrix and sub-
equently set the non-diagonal entries (i.e., covariances) to
ero, or whether we estimated only diagonal coefficients (i.e.,
ariances). In other words, superior results were achieved
hen the model disregarded information about how partic-
lar frequency bands vary with respect to others (e.g., mu

ersus beta frequencies). This may indicate that important deci-
ion boundaries reflect ellipsoids whose axes are parallel to
he coordinate axes, or that the covariances estimated from
he training set do not generalize well to those required for

a
2
n
e

r tasks. While there is individual variability in these topographies, their average

he test set. It may also be related to the likely possibility
hat some features (i.e., frequency amplitudes) are correlated
ith each other. In fact, auxiliary analyses (data not shown)
sing simulated data that contained correlated features also
roduced improved performance for diagonalized covariance
atrices.
The strength of the detection approach is also its main weak-

ess. Because SIGFRIED cannot distinguish among modulation
f different features within one model (e.g., one brain location),
t can effectively produce only one (albeit graded) control sig-
al for each such model. Furthermore, this control signal will
nly differentiate between different brain signal classes under
he assumption that these classes are produced by modulation of
ne set of features such that they progressively differ from the
esting state. Thus, one could say that SIGFRIED is a trade-off
etween specificity and practicality.

Because SIGFRIED depends for appropriate function
trongly on data collected during rest, the quality of the recording
uring this resting period is important. While common sources
f external noise (such as line noise, muscular artifacts, etc.) are
ell understood and can be minimized, it is not clear how the

ubject should be instructed to perform during this period so that
t would produce data that are maximally different to those pro-
uced during a motor or imagery task. Furthermore, a number
f external influences exist that may modulate the same signals
hat are modulated during movement imagery (e.g., tactile stim-
lation or observing movements in other people while resting;
euper et al., 2005).
Modeling of background signals has been used extensively

n other domains such as image processing (see Friedman and
ussell, 1997; Harville et al., 2001; Kuo et al., 2003; Lee, 2005;
iyuan et al., 2004; Pless, 2003; Stauffer and Grimson, 1999;
oyama et al., 1999). This approach has been practically absent
rom biosignal processing with very few exceptions (e.g., Costa

nd Cabral, 2000; Harris et al., 2000; Pernkopf and Bouchaffra,
005). Nevertheless, there are many applications within biosig-
al analysis that could benefit from background modeling. For
xample, detection of P300 evoked potentials (see Farwell and
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onchin, 1988) is typically achieved using standard classifica-
ion techniques. These techniques work very well with the stable
esponses typically found in healthy individuals, but often fail if
esponses vary in time or in space as may happen with severely
aralyzed users. Background modeling could make detection
erformance invariant to time and space. Artifact detection (see
nderer et al., 1999; Goncharova et al., 2003; Schlögl et al.,
999) is another possible and attractive application. Finally, with
ew exceptions (e.g., Gardner et al., 2005), detection of epileptic
eizures is also often performed using hand-crafted or machine-
earned classification criteria that describe the seizure signature.
hese approaches also have problems if this signature changes.
hus, signal detection, which is invariant to the seizure signature,
ay prove beneficial.
In summary, current approaches to analyzing and using brain

ignals typically require comprehensive analyses of data for dif-
erent conditions. In this paper, we describe a procedure that
omplements these approaches. Our method can produce effec-
ive results using only data recorded in one condition (e.g., rest).
t should thereby facilitate the development and clinical use of
CI systems.
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ppendix A

The large Laplacian spatial filter was calculated by subtract-
ng from the measured activity at the channel of interest the mean
ctivity of four neighboring electrodes:

′(k) = sh(k) − 1

4

∑
i ∈ Eh

si(k) (12)

here Eh was the set of four next-nearest neighbors surrounding
lectrode h.

The control signal S(n) was calculated as a weighted linear
ombination of the estimated frequency amplitudes ahj(n) at a
articular channel h and center frequency j:

(n) =
∑

h ∈ H,j ∈ J

whjahj(n) (13)
he control signal S(n) was translated into cursor movement
V (n) using a linear transformation: �V (n) = b(S(n) − a)
here b was the gain and a was the mean control signal. These
arameters were estimated from the user’s previous perfor-
ance.
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übler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter J, Schauer
M, et al. The thought translation device: a neurophysiological approach to
communication in total motor paralysis. Exp Brain Res 1999;124(2):223–32.
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