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A �-Rhythm Matched Filter for Continuous Control
of a Brain-Computer Interface

Dean J. Krusienski*, Member, IEEE, Gerwin Schalk, Member, IEEE, Dennis J. McFarland, and Jonathan R. Wolpaw

Abstract—A brain-computer interface (BCI) is a system that
provides an alternate nonmuscular communication/control
channel for individuals with severe neuromuscular disabilities.
With proper training, individuals can learn to modulate the
amplitude of specific electroencephalographic (EEG) components
(e.g., the 8–12 Hz rhythm and 18-26 Hz rhythm) over the
sensorimotor cortex and use them to control a cursor on a com-
puter screen. Conventional spectral techniques for monitoring
the continuous amplitude fluctuations fail to capture essential
amplitude/phase relationships of the and rhythms in a com-
pact fashion and, therefore, are suboptimal. By extracting the
characteristic rhythm for a user, the exact morphology can
be characterized and exploited as a matched filter. A simple,
parameterized model for the characteristic rhythm is proposed
and its effectiveness as a matched filter is examined online for
a one-dimensional cursor control task. The results suggest that
amplitude/phase coupling exists between the and bands
during event-related desynchronization, and that an appropriate
matched filter can provide improved performance.

Index Terms—Brain-computer interface, electroencephalogram,
matched filter, sensorimotor rhythms, spectral analysis.

I. INTRODUCTION

ABrain-Computer Interface (BCI) is a system that allows
individuals with severe neuromuscular disabilities to com-

municate or perform ordinary tasks exclusively via brain waves
[18]. A BCI monitors brain activity either invasively or non-
invasively [i.e., electroencephalographic (EEG) activity] and
translates predetermined features, corresponding to the user’s
intentions, into device commands. The first step in developing
a successful noninvasive BCI paradigm is determining suitable
control features from the EEG. An effective control signal
has the following attributes: it can be precisely characterized
in an individual user, it can be readily modulated by the user
according to intent, it can be detected and tracked consistently
and reliably, and it can be readily translated into device control.
Standard control signals used for noninvasive BCIs fall under
two basic categories: stimulus evoked potentials and event-re-
lated (de)synchronizations [11]. Stimulus evoked potentials
are phase-locked to the stimulus; however, they are discrete
responses that cannot easily be modulated for continuous con-
trol. On the other hand, event related (de)synchronizations are
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responses that can attenuate or intensify in a continuous fashion
in response to a stimulus or event and hence are well suited
for real-time control. The cortical rhythm is an example of
an event-related desynchronization that is commonly used as a
control feature for BCIs.

A. The Cortical Rhythm

The cortical rhythm is an idling rhythm that is evident in
the scalp recorded EEG of most healthy adults [13]. It is promi-
nent over the primary sensorimotor cortical areas and is gener-
ally characterized by an arch-shaped 8–12 Hz rhythmical pat-
tern, as depicted in Fig. 1. The rhythm is typically suppressed
by contralateral movement, tactile stimulation, and movement
imagery. The foci of the responses over the left and right hemi-
spheres are not synchronous, but the relative amplitude fluctu-
ations can be correlated as a result of jointly dependent senso-
rimotor activity. With adequate training, an individual can de-
velop significant control over the independent -rhythm mod-
ulation for each hemisphere, as demonstrated in [6]. Because
of similar localization and activation patterns, the rhythm is
thought to be related to the rhythm, but the exact relation re-
mains uncertain. A study of the general phase synchronization
between and rhythms in the EEG, not specific to the cor-
tical rhythm, can be found in [12]. This study suggests that
significant -synchronous oscillations exist, which may not
be simple proportional-amplitude harmonics.

B. Conventional Spectral Detection and Tracking

As specified earlier, two of the keys to realizing an effective
BCI control signal are precise characterization and reliable de-
tection of the signal. The rhythm is commonly identified by
its distinctive arch-shaped morphology, but the presence of this
morphology in on-line recording is often obscured by noise.
Because of its characteristic 8-12 Hz spectral band, spectral
analysis methods that resolve sinusoidal components such as
Fourier based methods [1], autoregressive (AR) models [3], and
narrow-band power estimation [4] are the traditional techniques
employed for continuous tracking of the rhythm in BCIs. Al-
though these spectral methods are efficient and often effective in
this context, there are several fundamental problems with these
approaches. Firstly, the visual -rhythm is prominent in normal
EEG and occupies the same frequency band as the rhythm. Al-
though the visual -rhythm is typically most prominent in the
occipital regions, it can also be present over the sensorimotor
cortex [11]. The influence of visual -rhythm over the sensori-
motor cortex can be diminished via spatial filtering such as the
large Laplacian, but often is not totally eliminated. Although the
visual -rhythm is usually more sinusoidal than the rhythm, it
is often difficult to discriminate the two rhythms using spectral
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Fig. 1. Prototypical �-rhythm temporal waveform and the unit normalized amplitude topography over the hand area of the sensorimotor cortex for right hand
imagery.

Fig. 2. One-dimensional task trial structure. (1) The target and cursor are present on the screen for 1 s. (2) The cursor moves steadily across the screen for 2 s with
its vertical movement controlled by the user. (3) If the user hits the target, the target flashes for 1.5 s. If the cursor misses the target, the screen is blank for 1.5 s.
(4) The screen goes blank for a 1-s interval. (5) The next trial begins.

amplitude information alone. Another drawback of traditional
spectral estimation techniques is that they are incapable of com-
pactly and accurately modeling the sharp, peaking discontinu-
ities characteristic of the rhythm. Such spectral techniques are
not explicitly conducive to tracking phase-coupled components
and are typically not configured to include phase information.

These issues can be addressed by harnessing the character-
istic -rhythm morphology for a particular user and exploiting
it as a template for a matched filter analysis. Matched filters [17]
are known to be particularly effective for detection of wave-
forms with consistent temporal characteristics in the presence
of noise, such as the sinus rhythm in the electrocardiogram, for
instance.

II. METHODOLOGY

In one- and two-dimensional cursor control studies [9], [10],
[19], [20], trained users are able to effectively modulate 8–12 Hz
( band) and 18-26 Hz ( band) spectral components over the
sensorimotor cortex to move a cursor toward a randomly po-
sitioned target on a monitor. In order to investigate the nature
of the rhythm for a particular user, the characteristics of the

-rhythm were examined using data from 11 able-bodied users
(6 women and 5 men ranging in age from 29-45). All users had
exhibited strong -band activity during an initial screening and
were subsequently trained on a simple two-target, one-dimen-
sional cursor control task. All users were successfully trained
on the task ( accuracy) and ranged in ex-
perience from 1 to 20 sessions on the task prior to this data set.
The study was approved by the New York State Department of
Health Institutional Review Board, and each user gave informed
consent.

A. One-Dimensional Cursor Control Task

The one-dimensional sensorimotor rhythm cursor control
task is shown in Fig. 2. For the task, the users were presented
with a target randomly positioned at the top or bottom of the

right edge of the monitor. The trial began with the cursor at the
center of the left edge of the monitor. It moved at a constant rate
toward the right, reaching the right side of the monitor after 2 s.
The users’ goal was to move the cursor upward or downward to
the height of the target so that it hit the target when it reached
the right side of the monitor. The trials continued in 3-min runs,
with a 1-min break given between runs. A single 3-min run
consisted of between 18 and 30 trails, and 8 runs constituted
a single session. Sessions were conducted one per day, two or
three times a week over a period of several weeks.

B. Data Collection and Feature Extraction

The details of the data collection and analysis are as follows:
Using BCI2000 software [15], the EEG activity was collected
from 64 channels at standard locations [16] distributed over the
scalp. All 64 channels were referenced to the right ear, bandpass
filtered (0.1–60 Hz) and digitized at 160 Hz. A large Laplacian
spatial filter [8] was applied to the electrode over the right or left
hand area of the sensorimotor cortex that was predetermined as
optimal for each user based on analysis of prior sessions (see
Table I). For each user, a 3-Hz bin at a predetermined funda-
mental frequency from a 16th-order AR model was extracted
from the spatial-filtered signal and used as the online control
feature. The AR feature was calculated every 50 ms from the
past 400 ms of data.

C. Characteristic Rhythm

The first step toward extracting the characteristic -rhythm
waveshape for a particular user was the determination of the
spectral component over the sensorimotor cortex that demon-
strated the highest correlation with the target location. This
was accomplished using features generated by a 16th-order
AR model, although any adequate spectral technique would
presumably suffice for this step. This spectral component
was assumed to be the fundamental frequency of the user’s
rhythm. Next, data from each 2-s trial for the target location that
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TABLE I
AMPLITUDE /PHASE RELATIONSHIPS

For each of the 11 users, the predetermined optimal electrode location (In-
ternational 10–20 System) and fundamental �-rhythm frequency, the ratio of
amplitudes of the first two harmonic peaks (a and a ), and the fundamental�
peak amplitude (a ) of the characteristic waveform, and phases of the first two
harmonics (� and � ) of the characteristic waveform relative to zero-phase
of the fundamental � component (� = 0) are listed.

corresponded to -rhythm synchronization was cross-corre-
lated with a 1-s sinusoid template at the fundamental frequency.
The 1-s segments having the maximum correlation for each
trial were collected over two entire sessions of data. These
phase aligned data segments were then averaged to expose the
prevailing characteristics of the control signal.

The averaging revealed distinctive characteristic -rhythm
morphologies, which are depicted in Fig. 3(a). It is evident that
all of the waveforms are nonsinusoidal and periodic, and that
several of the users’s characteristic waveforms resemble the
classical arch shape.

Although the rhythm typically tends to appear in bursts
lasting anywhere from less than 1 s to several seconds, the
averaged waveforms maintain a relatively constant amplitude
envelope during the 1-s interval. Because of this constant
envelope and because no significant temporal variations were
evident, other than that attributed to noise, it is feasible to
derive a parameterized model of the rhythm that could be
easily applied as a matched filter template.

D. Paramaterized -Rhythm Model

The fact that the characteristic -rhythm waveforms exhibit
periodicity indicates that it can be decomposed in terms of a dis-
crete number of phase-coupled sinusoidal components. In order
to develop a model for the parameterized -rhythm templates,
the Fourier spectra of the characteristic waveforms were exam-
ined using the fast Fourier transform (FFT).

Fig. 3(b) depicts the spectra of the characteristic waveforms
given in Fig. 3(a). It is observed that the magnitude spectra pri-
marily consist of a principal peak at the fundamental frequency
and one or two decaying harmonic peaks. The exact relation-
ships of these harmonics as determined by magnitude and phase
components of the FFT are given for each user in Table I. Table I
lists the ratio of amplitudes of the first two harmonic peaks (
and ) and the fundamental peak amplitude ( ), and phases
of the first two harmonics ( and ) relative to zero-phase of
the fundamental component ( ). Because the harmonic

Fig. 3. Normalized characteristic waverforms and the corresponding FFT
amplitude spectra for the 11 users: (a) The averaged characteristic waveform
(dashed) versus parameterized �-rhythm template (solid). (b) FFT amplitude
spectra of the characteristic waveforms.

TABLE II
STRENGTH OF SYNCHRONIZATION (TOP /BOTTOM TARGET)

For each of the 11 users, the strength of synchronization (2) between the funda-
mental frequency and the first harmonic (S ) and the fundamental frequency
and the second harmonic (S ) for the two target conditions are listed.

phases are proportionally related, they can easily be converted
into the cyclic relative phase

(1)

and the strength of synchronization [14]

(2)

where is the number of instantaneous phase observations over
an interval. Ideally, if there is no phase coupling between har-
monics, the relative phase should have a uniform random dis-
tribution and the strength of synchronization will equal zero.
Table II lists, for each of the 11 users, the strength of synchro-
nization between the fundamental frequency and first harmonic
( ) and the fundamental frequency and second harmonic ( )
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Fig. 4. Two-dimensional histograms of relative phase versus �-band amplitude for two representative users. Increasing density of observations is indicated by
increasing darkness. The users are desynchronizing the� rhythm for the bottom target and synchronizing it for the top target. The uniform distributions with respect
to amplitude for the bottom target indicates that there is little phase coupling when the � rhythm is desynchronized. Conversely, there is specific amplitude and
phase concentration for the top target when the � rhythm is synchronized.

for the two target conditions. There is clearly a stronger syn-
chronization between the fundamental frequency and the first
two harmonics for the top target trials compared to the bottom
target trials. A paired -test on the strength of synchronization
indicates a significant difference ( ) between target
conditions for both and. . Furthermore, the phase re-
lationships are dependent upon the signal amplitudes. Two-di-
mensional histograms of the relationship between the relative
phase and the -rhythm amplitude for the two target positions
are illustrated in Fig. 4 for two representative users. The users
are desynchronizing the rhythm for the bottom target and syn-
chronizing it for the top target. The uniform distributions with

respect to amplitude for the bottom target indicates that there
is little phase coupling when the rhythm is desynchronized.
Conversely, there is specific amplitude and phase concentration
for the top target when the rhythm is synchronized.

These results indicate that, during specific sensorimotor
cortex activity associated with control, the harmonic compo-
nents of the band are consistently phase-coupled. Considering
this, combining the and bands as independent control fea-
tures for a BCI is likely suboptimal in terms of detection and
tracking performance. This underscores the need for a feature
extraction method that is capable of compactly modeling
the amplitude and phase interdependencies among frequency



KRUSIENSKI et al.: -RHYTHM MATCHED FILTER FOR CONTINUOUS CONTROL OF A BCI 277

bands for more accurate detection and tracking of control signal
modulation. These issues can be addressed by constructing
a suitable matched filtering scheme based on the empirically
derived characteristic waveform.

Neglecting the noise characteristic, a general matched filter
template that maximizes the signal-to-noise ratio [17] is simply
modeled as a sum of the harmonically related sinusoidal
components

(3)

where is the template sample number, is the sampling
frequency, is the fundamental frequency of the -rhythm
template, is the number of harmonics to be modeled,
and and are the amplitude and phase of the individual
harmonics, respectively. These model parameters are simply
obtained from the FFT spectrum of the user’s characteristic
waveform as given in Table I, with sufficient for mod-
eling the characteristic rhythm. The resulting template wave-
forms corresponding to the individual characteristic waveforms
are illustrated in Fig. 3(a). Since much of the EEG is com-
prised of quasi-periodic or quasi-sinusoidal signals character-
ized by coupled, harmonically related frequencies, this model
is capable of compactly representing for detection purposes a
plethora of EEG signals such as steady-state visual evoked po-
tentials (SSVEPs). An alternate, less general model of the
rhythm using a single rectified and shaped sinusoid is provided
in [5].

E. Paramaterized -Rhythm Matched Filter

To use the -rhythm template waveform generated by the
parameterized model [see Fig. 3(a)] as a matched filter, an ap-
propriate segment length was selected according to the desired
update rate (see Section III). The -rhythm template waveform
segment was then normalized to unit amplitude. The incoming
data segments, having segment length equal to the template
waveform, were circularly convolved for one period of the tem-
plate in order to evaluate the template at discrete phase shifts,
essentially determining the optimal phase correlation between
the data segment and the template. This is equivalent to an FIR
filter bank of phase shifted template waveforms, though
it is realistic to use a smaller subset of shifts at high sampling
rates. The square root of the maximum value of the circular
convolution (or maximum filter bank output), corresponding to
the optimal alignment, was taken to be the feature for the data
segment. The result is a continuous amplitude analysis, similar
to that produced by a single frequency bin of a conventional
spectral analysis technique.

III. OFFLINE ANALYSIS

To evaluate the performance of the parameterized -rhythm
template as a matched filter for tracking actual coordinated

-rhythm modulations, the results were assessed against three
comparable spectral estimation techniques for offline analysis
of the one-dimensional cursor control task described in Sec-
tion II-A. The data set used for offline analysis, collected as

described in Section II-B, consisted of 4 sessions of 8 runs
each from each of the 11 users. These 4 test sessions were
subsequent to those sessions used to generate the matched-filter
(MF) templates for validation purposes. For the offline analysis,
the features were calculated every 50 ms using 400 ms of data
via the following techniques.

AR1: The incumbent online method using a 16th-order AR
model derived via the maximum entropy method (MEM)
[7], with a single 3-Hz bin in the band.
AR2: A 16th-order AR model derived using the maximum
entropy method (MEM) [7], with 1-Hz bins in the and
bands.
FFT: A 160-point FFT (zero padded) with a Hamming
window applied to the data, with 1-Hz bins in the and

bands.
MF: The individualized -matched filter in the band
using (3) and the parameters given in Table I.

The frequency bins were chosen to be relatively narrow to
provide a more objective comparison to the fundamental fre-
quency of the -matched filter templates. The frequency bin cor-
responding to the fundamental -band frequency and the bin at
twice the fundamental frequency ( band) were selected to com-
pose the control features from the spatial filtered channel. The
AR2 and FFT methods were chosen in order to examine the rel-
ative effects of disregarding phase-coupling between the and

bands.
The optimum linear regression coefficients for the features

generated by each technique were determined to predict the ver-
tical target location for each session. The equation expressing
the instantaneous vertical output prediction is given as follows:

(4)

The terms , , and are the optimal regression coefficients
for the and spectral amplitude features, and , respec-
tively. The three regression coefficients ( , , and intercept)
were determined for both the FFT and AR2 models, and only
two coefficients ( and intercept) were determined for the AR1
and MF methods, since the activity is assumed to be inherent
in the features generated by the matched filter.

The predictions generated by the linearly weighted features
were then averaged for each trial and correlated with the re-
spective vertical target locations. The results obtained from the
four techniques are summarized in Fig. 5, where each bar in-
dicates the average (i.e., the proportion of the variance of
the EEG signal for top and bottom targets accounted for by
target position) for the 11 users. A repeated measures analysis
of variance (ANOVA) was conducted on the offline session re-
sults using METHODS, USERS, and SESSIONS as factors. The
ANOVA revealed a significant difference between the methods
( , ). Although the MF consistently
resulted in the best performance, a posthoc Tukey-Kramer test
only revealed a significant difference between AR1 and MF
( ). There was not a significant difference in the in-
teraction of user and method ( , ),
indicating that the difference in methods was consistent across
users.
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Fig. 5. Results of the offline analysis comparing the four feature extraction
methods. Each bar indicates the trial-averaged r (i.e., the proportion of the
variance of the EEG signal for top and bottom targets accounted for by target
position), averaged across the 11 users. The error bars indicate standard devia-
tion. ANOVA results indicate that the difference between methods is consistent.

For continuous cursor control, it is desirable that the control
feature distribution be symmetric. A skewed control feature dis-
tribution not only makes it more difficult to estimate the mean of
the features, but also biases the cursor toward a particular target
despite articulated signal modulation. Additionally, a skewed
distribution affects the speed and directional tendencies of the
cursor, which can be distracting to the user. To account for this,
the skewness of the control feature distribution can be deter-
mined. Skewness, the third central moment, is a measure of the
asymmetry of the data around the sample mean. If skewness is
negative, the data are spread out more toward the negative side
of the mean than to the positive. If skewness is positive, the data
are spread out more toward the positive side of the mean. The
skewness of a perfectly symmetric distribution is zero.

Optimization of the feature weights for the online cursor up-
date is performed using ordinary least squares linear regres-
sion. Because ordinary least squares linear regression is optimal
under the assumption of Gaussianity, it is also desirable that
the control features have a Gaussian distribution. Kurtosis, the
fourth central moment, is a measure of how outlier-prone a dis-
tribution is. The kurtosis of the normal distribution is 3. Distri-
butions that are more outlier-prone than the normal distribution
have kurtosis greater than 3; distributions that are less outlier-
prone have kurtosis less than 3.

The skewness and kurtosis, averaged across the 11 users, of
the feature distributions for the four spectral methods are given in
Table III. “Top” indicates the distribution for the upper target and
“Bottom” indicates the distribution for the lower target. Table III
shows that the matched filter generally produces features that
are more Gaussian than the other methods and, thus, should pre-
sumably result in better cursor control. The same effect can be
achieved by applying a simple normalizing transformation to the
distributions of the other methods [2]. However, this transforma-
tion is not entirely trivial if the underlying prespectral analysis
distribution is not Gaussian, which is not assumed in this case.
The considerable differences in skewness and kurtosis between
target locations can be attributed to burstiness of the rhythm
in the synchronized condition, as mentioned earlier.

TABLE III
AVERAGE CONTROL FEATURE SKEWNESS AND KURTOSIS ACROSS 11 USERS

FOR THE TWO TARGET LOCATIONS

IV. ONLINE RESULTS

The parameterized -matched filter (MF) was implemented
to generate features for online cursor control in BCI2000 [15].
Data were collected from 4 of the available users that partic-
ipated in the offline analysis (2 male and 2 female, users A,
D, F, and K) to compare the -matched filter and the incum-
bent 16th-orfer AR spectral analysis (AR1). Using the same
protocol described earlier, the users again performed the one-
dimensional cursor control task. Each user completed 4 ses-
sions consisting of 8 runs using the AR1 and MF methods al-
ternating in blocks of 4 runs in a counterbalanced fashion. Be-
cause the individualized analysis was not conducted at the time
of the online sessions, the MF model parameters were fixed at

and for all
users based on the template derived in [5], using the individual
fundamental frequencies. Although these fixed model parame-
ters were not optimal in all cases, the resulting template wave-
forms were nonetheless very similar to the characteristic wave-
forms. The online results are summarized in Fig. 6. A repeated
measures ANOVA on the online run results using METHODS,
USERS, and RUNS as factors. The ANOVA indicates a statis-
tically significant ( , ) improvement
in performance using the -matched filter. However, there also
is a significant interaction between the methods and the users
( , ), which was not the case in the
offline analysis and can be attributed to the use of suboptimal
parameters online. Nevertheless, the results demonstrate the ef-
ficacy of the MF in general, and it is expected that the per-
formance should be further improved with the individualized
model parameters obtained from the characteristic waveforms.

V. DISCUSSION

The offline analyses indicate that a single matched filter fea-
ture is able predict the target as well or better than two and

features derived from the AR and FFT spectral bins. This
suggests that the and bands often demonstrate a consis-
tent amplitude/phase relationship that is unique to a particular
user, and that these bands are not entirely independent when
the user is engaged in controlling the cursor. The persistence of
this relationship begets the characteristic -rhythm morphology,
which is correlated with cursor control and can be accurately es-
timated by the matched filter in a compact fashion. Additionally,
compared to the features derived by the other feature extraction
methods, the matched filter features generally have raw distribu-
tions that are less skewed and more Gaussian. This contributes
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Fig. 6. Online performance of 4 of the 11 users from the offline analysis using
AR (AR1) and MF features. The error bars indicate the standard deviation of
the 16 runs.

to the superior performance of the matched filter in the online
experiments.

The online results suggest that the -matched filter outper-
forms the incumbent AR method for feature extraction in the
one-dimensional cursor control task. Also, performance with
the matched filter was more consistent in general as indicated
by the standard deviations in Fig. 6. Aside from the aforemen-
tioned favorable characteristics of the feature distribution, there
are several possible reasons for this improved performance.
Since the matched filter theoretically provides the optimal
signal-to-noise ratio, the -matched filter is not as prone to the
extraneous signal contamination that could potentially affect
the other methods, especially parametric methods such as AR
modeling. Furthermore, the matched filter is apt to provide
a better discrimination between the rhythm and the more
sinusoidal visual rhythm occupying the same frequency band.
This is not the case for the AR and FFT methods which merely
resolve purely sinusoidal components. Similarly, the -matched
filter is also capable of discriminating the -asynchronous
components that may not contribute to -band control.

Historically, users who are able to attain consistent and ac-
curate one- and two-dimensional cursor control seem to exhibit
and actively modulate a pervasive -rhythm morphology over
one or both hemispheres of the sensorimotor cortex. Because
the -matched filter is able to more accurately detect and track
such a control signal using fewer features, it is hypothesized
that the improved one-dimensional performance will translate
into improved multidimensional cursor control. Additionally,
by producing fewer, better representative control features and
eliminating the individual, correlated - and - band features,
the -rhythm matched filter analysis would greatly simplify and
enhance the efficacy of a feature weight adaptation scheme, po-
tentially further increasing online BCI performance.
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